
Fall 2023 Python Programming for Data
Science
Release 0.1

Alex Vakanski

Dec 30, 2023





LECTURE 1 - SHORT HISTORY OF AI

1 Course Syllabus 3

2 Course Description 5

3 Textbooks 7

4 Learning Outcomes 9

5 Prerequisites 11

6 Grading 13

7 Lectures 15
7.1 Lecture 1 - A Short History and Current State of Artificial Intelligence . . . . . . . . . . . . . . . . 15
7.2 Lecture 2 - Data Types in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 Lecture 3 - Statements, Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 Lecture 4 - Functions, Iterators, Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.5 Lecture 5 - Object-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.6 Lecture 6 - Exception Coding, Modules and Packages . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.7 Lecture 7 - NumPy for Array Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.8 Lecture 8 - Data Manipulation with pandas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.9 Lecture 9 - Data Visualization with Matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.10 Lecture 10 - Databases and SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.11 Lecture 11 - Data Exploration and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
7.12 Lecture 12 - Data Visualization with Seaborn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
7.13 Lecture 13 - Scikit-Learn Library for Data Science . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
7.14 Lecture 14 - Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
7.15 Lecture 15 - Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
7.16 Lecture 16 - Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
7.17 Lecture 17 - Model Selection, Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 571
7.18 Lecture 18 - Neural Networks with PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
7.19 Lecture 19 - Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
7.20 Lecture 20 - Transformer Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
7.21 Lecture 21 - NLP with Hugging Face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
7.22 Lecture 22 - Diffusion Models for Text-to-Image Generation . . . . . . . . . . . . . . . . . . . . . . 685
7.23 Lecture 23 - Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
7.24 Lecture 24 - Introduction to Data Science Operations (DSOps) . . . . . . . . . . . . . . . . . . . . . 722
7.25 Lecture 25 - Deploying Projects as Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 722
7.26 Lecture 26 - Deploying Projects to the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
7.27 Lecture 27 - Reproducible Data Science Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
7.28 Tutorial 1 - Jupyter Notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

i



7.29 Tutorial 2 - Terminal and Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
7.30 Tutorial 3 - Python IDEs, VS Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
7.31 Tutorial 4 - Virtual Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
7.32 Tutorial 5 - Web Scraping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
7.33 Tutorial 6 - Google Colab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
7.34 Tutorial 7- Image Processing with Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
7.35 Tutorial 8 - TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
7.36 Tutorial 9 - PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
7.37 Tutorial 10 - Tensorflow Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
7.38 Tutorial 11 - CometML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894
7.39 Tutorial 12 - GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900

ii



Fall 2023 Python Programming for Data Science, Release 0.1

University of Idaho - Department of Computer Science
Instructor: Alex Vakanski (vakanski@uidaho.edu)
Teaching Assistant: Longze Li (li8975@vandals.uidaho.edu)
Semester: Fall 2023 (August 21 – December 15)
Course website: https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/
GitHub repository:
https://www.github.com/avakanski/Fall-2023-Python-Programming-for-Data-Science/blob/main/README.md

LECTURE 1 - SHORT HISTORY OF AI 1

https://www.uidaho.edu
https://www.uidaho.edu/engr/departments/cs
https://www.webpages.uidaho.edu/vakanski/index.html
mailto:vakanski@uidaho.edu
mailto:li8975@vandals.uidaho.edu
https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/
https://www.github.com/avakanski/Fall-2023-Python-Programming-for-Data-Science/blob/main/README.md


Fall 2023 Python Programming for Data Science, Release 0.1

2 LECTURE 1 - SHORT HISTORY OF AI



CHAPTER

ONE

COURSE SYLLABUS

View Syllabus

3



Fall 2023 Python Programming for Data Science, Release 0.1

4 Chapter 1. Course Syllabus



CHAPTER

TWO

COURSE DESCRIPTION

The course is designed to introduce students to Python tools and libraries that are commonly used by organizations
for managing the various phases in the life cycle of data science projects. The content is divided into four main
themes. The first theme reviews the fundamentals of Python programming. The second theme focuses on data
engineering and explores Python tools for data collection, exploration, and visualization. The next theme covers
model engineering and includes topics related to model design, selection, and evaluation for image processing,
natural language processing, and time series analysis. The last theme introduces Data Science Operations (DSOps)
and encompasses techniques for model serving, performance monitoring, diagnosis, and reproducibility of data
science projects deployed in production. Throughout the course, students will gain hands-on experience with various
Python libraries for data science workflow management.
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CHAPTER

THREE

TEXTBOOKS

1. Joel Grus, “Data Science from Scratch: First Principles with Python”, 2nd Edition, O’Reilly Media, 2019, ISBN:
9781492041139.

2. Chip Huyen, “Designing Machine Learning Systems”, O’Reilly Media, 2022, ISBN: 9781098107963.
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CHAPTER

FOUR

LEARNING OUTCOMES

Upon the completion of the course, the students should demonstrate the ability to:

1. Attain proficiency with commonly used Python frameworks for managing the life cycle of data science projects.

2. Develop pipelines for integrating data from multiple sources, designing predictive models, and deploying the
models.

3. Apply Python tools for data collection, analysis, and visualization, such as NumPy, Pandas, Matplotlib, and
Seaborn, to real-world datasets.

4. Implement machine learning algorithms for image processing, natural language processing, and time series anal-
ysis using Python-based frameworks, such as Scikit-Learn, Keras, TensorFlow, and PyTorch.

5. Understand the principles of model selection and evaluation, including hyperparameter tuning, cross-validation,
and regularization.

6. Understand the primary characteristics of current Python libraries for deployment, continuous integration, and
monitoring of data science projects.

7. Deploy data science projects as web applications using Flask, and to cloud servers using Microsoft’s Azure
platform.

9
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CHAPTER

FIVE

PREREQUISITES

The course requires to have basic programming skills in Python. While having knowledge of data science methods
would be advantageous, it is not mandatory.
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CHAPTER

SIX

GRADING

Student assessment will be based on 6 homework assignments (worth 60 pts), 3 quizzes (worth 30 marks), and class
participation and engagement (worth 10 marks).

13



Fall 2023 Python Programming for Data Science, Release 0.1

14 Chapter 6. Grading



CHAPTER

SEVEN

LECTURES

7.1 Lecture 1 - A Short History and Current State of Artificial Intelli-
gence

7.2 Lecture 2 - Data Types in Python

• 2.1 Introduction

• 2.2 Numbers

• 2.3 Strings

• 2.4 Lists

• 2.5 Dictionaries

• 2.6 Tuples

• 2.7 Sets

• 2.8 Other Data Types

• 2.9 String Formatting

• References

The figure below lists the main data types in Python, and provides information about the category and mutability of the
data types.
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Figure source: Reference [1].

7.2.1 2.1 Introduction

Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first
released in 1991, Python’s design philosophy emphasizes code readability. Its language constructs and object-oriented
approach aim to help programmers write clear, logical code for small-scale and large-scale projects. Python interpreters
are available for many operating systems. In recent years, Python has become the primary language for Machine
Learning and Data Science applications.

The Python Software Foundation (PSF) is a non-profit organization that manages and directs resources for Python
development. Python 3.0 was released in 2008, and it was a significant revision of the language that is not entirely
backward-compatible, and much Python 2 code does not run unmodified on Python 3. This course makes use of
Python 3.

Dynamic Typing

Python uses dynamic typing, meaning that we can reassign different data types to variables. This makes Python very
flexible in assigning data types, and it differs from other languages that are statically typed.

[1]: # Assign the number 2 to the variable 'my_dogs'
my_dogs = 2

[2]: # Show the variable 'my_dogs'
my_dogs

[2]: 2

16 Chapter 7. Lectures
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[3]: # Reassign the list to the variable 'my_dogs'
my_dogs = ['Sammy', 'Frankie']

[4]: # Show the variable 'my_dogs'
my_dogs

[4]: ['Sammy', 'Frankie']

In the above example, the number 2 was first assigned to the variable my_dogs, and afterward the list ['Sammy',
'Frankie'] was assigned to the variable my_dogs.

When we create a variable name in Python, we reserve a memory location to store an object. E.g., the variable name
my_dogs first acts as a reference to the memory location which holds the number 2. Or, we can think of the variable
as a pointer to the memory location where the value 2 is stored. Whenever we use the variable my_dogs in our code,
Python will retrieve the value 2 from the memory location and associate it with the name my_dogs. By assigning the
list ['Sammy', 'Frankie'] to the variable my_dogs, we instruct Python to associate the name my_dogs with a new
memory location where the list ['Sammy', 'Frankie'] is stored.

Pros of Dynamic Typing

• Very easy to work with

• Faster development time

Cons of Dynamic Typing

• May result in unexpected bugs

• Requires to be aware of the type of objects

Assigning Objects to Variables

When assigning objects to variables in Python, we need to obey the following rules for the names of variable.

• Names can not start with a number

• Names can not contain spaces, use _ (underscore) instead

• Names can not contain any of these symbols :'",<>/?|\!@#%^&*~-+

• It’s considered best practice (according to PEP8) that names are written with lowercase letters with underscores

• Avoid using Python built-in keywords like list and str in variable names

• Avoid using the single characters l (lowercase letter L), O (uppercase letter O) and I (uppercase letter I), since
they can be confused with 1 and 0

Variable assignment has the syntax name = object, where a single equal sign = is used as an assignment operator.

[5]: # Assign the integer object 5 to the variable name 'a'
a = 5

[6]: # Show the variable 'a'
a

[6]: 5

As we mentioned, dynamic typing in Python allows variables to be reassigned.

7.2. Lecture 2 - Data Types in Python 17
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[7]: a = 10
a

[7]: 10

Python also allows to reassign a variable with a reference to the same object.

[8]: # Add 15 to the current value of 'a' and assign it to 'a'
a = a + 15
a

[8]: 25

Python allows using shortcuts to add, subtract, multiply, and divide numbers with re-assignment using +=, -=, *=, and
/=.

For instance, a += 10 is equivalent to a = a + 10

[9]: # a = a + 10
a += 10
a

[9]: 35

[10]: # a = a * 2
a *= 2
a

[10]: 70

Determining Variable Type with type()

Python offers several built-in functions, which can perform actions on objects. For instance, we can check the type of
the object that is assigned to a variable using Python’s built-in function type().

[11]: type(a)

[11]: int

In the above example, the type of the variable a is integer.

[12]: # In Python we create tuples with parantheses
a = (1,2)

[13]: type(a)

[13]: tuple

It is also important to note that the double equal == operator in Python is used to test the equality of two expressions,
whereas the single equal = operator is used to assign objects to variables.

Also, testing for inequality is performed with the not equal != operator.

The operators greater than >, less than <, greater than or equal >=, less than or equal <= perform as would generally be
expected.
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7.2.2 2.2 Numbers

Integers are whole numbers, and can be positive or negative. For example: 2 and -2.

Floating point numbers in Python have a decimal point, or use an exponential (E) to define the number. For example
2.0 and -2.163 are examples of floating point numbers. 4E2 (4 times 10 to the power of 2 = 400) and 1E-3 (3 times 10
to the power of -3 = 0.001) are also examples of floating point numbers in Python.

Other types of number objects that are less frequently used include:

• Complex numbers, have real and imaginary parts, e.g., 3+4j

• Decimal numbers, have control over the precision and rounding of numbers, e.g., Decimal('0.1') (see ex-
amples in the next section)

• Fractions, are rational numbers with numerator and denominator, e.g., Fraction(1,3) = 1/3.

Basic Arithmetic Operations

[14]: # Addition
2+1

[14]: 3

[15]: # Subtraction
2-1

[15]: 1

[16]: # Multiplication
2*2

[16]: 4

[17]: # Division
3/2

[17]: 1.5

[18]: # Floor Division
7//4

[18]: 1

The floor division operator // (two forward slashes) truncates the decimal number without rounding, and returns an
integer result.

If we just want the remainder after division, we use the % modulo operator.

[19]: # Modulo (remainder)
7%4

[19]: 3

[20]: # Power (exponentiation)
2**3

7.2. Lecture 2 - Data Types in Python 19
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[20]: 8

[21]: # Can also do roots (e.g., square root is **0.5)
4**0.5

[21]: 2.0

[22]: # Order of operations followed in Python
# Precedence: Parenthesis, Exponentiation, Division, Multiplication, Addition,␣
→˓Subtraction
# E.g., multiplication has precedence over addition
2 + 10 * 10 + 3

[22]: 105

[23]: # Can use parentheses to specify orders
(2+10) * (10+3)

[23]: 156

Note that floating-point numbers are implemented in computer hardware as binary fractions (fractions of 0 and 1). As a
result, many decimal fractions cannot be accurately represented as binary fractions. For example, the decimal number
0.1 results in an infinitely long binary fraction of 0.000110011001100110011. . . . Since our computer can only store a
finite number of decimal places, this will only approximate the above binary fraction, but the approximation will not
be equal to 0.1. Hence, such approximations of decimal numbers is the limitation of our computer hardware and not
an error in Python.

[24]: # Note that display issue in Python, due to using binary fractions to represent float␣
→˓numbers
f3 = 0.1 + 0.1 + 0.1
f3

[24]: 0.30000000000000004

[25]: # One solution to that is to use decimal numbers, since they have rounding mechanisms to␣
→˓obtain exact representations
from decimal import Decimal
f4 = Decimal('0.1') + Decimal('0.1') + Decimal('0.1')
f4

[25]: Decimal('0.3')

If number types are mixed, Python will do the conversion.

[26]: # Mix int and float; Python will convert int to float first
a = 1 + 2.5
print(a)
type(a)

3.5

[26]: float

[27]: # Convert between different types
a = 2

(continues on next page)
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(continued from previous page)

b = float(a)
print(b)
type(b)

2.0

[27]: float

[28]: c = int(b)
print(c)
type(c)

2

[28]: int

We can also use logic comparisons with numbers using <, >, >=, <=.

[29]: # Logic comparison
5<3

[29]: False

Built-in Mathematical Functions

Examples of built-in mathematical functions include: pow, abs, round, and others. These functions are built into
the Python interpreter. We do not need to import any packages. Check the list of all built-in functions in Python:
https://docs.python.org/3.10/library/functions.html

[30]: # Power (exponentiation)
pow(2,4)

[30]: 16

[31]: round(3.006)

[31]: 3

[32]: # Absolute value
abs(-3.4)

[32]: 3.4

[33]: # Check documentation for help about built-in functions
help(pow)

Help on built-in function pow in module builtins:

pow(base, exp, mod=None)
Equivalent to base**exp with 2 arguments or base**exp % mod with 3 arguments

Some types, such as ints, are able to use a more efficient algorithm when
invoked using the three argument form.
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Python Modules for Numerical Operations

The number of built-in mathematical functions is limited, and we can also import Python modules, such as math and
random to perform mathematical operations. https://docs.python.org/3.10/library/math.html#module-math

[34]: import math

math.floor(3.006)

[34]: 3

[35]: import random

# Return a random floating-point number in the range 0-1
r = random.random()
print(r)

0.7360686591339091

7.2.3 2.3 Strings

A string is an immutable sequence containing letters, words, and other characters.

Strings are used in Python to record text information, such as names. Strings in Python are sequences, which means that
Python keeps track of every element in the string, and we can use indexing to get particular elements in the sequence.

Creating a String

To create a string in Python we can use either single quotes or double quotes.

[36]: # Single word
'hello'

[36]: 'hello'

[37]: # Entire phrase
'This is also a string'

[37]: 'This is also a string'

[38]: # We can also use double quotes
"String built with double quotes"

[38]: 'String built with double quotes'

Note that the code below shows an error, because the single quote in I'm broke the continuation of the single quotes
in the string.

[39]: # Be careful with quotes!
' I'm using single quotes, but this will create an error'

File "C:\Users\Alex\AppData\Local\Temp\ipykernel_9980\2053197537.py", line 2
' I'm using single quotes, but this will create an error'

^
(continues on next page)
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(continued from previous page)

SyntaxError: invalid syntax

You can use combinations of double and single quotes to get the complete statement.

[40]: "Now I'm ready to use the single quotes inside a string!"

[40]: "Now I'm ready to use the single quotes inside a string!"

Printing a String

In Jupyter notebooks, writing a string in a cell will automatically output the string, however the correct way to display
strings is by using a print function.

[41]: # We can simply declare a string
'Hello World'

[41]: 'Hello World'

[42]: # Note that we can't output multiple strings this way; only the last string is displayed
'Hello World 1'
'Hello World 2'

[42]: 'Hello World 2'

We can use a print statement to display a string, or multiple strings in a cell.

[43]: print('Hello World 1')
print('Hello World 2')
print('Use \n to print a new line') # \n prints a new line
print('\n')
print('See what I mean?')

Hello World 1
Hello World 2
Use
to print a new line

See what I mean?

We can also use the built-in function len() to check the length of a string. It counts all of the characters in the string,
including spaces and punctuation marks.

[44]: len('Hello World')

[44]: 11
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String Indexing and Slicing

Since strings are sequences, Python can use indexes to call parts of the sequence.

Indexing starts at 0 for Python.

[45]: # Assign a string to the variable 's'
s = 'Hello World'

[46]: # Show 's'
s

[46]: 'Hello World'

[47]: # Print the string
print(s)

Hello World

[48]: # Check the type of 's'
type(s)

[48]: str

[49]: # Show first element
s[0]

[49]: 'H'

Use the slicing operator : to perform slicing which returns the elements up to a designated index in the sequence.

[50]: # Grab everything past the first element all the way to the end of s
s[1:]

[50]: 'ello World'

[51]: # Note that there is no change to the original s
s

[51]: 'Hello World'

[52]: # Grab everything UP TO the 3rd index
s[:3]

[52]: 'Hel'

The above slicing includes indexes 0, 1, and 2, and it doesn’t include the 3rd index. In Python, slicing is performed as
up to, but not including.

[53]: # Return everything
s[:]

[53]: 'Hello World'

We can also use negative indexing to go backwards.
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[54]: # Last letter (one index behind 0 so it loops back around)
s[-1]

[54]: 'd'

[55]: # Grab everything but the last letter
s[:-1]

[55]: 'Hello Worl'

We can also use indexing and slicing notation to grab elements of a sequence by a specified step size (the default is 1).
For instance, we can use two colons in a row :: and then a number specifying the frequency to grab elements.

[56]: # Grab everything, but go in steps size of 1
s[::1]

[56]: 'Hello World'

[57]: # Grab everything, but go in step sizes of 2
s[::2]

[57]: 'HloWrd'

[58]: # We can use step size of -1 to print a string backwards
s[::-1]

[58]: 'dlroW olleH'

String Properties

Strings are immutable objects. It means that once a string is created, the elements within it can not be changed or
replaced.

[59]: s

[59]: 'Hello World'

[60]: # Let's try to change the first letter to 'x'
s[0] = 'x'

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_9980\2138848189.py in <module>

1 # Let's try to change the first letter to 'x'
----> 2 s[0] = 'x'

TypeError: 'str' object does not support item assignment

Other properties of strings include concatenation, i.e., we can concatenate strings.

[61]: s

[61]: 'Hello World'
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[62]: # Concatenate strings
s + ' concatenate me!'

[62]: 'Hello World concatenate me!'

[63]: # We can reassign s completely
s = s + ' concatenate me!'

[64]: # Note that now s points to the entire sequence
print(s)

Hello World concatenate me!

We can also use the multiplication symbol * to create a repetition of a string.

[65]: letter = 'z'
letter*10

[65]: 'zzzzzzzzzz'

Built-in Methods for Strings

Objects in Python can also have built-in methods. Methods are called with a period followed by the method name, as
in:

object.method(parameters)

In the above line, parameters are extra arguments we can pass into the method.

Here are some examples of built-in methods in strings.

[66]: s

[66]: 'Hello World concatenate me!'

[67]: # Upper case the string
s.upper()

[67]: 'HELLO WORLD CONCATENATE ME!'

[68]: # Lower case
s.lower()

[68]: 'hello world concatenate me!'

[69]: # Split a string by blank spaces (this is the default)
s.split()

[69]: ['Hello', 'World', 'concatenate', 'me!']

[70]: # Split by a specific element (doesn't include the element that was split on)
s.split('W')

[70]: ['Hello ', 'orld concatenate me!']
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[71]: # Check all built-in methods for the string s
dir(s)

[71]: ['__add__',
'__class__',
'__contains__',
'__delattr__',
'__dir__',
'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__getitem__',
'__getnewargs__',
'__gt__',
'__hash__',
'__init__',
'__init_subclass__',
'__iter__',
'__le__',
'__len__',
'__lt__',
'__mod__',
'__mul__',
'__ne__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__rmod__',
'__rmul__',
'__setattr__',
'__sizeof__',
'__str__',
'__subclasshook__',
'capitalize',
'casefold',
'center',
'count',
'encode',
'endswith',
'expandtabs',
'find',
'format',
'format_map',
'index',
'isalnum',
'isalpha',
'isascii',
'isdecimal',
'isdigit',
'isidentifier',

(continues on next page)

7.2. Lecture 2 - Data Types in Python 27



Fall 2023 Python Programming for Data Science, Release 0.1
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'islower',
'isnumeric',
'isprintable',
'isspace',
'istitle',
'isupper',
'join',
'ljust',
'lower',
'lstrip',
'maketrans',
'partition',
'removeprefix',
'removesuffix',
'replace',
'rfind',
'rindex',
'rjust',
'rpartition',
'rsplit',
'rstrip',
'split',
'splitlines',
'startswith',
'strip',
'swapcase',
'title',
'translate',
'upper',
'zfill']

7.2.4 2.4 Lists

A list is a mutable ordered sequence of elements, written as a series of items within square brackets.

Lists are the most general example of a sequence in Python. Unlike strings, they are mutable, meaning that the elements
inside a list can be changed.

Lists are constructed with square brackets [] and commas separating every element in the list.

[72]: # Assign a list to the variable named 'my_list'
my_list = [1, 2, 3]

Lists can hold different object types. For example, the following list contains strings, integers, and float numbers.

[73]: my_list = ['A string', 23, 100.232, 'o']
my_list

[73]: ['A string', 23, 100.232, 'o']

Just like with strings, the built-in function len() returns the number of items in the sequence of the list.
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[74]: len(my_list)

[74]: 4

We can think of lists as arrays of references (pointers) to a series of objects with allocated memory.

List Indexing and Slicing

Indexing and slicing work just like in strings.

[75]: my_list = ['one', 'two', 'three', 4, 5]

# Grab element at index 0
my_list[0]

[75]: 'one'

[76]: # Grab everything UP TO index 3
my_list[:3]

[76]: ['one', 'two', 'three']

We can also use + to concatenate lists, just like we did for strings.

[77]: my_list + ['new item']

[77]: ['one', 'two', 'three', 4, 5, 'new item']

Note that the above operation doesn’t actually change the original list.

[78]: my_list

[78]: ['one', 'two', 'three', 4, 5]

To make the change permanent, we need to reassign the list.

[79]: # Reassign
my_list = my_list + ['add new item permanently']

[80]: my_list

[80]: ['one', 'two', 'three', 4, 5, 'add new item permanently']

We can also use the operator * for a duplication method similar to strings.

[81]: # Make the list double
my_list * 2

[81]: ['one',
'two',
'three',
4,
5,
'add new item permanently',
'one',
'two',

(continues on next page)
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'three',
4,
5,
'add new item permanently']

[82]: # Again, doubling is not permanent
my_list

[82]: ['one', 'two', 'three', 4, 5, 'add new item permanently']

Lists indexing will return an error if there is no element at that index. For example:

[83]: my_list[100]

---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_9980\3678114954.py in <module>
----> 1 my_list[100]

IndexError: list index out of range

Built-in Methods for Lists

There are parallels between arrays in other programming languages and lists in Python. Lists in Python tend to be more
flexible than arrays in other languages for two reasons: they have no fixed size (meaning we don’t have to specify the
size of a list when we create one), and they have no fixed type constraint (like we’ve seen above we can mix different
types of objects in a list).

Explained next are several built-in methods for lists.

[84]: # Create a new list
list1 = [1, 2, 3]

Use the append method to permanently add an item to the end of a list:

[85]: # Append
list1.append('append me!')

[86]: # Show
list1

[86]: [1, 2, 3, 'append me!']

Use pop to extract (“pop off”) an item from the list. By default, pop takes off the last index (i.e., with index -1), but we
can also specify which index to pop off.

[87]: # Pop off the 0 indexed item
list1.pop(0)

[87]: 1

[88]: # Show
list1
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[88]: [2, 3, 'append me!']

[89]: # Assign the popped element; remember that the default popped index is -1
popped_item = list1.pop()

[90]: popped_item

[90]: 'append me!'

[91]: # Show remaining list
list1

[91]: [2, 3]

We can insert and remove elements from a list.

[92]: c = ['a', 'b', 'c']

# Insert at index 0
c.insert(0, 'a0')
print(c)

['a0', 'a', 'b', 'c']

[93]: # Remove
c.remove('b')
print(c)

['a0', 'a', 'c']

[94]: # Remove at index 0
del c[0]
print(c)

['a', 'c']

We can use the sort and reverse methods with lists.

[95]: new_list = ['a','e','x','b','c']

[96]: # Show
new_list

[96]: ['a', 'e', 'x', 'b', 'c']

[97]: # Use reverse to reverse order (this is permanent!)
new_list.reverse()

[98]: new_list

[98]: ['c', 'b', 'x', 'e', 'a']

[99]: # Use sort to sort the list (in alphabetical order)
new_list.sort()
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[100]: new_list

[100]: ['a', 'b', 'c', 'e', 'x']

[101]: # For list of numbers, sorting is in ascending order
list_of_numbers = [2, 4, 3, 7, 1]
list_of_numbers.sort()
list_of_numbers

[101]: [1, 2, 3, 4, 7]

Two lists can be combined into a single list by the zip function.

[102]: a = [1, 2, 3, 4, 5]
b = [5, 4, 3, 2, 1]

print(zip(a,b))

<zip object at 0x0000028AC666CFC0>

To see the results of the zip function, in the next cell we convert the returned zip object into a list. Note that the zip
function returns a list of tuples. Each tuple represents a pair of items that the function zipped together. The order in
the two lists was maintained.

[103]: print(list(zip(a,b)))

[(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)]

Often the zip command is used inside of a for-loop. The following code shows how a for-loop can assign a variable to
each collection that the program is iterating.

[104]: a = [1, 2, 3, 4, 5]
b = [5, 4, 3, 2, 1]

for x,y in zip(a,b):
print(f'{x} - {y}')

1 - 5
2 - 4
3 - 3
4 - 2
5 - 1

Nesting Lists

Python data structures support nesting, that is, we can have data structures within data structures. For example, a list
inside a list is shown next.

[105]: # Let's make three lists
lst_1 = [1, 2, 3]
lst_2 = [4, 5, 6]
lst_3 = [7, 8, 9]

# Make a list of lists to form a matrix
matrix = [lst_1, lst_2, lst_3]
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[106]: # Show
matrix

[106]: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

We can again use indexing to grab elements, but now there are two levels for the index: the items in the matrix object,
and the items inside that list.

[107]: # Grab the first item in the matrix object
matrix[0]

[107]: [1, 2, 3]

[108]: # Grab the first item of the first item in the matrix object
matrix[0][0]

[108]: 1

List Comprehensions

Python has an advanced feature called list comprehensions. This allows for quick construction of lists.

The basic syntax of list comprehensions is:

newlist = [expression for item in iterable]

It returns a new list by applying the expression to each item in the iterable object.

[109]: # Apply x+10 to each element in the list
list2 = [1, 2, 3]
new_list = [x+10 for x in list2]
new_list

[109]: [11, 12, 13]

We can also add logic conditions to the list comprehensions as in the next example.

[110]: # Even numbers in the range 0-10
even_numbers = [x for x in range(10) if x%2 == 0]
even_numbers

[110]: [0, 2, 4, 6, 8]

[111]: # Squared elements in the even numbers list
even_squares = [x*x for x in even_numbers]
even_squares

[111]: [0, 4, 16, 36, 64]
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7.2.5 2.5 Dictionaries

A dictionary is an unordered and mutable Python container that stores mappings of unique keys to values.

We’ve been learning about sequences in Python so far, and now we’re going to learn about mappings in Python. If
you’re familiar with other programming languages, you can think of dictionaries as hash tables.

Mappings are a collection of objects that are stored by a unique key, unlike a sequence that stores objects by their relative
position (index). This is an important distinction, since mappings won’t retain the order of the elements because each
object is defined by a key.

Therefore, a Python dictionary consists of a collection of keys and associated values. A colon : separates each key
from its value, and the keys and values are provided inside curly braces {}. The keys must be unique, and can appear
only once in a dictionary. Also, the keys must be immutable objects, such as strings, integers, floats, or tuples. The
associated values can be almost any Python object, and there are no restrictions.

Dictionaries are mutable, therefore the elements can be changed, added, and removed.

Constructing a Dictionary

[112]: # Make a dictionary with {} and : to signify a key and a value
my_dict = {'key1':'value1','key2':'value2'}

[113]: my_dict

[113]: {'key1': 'value1', 'key2': 'value2'}

[114]: # Call values by their key
my_dict['key2']

[114]: 'value2'

Dictionaries are very flexible and they can hold various data types.

[115]: # The values can be any object type
my_dict = {1:101, 2:102, 3:103}

# Call an item
my_dict[2]

[115]: 102

[116]: my_dict = {'key1':123, 'key2':[12,23,33], 'key3':['item0','item1','item2']}

# Let's call items from the dictionary
my_dict['key3']

[116]: ['item0', 'item1', 'item2']

[117]: # We can call an index on that value
my_dict['key3'][0]

[117]: 'item0'

[118]: # Can even call methods on that value
my_dict['key3'][0].upper()
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[118]: 'ITEM0'

We can change the values in a dictionary, as in the following cell.

[119]: # Subtract 123 from the value
print(my_dict['key1'])
my_dict['key1'] = my_dict['key1'] - 100

123

[120]: #Check
my_dict['key1']

[120]: 23

The keys in Python dictionaries are immutable, and we cannot change them. However, we can remove a key using
pop() or del as in lists, and afterward add a new key with its associated value.

We can also create new keys and values by assignment. For instance, if we start with an empty dictionary, we can
continually add key-value pairs to it.

[121]: # Create a new dictionary
d = {}

[122]: # Create a new key through assignment
d['animal'] = 'Dog'

[123]: # Can do this with any object
d['answer'] = 42

[124]: # Show
d

[124]: {'animal': 'Dog', 'answer': 42}

Nesting with Dictionaries

Python has flexibility of nesting objects and calling methods on them. Let’s see a dictionary nested inside a dictionary.

[125]: # Dictionary nested inside a dictionary nested inside a dictionary
d = {'key1':{'nestkey':{'subnestkey':32}}}

[126]: # Keep calling the keys
d['key1']['nestkey']['subnestkey']

[126]: 32
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Dictionary Built-In Methods

There are several built-in methods we can call on a dictionary.

[127]: # Create a dictionary
d = {'key1':1,'key2':2,'key3':3}

[128]: # Method to return a list of all keys
d.keys()

[128]: dict_keys(['key1', 'key2', 'key3'])

[129]: # Method to return all values
d.values()

[129]: dict_values([1, 2, 3])

7.2.6 2.6 Tuples

A tuple is a collection of objects which is ordered and immutable, and it is commonly written as a series
of items in parentheses.

In Python, tuples are very similar to lists, with the main difference being that tuples are immutable sequences, unlike
lists that are mutable sequences. Tuples are created similarly to lists, but with parantheses () instead of squared brackets
[].

The basic characteristics of tuples include:

• They are ordered collections of objects: like lists and strings, tuples are positionally ordered collections of objects
(i.e., they are sequences) that maintain a left-to-right order among their elements.

• Are accessed by offset: like strings and lists, items in a tuple are accessed by positional offset (not by key);
therefore, they support indexing and slicing.

• Tuples are immutable sequences: like strings and lists, tuples are sequences. However, unlike lists that are
mutable sequences, tuples are immutable sequences (meaning they can not be changed in place).

• Are fixed-length, heterogeneous, and arbitrarily nestable: because tuples are immutable, their size cannot be
changed (without making a new copy). Tuples can hold any type of object, including other compound objects
(e.g., lists, dictionaries, other tuples), and hence, they support arbitrary nesting.

• Tuples are arrays of object references: like lists, tuples are best thought of as arrays of references (pointers) to
other objects with allocated memory.

Constructing Tuples

Tuples are constructed by using parentheses () with the items separated by commas.

[130]: # Creating a tuple
t = (1, 2, 3)
t

[130]: (1, 2, 3)

[131]: # Check the length of the tuple using len(), just like a list
len(t)
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[131]: 3

[132]: # We can also mix object types: e.g., strings, integer numbers, floating-point numbers
t = ('one', 2, 490.2)

# Show
t

[132]: ('one', 2, 490.2)

[133]: # Tuples, lists, or dictionaries can be nested into other tuples
w = ('one', 'two', (4, 5), 6, ['r', 100])
w

[133]: ('one', 'two', (4, 5), 6, ['r', 100])

[134]: # An empty tuple
u = ()
u

[134]: ()

[135]: # A 1-item tuple
v = ('thing', )
v

[135]: ('thing',)

Note that for a single-item tuple we need to place a comma after the item, that is, we use (item,) and not (item),
since parentheses can also be used to enclose expressions like (1 + 2) * 3 = 9.

[136]: # Note that the output of this cell is not a tuple
# Since the displayed output of the cell is not in parentheses, it is an integer number,␣
→˓not a tuple
a = (3)
a

[136]: 3

We can also use the built-in function type() to check the type of the variable a.

[137]: # The type of the variable a is integer number
type(a)

[137]: int

[138]: # This is a tuple
b = (3,)
b

[138]: (3,)

[139]: # The type of the variable b is tuple
type(b)
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[139]: tuple

[140]: # Not a tuple
(1 + 4) * 3

[140]: 15

[141]: # This is a tuple: note that (1+4,) is the same as (5,), and when multiplied by 3, the␣
→˓tuple is repeated 3 times
(1 + 4,) * 3

[141]: (5, 5, 5)

The parentheses () can be omitted in the syntax, and tuples in Python can be created just by listing items separated
with commas. Although the parentheses are mostly optional with tuples, there are a few cases when using parentheses
is required, e.g., within a function call, or when nested in a larger expression. For beginners, it is recommended to
always use parentheses, in order to avoid the above exceptions, and because they improve the code readability.

[142]: t = 'one', 2, 490.2
t

[142]: ('one', 2, 490.2)

[143]: # A tuple with one item can be created just by adding a comma after the item without␣
→˓using parentheses
'hello',

[143]: ('hello',)

Tuple Indexing and Slicing

Since tuples are positionally ordered collections of objects like strings and lists, indexing and slicing work for tuples.

[144]: t

[144]: ('one', 2, 490.2)

[145]: # Use indexing just like in lists and strings
t[0]

[145]: 'one'

[146]: t[1]

[146]: 2

[147]: t[-1]

[147]: 490.2

[148]: # Slicing
t[0:2]

[148]: ('one', 2)
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Other sequencing operations, such as concatenation and repetition, are also supported for tuples, in a similar way as
for lists and strings.

[149]: # Concatenation
(1, 'book') + ('notes', 4)

[149]: (1, 'book', 'notes', 4)

[150]: # Repetition
(1, 'thing') * 4

[150]: (1, 'thing', 1, 'thing', 1, 'thing', 1, 'thing')

Because tuples are sequences, we can also use for loop iterations and list comprehensions to print the elements of
tuples.

[151]: # Consider the following tuple
x = ('b', 'u', 'i', 'l', 'd', 'i', 'n', 'g')
x

[151]: ('b', 'u', 'i', 'l', 'd', 'i', 'n', 'g')

[152]: # We can use a `for` loop iteration to print each of the items of the tuple on a separate␣
→˓line
for i in x:

print(i)

b
u
i
l
d
i
n
g

[153]: # A list comprehension can also be used to print each of the items of the tuple x on a␣
→˓separate line
l = [print(i) for i in x]

b
u
i
l
d
i
n
g
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Built-in Methods for Tuples

There are built-in methods for tuples in Python, but not as many as for lists. Tuples do not have methods such as
append(), remove(), extend(), insert(), and pop() due to their immutable nature.

[154]: # Show
t

[154]: ('one', 2, 490.2)

[155]: # Use .index to enter an item and return the index
t.index('one')

[155]: 0

[156]: # Use .count to count the number of times a value appears
t.count('one')

[156]: 1

[157]: # Count the number of times 2 appears in the tuple
u = (1, 2, 3, 2, 1, 2)
u.count(2)

[157]: 3

Tuple Immutability

To emphasize one more time that tuples are immutable, check the following examples.

[158]: # If we try to change the first element, we will get an error message
t[0] = 'four'

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_9980\3799902626.py in <module>

1 # If we try to change the first element, we will get an error message
----> 2 t[0] = 'four'

TypeError: 'tuple' object does not support item assignment

Because of their immutability, tuples can’t grow. Once a tuple is created, we can not add to it.

[159]: # We will get an error message
t.append('nope')

---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_9980\402286559.py in <module>

1 # We will get an error message
----> 2 t.append('nope')

AttributeError: 'tuple' object has no attribute 'append'

We can, however, make a new tuple based on a current tuple.
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[160]: t = (t[0], 7, t[2])
t

[160]: ('one', 7, 490.2)

Conversion to Lists

Conversion to lists and back to tuples is straightforward.

[161]: type(list)

[161]: type

[162]: # Tuple to list
l = list(t)
l

[162]: ['one', 7, 490.2]

[163]: # List to tuple
l2 = ['aa', 'bb', 5, 'cc']
t2 = tuple(l2)
t2

[163]: ('aa', 'bb', 5, 'cc')

Tuple Unpacking

Tuple unpacking means pairing objects on the right side of the assignment operator = with targets on the left side by
position, and assigning them from left to right.

[164]: # Unpacking the tuple into the individual items
y = ('GOOG', 120, 490.2)
order, shares, price = y
print(order)
print(shares)
print(price)

GOOG
120
490.2

[165]: print('Cost:', shares * price)

Cost: 58824.0

[166]: # Unpacking the tuple: two names are entered for a tuple with 3 items, resulting in an␣
→˓error
order, shares = y

---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_9980\526350587.py in <module>

(continues on next page)
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1 # Unpacking the tuple: two names are entered for a tuple with 3 items, resulting␣
→˓in an error
----> 2 order, shares = y

ValueError: too many values to unpack (expected 2)

Named Tuples

Named tuples are an extended type of tuples that allow items to be accessed by both position and attribute name, similar
to dictionaries. They are created by using the namedtuple function from the collections module.

[167]: # Import and create a named tuple
from collections import namedtuple

Rec = namedtuple('Record', ['name', 'age', 'jobs'])

# Assign a named-tuple record
bob = Rec(name='Bob', age=40.5, jobs=['dev', 'mgr'])
alice = Rec(name='Alice', age=36, jobs=['mgr'])

[168]: # Access by position
bob[0]

[168]: 'Bob'

[169]: bob[1]

[169]: 40.5

[170]: # Access by attribute
bob.name, bob.jobs

[170]: ('Bob', ['dev', 'mgr'])

A named tuple can be converted to a dictionary, which allows key-based access to the items.

[171]: D = bob._asdict()
D

[171]: {'name': 'Bob', 'age': 40.5, 'jobs': ['dev', 'mgr']}

[172]: # Access by key
D['name']

[172]: 'Bob'
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When to Use Tuples

Although tuples are very similar to lists, tuples are not used as often as lists in programming. However, tuples are used
when immutability is necessary; for instance, if in your program you are using an object and need to make sure it does
not get changed, then a tuple provides convenient integrity.

7.2.7 2.7 Sets

A set is a collection of unique objects which is unordered and mutable, and are constructed by using the
set() function.

Sets support operations corresponding to mathematical set theory, such as intersection, union, etc. By definition, an
item appears only once in a set, no matter how many times it is added.

Because sets are collections of objects, they share some behavior with lists and dictionaries. For example, sets are
iterable, can grow and shrink on demand, and may contain a variety of object types.

However, since sets are unordered and do not map keys to values, they are neither a sequence nor mapping type.

Sets have a variety of applications, especially in numeric and database-focused work.

To create a set object, pass in a sequence or another iterable object to the built-in set function.

[173]: x = set('abcde')
x

[173]: {'a', 'b', 'c', 'd', 'e'}

The sets are displayed with curly brackets. This is similar to a dictionary, but sets do not have keys and values (or, they
can be considered dictionaries with only keys and without any values).

Set Expressions

[174]: x = set('abcde')
y = set('bdxyz')

[175]: # Union
x | y

[175]: {'a', 'b', 'c', 'd', 'e', 'x', 'y', 'z'}

[176]: # Intersection
x & y

[176]: {'b', 'd'}

[177]: # Difference
x - y

[177]: {'a', 'c', 'e'}

[178]: # Symmetric difference (XOR) - elements in either x or y, but not both in x and y
x ^ y

[178]: {'a', 'c', 'e', 'x', 'y', 'z'}
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[179]: # Superset, subset
x > y, x < y

[179]: (False, False)

[180]: # Membership of a set
'e' in x

[180]: True

Sets can also be created by adding elements to an existing set object.

[181]: # Create a set
z = set()

[182]: # Add to set with the add() method
z.add(1)
z

[182]: {1}

[183]: # Add a different element
z.add(2)
z

[183]: {1, 2}

[184]: # Try to add the same element
z.add(1)
z

[184]: {1, 2}

We cannot add another 1, because a set has only unique elements.

For instance, we can cast a list with multiple repeat elements into a set to get the unique elements of the list.

[185]: # Create a list with repeats
list1 = [1, 1, 2, 2, 3, 4, 5, 6, 1, 1]
# Cast as set to get unique values
set(list1)

[185]: {1, 2, 3, 4, 5, 6}

Built-in Methods for Sets

Similar to the set expressions shown above, there are built-in set methods for union, intersection, and other related
operations.

[186]: x = set('abcde')
y = set('bdxyz')
# Same as x & y
z = x.intersection(y)
z
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[186]: {'b', 'd'}

[187]: # Delete one item
z.remove('b')
z

[187]: {'d'}

Also, we can use for-loops with the elements of sets.

[188]: for item in set('abc'):
print(item * 3)

aaa
ccc
bbb

7.2.8 2.8 Other Data Types

Booleans

Python also has a Boolean data type with predefined built-in names True and False, that are basically just the integers
1 and 0.

[189]: # Assign the Boolean True object to 'a'
a = True
# Show
a

[189]: True

The data type for True and False is bool.

[190]: type(a)

[190]: bool

We can also use comparison operators to create Booleans.

[191]: # Output is boolean
1 > 2

[191]: False

[192]: # Is True the same as 1
True == 1

[192]: True

In Python each object is either True or False, as follows:

• Numbers are false if zero, and true otherwise.

• Other objects are false if empty, and true otherwise.
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[193]: bool(2)

[193]: True

[194]: bool(0)

[194]: False

[195]: bool('book')

[195]: True

[196]: bool('')

[196]: False

[197]: bool([1, 2])

[197]: True

The None Object

We can use None as a placeholder for an object that we don’t want to reassign yet.

[198]: # None placeholder
b = None

[199]: # Show
print(b)

None

For instance, to initialize a list whose size is not known yet, we can use None to preset the initial size and allow for
future index assignment.

Note also that in Python, the fixed values or the raw data that are assigned to variables or constants are called literals.
Examples of Python literals include: numeric literals (e.g., the integer number 5, or float number 2.1), string literals
(e.g., any string like 'hi' or "hello"), Boolean literals (True and False), special literal None, list literals (e.g., the
list [1, 2, 3], etc. Therefore, a literal is a sequence of characters or a single character that represents a fixed value
in source code.

7.2.9 2.9 String Formatting

String formatting allows injecting items into a string, rather than trying to chain items together using commas or string
concatenation. As a quick comparison, consider:

player = 'Thomas'
points = 33

# concatenation
'Last night, '+player+' scored '+str(points)+' points.'

# string formatting
(continues on next page)
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(continued from previous page)

f'Last night, {player} scored {points} points.'

# The output of both concatenation and string formatting is the same:
'Last night Thomas scored 33 points.'

There are three ways to perform string formatting.

• The oldest method involves placeholders using the modulo % character.

• An improved technique uses the .format() string method.

• The newest method, introduced with Python 3.6, uses formatted string literals, called f-strings.

These three methods are described next.

Formatting with Placeholders

We can use %s to inject strings into print statements. The modulo % is referred to as a string formatting operator.

[200]: print("I'm going to inject %s here." %'something')

I'm going to inject something here.

We can pass multiple items by placing them inside a tuple after the % operator.

[201]: print("I'm going to inject %s text here, and %s text here." %('some','more'))

I'm going to inject some text here, and more text here.

We can also pass variable names.

[202]: x, y = 'some', 'more'
print("I'm going to inject %s text here, and %s text here."%(x,y))

I'm going to inject some text here, and more text here.

Note that there are two notations %s and %r that convert any Python object to a string using two separate methods:
str() and repr(). Here, %r and repr() deliver the string representation of the object, including quotation marks
and any escape characters.

[203]: print('He said his name was %s.' %'Fred')
print('He said his name was %r.' %'Fred')
# Note that in the output 'Fred' is displayed in quotations

He said his name was Fred.
He said his name was 'Fred'.

As another example, \t inserts a tab into a string. Note that %r output the string representation and ignored the the
slash \ in \t, therefore a tab was not inserted.

[204]: print('I once caught a fish %s.' %'this \tbig')
print('I once caught a fish %r.' %'this \tbig')

I once caught a fish this big.
I once caught a fish 'this \tbig'.

The %s operator converts whatever it sees into a string, including integers and floats. Similarly, the %d operator converts
numbers to integers. Note the difference below.
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[205]: print('I wrote %s programs today.' %3.75)
print('I wrote %d programs today.' %3.75)

I wrote 3.75 programs today.
I wrote 3 programs today.

Padding and Precision of Floating Point Numbers

Floating point numbers use the format %5.2f. Here, 5 is the minimum number of characters the string should contain;
these characters may be padded with whitespace if the entire number does not have this many digits. Next to this, .2f
stands for how many numbers to show past the decimal point.

[206]: print('Floating point numbers: %5.2f' %(13.144))

Floating point numbers: 13.14

[207]: print('Floating point numbers: %1.0f' %(13.144))

Floating point numbers: 13

[208]: print('Floating point numbers: %1.5f' %(13.144))

Floating point numbers: 13.14400

[209]: # Note that 5 empty spaces will be added in front of the number, to make it a total of␣
→˓10 characters
print('Floating point numbers: %10.2f' %(13.144))

Floating point numbers: 13.14

[210]: print('Floating point numbers: %25.2f' %(13.144))

Floating point numbers: 13.14

It is possible to use more than one operator (e.g., %s, %f, and %r) in the same print statement.

[211]: print('First: %s, Second: %5.2f, Third: %r' %('hi!',3.1415,'bye!'))

First: hi!, Second: 3.14, Third: 'bye!'

Formatting with the .format() Method

An improved way to format objects into strings for print statements is with the string .format() method. The syntax
is:

'String here {} then also {}'.format('something1','something2')

For example:

[212]: print('This is a string with an {}'.format('insert'))

This is a string with an insert

The .format() method has several advantages over the %s placeholder method:
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1. Inserted objects can be called by index position.

[213]: print('The {2} {1} {0}'.format('fox','brown','quick'))

The quick brown fox

2. Inserted objects can be assigned keywords.

[214]: print('First Object: {a}, Second Object: {b}, Third Object: {c}'.format(a=1, b='Two',␣
→˓c=12.3))

First Object: 1, Second Object: Two, Third Object: 12.3

3. Inserted objects can be reused, avoiding duplication.

[215]: print('A %s saved is a %s earned.' %('penny','penny'))
# vs.
print('A {p} saved is a {p} earned.'.format(p='penny'))

A penny saved is a penny earned.
A penny saved is a penny earned.

Within the curly braces we can assign field lengths, left/right alignments, rounding parameters, and more.

[216]: # The field 0 has a length of 8 characters, and the next field 1 has a length of 10␣
→˓characters
print('{0:8} | {1:10}'.format('Fruit', 'Quantity'))
print('{0:8} | {1:10}'.format('Apples', 3.))
print('{0:8} | {1:10}'.format('Oranges', 10))

Fruit | Quantity
Apples | 3.0
Oranges | 10

By default, .format() aligns text to the left, numbers to the right. We can pass an optional <,^, or > to set a left,
center, or right alignment.

[217]: print('{0:<8} | {1:^10} | {2:>8}'.format('Left','Center','Right'))
print('{0:<8} | {1:^10} | {2:>8}'.format(11,22,33))

Left | Center | Right
11 | 22 | 33

We can precede the alignment operator with a padding character.

[218]: print('{0:=<8} | {1:-^10} | {2:.>8}'.format('Left','Center','Right'))
print('{0:=<8} | {1:-^10} | {2:.>8}'.format(11,22,33))

Left==== | --Center-- | ...Right
11====== | ----22---- | ...33

Field widths and float precision are handled in a way similar to placeholders. The following two print statements are
equivalent.

[219]: print('This is my ten-character, two-decimal number:%10.2f' %13.579)
print('This is my ten-character, two-decimal number:{0:10.2f}'.format(13.579))
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This is my ten-character, two-decimal number: 13.58
This is my ten-character, two-decimal number: 13.58

Note that there are 5 spaces following number: in the output, and 5 characters taken up by 13.58, for a total of ten
characters.

Formatting with String Literals (f-strings)

Introduced in Python 3.6, f-strings offer several benefits over the older .format() string method described
above. E.g., we can bring outside variables immediately into the string rather than pass them as arguments through
.format(var).

[220]: name = 'Fred'

print(f"He said his name is {name}.")

He said his name is Fred.

Pass !r to get the string representation.

[221]: print(f"He said his name is {name!r}")

He said his name is 'Fred'

Float formatting follows the syntax {value:{width}.{precision}}.

Whereas with the .format()method we can write {value:10.4f}, with f-strings this becomes {value:{10}.{6}}.

[222]: print("My 10 character, four decimal number is:{0:10.4f}".format(23.45678))
print(f"My 10 character, four decimal number is:{23.45678:{10}.{6}}")
print(f"My 10 character, two decimal number is:{23.45678:{10}.{4}}")

My 10 character, four decimal number is: 23.4568
My 10 character, four decimal number is: 23.4568
My 10 character, two decimal number is: 23.46

Note that with f-strings, precision refers to the total number of digits, not just those following the decimal. This fits
more closely with scientific notation and statistical analysis. Unfortunately, f-strings do not pad to the right of the
decimal, even if precision allows it.

[223]: print(f"My 10 character, two decimal number is:{23.45:{10}.{4}}")

My 10 character, two decimal number is: 23.45

If this becomes important, we can always use .format() method syntax inside an f-string.

[224]: print(f"My 10 character, four decimal number is:{23.45:10.4f}")

My 10 character, four decimal number is: 23.4500
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7.3.1 3.1 Statements

Python code can be decomposed into packages, modules, statements, and expressions, as follows:

1. Packages are composed of modules.

2. Modules contain statements.

3. Statements contain expressions.

4. Expressions create and process objects.

Expressions are part of statements that return a value, such as variables, operators, or function calls.

For example, expressions in Python include 2+5, or x+3, or x * y for given x and y, or func1(3) for a given function
func1, since they all return a value. Expressions perform operations upon objects, and produce a value that can be
used in other operations, can be assigned to a variable, printed out, etc. An expression can be part of larger expressions
of statements. For instance, in the statement a = 2 + 5, the part 2 + 5 is an expression.

Statements are sections of code that perform an action. The main groups of Python statements are: as-
signment statements, print statements, conditional statements (if, break, continue, try), and looping
statements (for, while).

Therefore, a = 2 + 5 is a statement, because it doesn’t return a value, but it performs an action by assigning the
value 5 to the variable a. Beside assignment statements (such as a = 2 + 5), other forms of statements include
conditional statements (e.g., if x > 5:), looping statements (e.g., for i in range(10):), print statements (e.g.,
print('hi')), as well as there are several other statements, such as import, return, pass, etc. Note again that none
of these statements returns a value in the way expressions do.
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Modules are Python files that contain Python statements, and are also called scripts.

Thus, a module is a single Python script that is composed of a series of related statements grouped into one file. The
statements in a module can assign values to variables, create functions or classes, or perform other actions.

Packages are Python programs that collect related modules together within a single directory hierarchy.

In other words, a package is a directory that contains a collection of module files. Packages can also contain sub-
packages, forming a hierarchy of packages. A Python program can be organized into a single package, or more complex
programs can use multiple packages to achieve its functionality.

In this lecture, we will study several types of Python statements. In a subsequent lecture, we will provide explanations
about modules and packages in Python.

3.1.1 if, else, elif Statements

In Python, the if statement allows to instruct the program to perform alternative actions, based on one or several tests.
This provides a means for introducing logic in our codes, and it can be interpreted as “if this case happens, then perform
this action”.

The if statement takes the form of an if test, which can be followed by one or more optional elif (else if)
tests, and a final optional else test. Each of the tests has an associated block of nested statements, indented under
a header line.

The if statement is a compound statement, since it may contain other statements (e.g., elif or else) in its syntax.

Compound statements in Python contain other statements, and they affect or control the execution of
those other statements in some way. Compound statements typically span multiple lines.

Also, the if statement is referred to as a conditional statement, since it involves actions that are performed only when
the conditions in the if test are satisfied.

Basic if Test

In its simplest form, the if statement has the following syntax:

if test1:
code to execute when test1 is True

The if statement is used to perform a test and control whether or not the indented block of code is executed.

• The first line is a header line. It opens with the if test and ends with a colon : (omitting the colon at the end
of if statement is one of the most common mistakes by beginner programmers in Python). The output of the
expression in the if test is a Boolean variable (i.e., True or False).

• The block of code is indented under the header and contains one or more statements (such as the print statements
in the next cell) that are executed if the test is True.

[1]: x = 105

if x > 100:
print(x, 'is high')

105 is high
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[2]: x = 105

# The print statement is not executed since x<50 is False
if x < 50:

print(x, 'is high')

[3]: y = 20

if y < 50:
print (y, 'is low')

20 is low

[4]: if True:
print('It is true!')

It is true!

[5]: # The print statement is not executed
if False:

print('It is true!')

Therefore, the code indented under an if line will be executed only if the first line returns a Boolean True value. As
we mentioned earlier, any nonzero number or nonempty array returns a Boolean True, and 0 or an empty array returns
a False.

[6]: if 1:
print('It is true!')

if 5:
print('It is also true!')

# The print statement is not executed
if 0:

print('It is not true!')

It is true!
It is also true!

The if - else Tests

The else test allows to add additional logic to the if test.

Check the example in the following cell. Since we assigned a Boolean False to the variable x, the line if x: returns
False, and as a result the statement indented under if will not be executed. In the case when the if test is False, the
code after else is executed.

[7]: x = False

if x:
print('This is printed when x is True!')

else:
print('This is printed when x is False')
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This is printed when x is False

Here are more examples of using else to execute a block of code when an if test is not true.

[8]: num = 43

if num > 100:
print(num, 'is high')

else:
print(num, 'is low')

43 is low

[9]: num = 134

if num > 100:
print(num, 'is high')

else:
print(num, 'is low')

134 is high

In the next example we use the input() function to enter text using the keyboard (press the Enter key to confirm it).

[10]: person = input("Enter your name: ")
# E.g., enter other name than Joe

if person == 'Joe':
print('Welcome Joe!')

else:
print("Welcome, Joe will be with you shortly?")

Enter your name: Jim

Welcome, Joe will be with you shortly?

Note that:

• else is always attached to if, and it cannot be used as a standalone test.

• else allows to specify an alternative action to execute when the if test is False.

if - elif - else Tests

We can use elif to specify additional tests, when we want to provide several alternative cases, each with its own test.
The statement elif is short for “else if” and it is always associated with an if statement. If there is an else test in
the code, elif must come before else.

The general syntax is:

if test1:
code to execute -> perform action 1

elif test2:
code to execute -> perform action 2

else:
code to execute -> perform action 3
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The above compound statement can be interpreted as: if the case in test 1 happens, perform action 1. Else, if the case
in test 2 happens, perform action 2. Or else, if none of the above cases happen, perform action 3.

That is, Python executes the statements nested under the elif test if the statements before the test are not True, and the
statements under the else test are executed only when none of the elif tests is True.

Both the elif and else parts are optional and they may be omitted. As well as, there may be more than one elif
statement nested in the if test.

The words if, elif, and else line up vertically, and need to have the same indentation. The block of code under each
test needs to be aligned if it consists of multiple lines of code, however the code under if does not have to have the
same indentation as the code under elif or else (although it is recommended to use consistent indentation).

[11]: z = 68

if z > 100:
print(z, 'is high')

elif z > 50:
print(z, 'is medium')

else:
print(z, 'is low')

68 is medium

[12]: z = 30

if z > 100:
print(z, 'is high')

elif z > 50:
print(z, 'is medium')

else:
print(z, 'is low')

30 is low

[13]: location = 'Bank'

if location == 'Auto Shop':
print('Welcome to the Auto Shop!')

elif location == 'Bank':
print('Welcome to the bank!')

else:
print('Where are you?')

Welcome to the bank!
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Boolean Operators to Make Complex Statements

We can create complex conditional statements with Boolean operators like and and or, or use comparators like <, >,
or other comparators.

[14]: age = 40

if age > 65 or age < 16:
print(age, 'is outside the labor force')

else:
print(age, 'is in the labor force')

40 is in the labor force

We saw in the examples above that we can use double equal signs == to check if two objects are the same. Similarly,
we can use an exclamation point and equal sign != to check if two objects are not the same.

[15]: person = 'Jim'

if person != 'Joe':
print("Welcome, what's your name?")

else:
print('Welcome Joe!')

Welcome, what's your name?

The if - else Ternary Expression

Python also has an if - else ternary expression with the following syntax:

a if condition else b

In the above expression, first the condition is evaluated, and afterward either a or b is returned based on the Boolean
value of the condition.

Let’s reconsider the if-else statement example that we saw earlier.

[16]: num = 43

if num > 100:
print(num, 'is high')

else:
print(num, 'is low')

43 is low

The corresponding if-else ternary expression is as follows.

[17]: print(num, 'is high') if num > 100 else print(num, 'is low')

43 is low

The ternary expression allows to reduce the above 4 lines of code into 1 line. Based on the value of the condition
num > 100, if the condition is True then print(num, 'is high') is executed, and if the condition is False then
print(num, 'is low') is executed.
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Handling Case Switch

If you used languages like C, Pascal, or MATLAB, and if you are interested to know if there is a switch or case
statement in Python that selects an action based on a variable’s value, there isn’t. Instead, in Python we can code
multiway branching as a series of if-elif tests.

An example is shown below. Note again that we can use as many elif statements as we want, but there can be only
one else statement.

[18]: choice = 'ham'

if choice == 'spam':
print(2.25)

elif choice == 'ham':
print(1.75)

elif choice == 'eggs':
print(0.75)

elif choice == 'bacon':
print(1.10)

else:
print('Bad choice')

1.75

Although, it may be more convenient to create a dictionary to handle case switching instead of if-elif-else espe-
cially when there are many cases involved.

[19]: branch = {'spam': 2.25, 'ham': 1.75, 'eggs': 0.75, 'bacon': 1.10}

choice = 'eggs'

if choice in branch:
print(branch[choice])

else:
print('Bad choice')

0.75

Indentation Rules

Python uses indentation of statements under a header to group the statements in a nested block. In the figure below,
there are 3 blocks of code, each having a header line. Note that Block 1 is nested under Block 0, and it is indented
further to the right of Block 0. Then, Block 2 is nested under Block 1, and it is intended even further to the right of
Block 1.
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Figure source: Reference [1].

The indentation in Python is used to detect block boundaries. All statements indented the same distance to the right
belong to the same block of code. The block ends either when a less-indented line or the end of the file is encountered.

Indentation may consist of any number of spaces, but it must be the same for all the statements in a single block. Four
spaces or one tab per indentation level are commonly used, but there is no absolute standard for the number of spaces
in indentation. However, it is not recommended to mix spaces and tabs for indentation within a block, because such
indentation may look different in other editors and the codes can be more difficult to edit.

Look at the example in the next cell. It contains three blocks: the first block (Block 0, if x:) is not indented at all,
the second (Block 1, y = 2) is indented four spaces under Block 0, and the third (Block 2, print ('Block 2') is
indented eight spaces.

[20]: x = 1
if x:

y = 2
if y:

print('Block 2')
print('Block 1')

print('Block 0')

Block 2
Block 1
Block 0

Several common mistakes with code indentation are shown below, which result in errors.

[22]: x = 1
if x: # Error: first line indented, this line belongs to Block 0 and it shouldn't be␣

→˓indented
y = 2
if y: # Error: unexpected indentation, this line should have the same indentation␣

→˓as 'y = 2'
print('Block 2')

print('Block 1') # Error: inconsistent indentation, this line is indented 3 spaces,␣
→˓and 'y = 2' is indented 4 spaces
print('Block 0')

File <tokenize>:6
print('Block 1') # Error: inconsistent indentation, this line is indented 3 spaces,␣

→˓and 'y = 2' is indented 4 spaces
(continues on next page)
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(continued from previous page)

^
IndentationError: unindent does not match any outer indentation level

To indent several lines of code for one tab, select the lines and then press either the Tab key or press the keys Ctrl +
]. To unindent several lines of codes for one tab, press the keys Ctrl + [.

Statement Delimiters: Lines and Continuations

Python expects if statements to be written on a single line.

The code below produces an error because the if statement spans on two lines.

[23]: num = 80

if num > 20 and num > 50 and
num < 200 and num < 100:
print('Medium number')

Cell In[23], line 3
if num > 20 and num > 50 and

^
SyntaxError: invalid syntax

When a statement is too long to fit on a single line, there are two ways to make it span multiple lines.

The first one is to enclose the statement either in a pair of parentheses (), square brackets [], or curly braces {}.
Continuation lines do not need to be indented at any level, but it is a good practice to align the lines vertically for
readability.

Examples are shown below.

[24]: num = 80

if (num > 20 and num > 50 and
num < 200 and num < 100):
print('Medium number')

Medium number

[25]: # Note that the indentation is not required for continuation lines enclosed in a pair of␣
→˓parentheses, brackets, or braces
num = 80
if {num > 20 and num > 50 and
num < 200 and num < 100}:
print('Medium number')

Medium number

[26]: L = ["Good",
"Bad",
"Ugly"]

(continues on next page)

7.3. Lecture 3 - Statements, Files 59



Fall 2023 Python Programming for Data Science, Release 0.1

(continued from previous page)

L

[26]: ['Good', 'Bad', 'Ugly']

Also, statements can span multiple lines if they end in a backward slash \. Although, this is an older feature, and it is
not generally recommended. One reason is because if there are empty spaces after the backward slash, it will result in
an error.

[27]: num = 80
if num > 20 and num > 50 and \

num < 200 and \
num < 100:
print('Medium number')

Medium number

The above line continuation rules apply to any other statements and expressions.

[28]: x = 1 + 2 + 3 \
+4
x

[28]: 10

[29]: x = (1 + 2 + 3
+4)
x

[29]: 10

Note also that Python allows to write more than one noncompound statement (i.e., statements without nested statements)
on the same line, separated by semicolons.

[30]: x = 5; print(x)

5

Python allows to write the body of a compound statement (like if) on the same line with the header, provided the body
contains just simple (noncompound) statements (i.e., without elif or else tests).

[31]: if True: print('Something')

Something

3.1.2 for Loops

A for loop acts as an iterator in Python. It goes through items that are in a sequence or any other iterable object.
Objects that we’ve learned about that we can iterate over include strings, lists, and tuples. And even dictionaries allow
to iterate over keys or values.

The general format of a for loop in Python is:

for item in object:
code to execute -> perform actions
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The variable name used for the item is completely up to the coder, so use your best judgment for choosing a name that
makes sense and you will be able to understand when revisiting your code. This item can then be referenced inside
your loop, for example if you wanted to use if statements to perform checks.

[32]: list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[33]: for num in list1:
print(num)

1
2
3
4
5
6
7
8
9
10

Add an if statement to check for even numbers.

[34]: for num in list1:
if num % 2 == 0:

print(num)

2
4
6
8
10

We could have also included an else statement.

[35]: for num in list1:
if num % 2 == 0:

print(num)
else:

print('Odd number')

Odd number
2
Odd number
4
Odd number
6
Odd number
8
Odd number
10

Another common practice with for loops is to keep some sort of running tally during multiple loops. For example,
let’s create a for loop that sums up the elements in a list.
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[36]: # Start sum at zero
list_sum = 0

for num in list1:
list_sum = list_sum + num

print(list_sum)

55

Or, we could have used the operator += to perform the addition towards the sum.

[37]: # Start sum at zero
list_sum = 0

for num in list1:
list_sum += num

print(list_sum)

55

We can also use for loops with strings and tuples, since they are sequences, so when we iterate through them we will
be accessing each item in the sequence.

[38]: for letter in 'This is a string.':
print(letter)

T
h
i
s

i
s

a

s
t
r
i
n
g
.

[39]: # loop through a dictionary
d = {'k1':1, 'k2':2, 'k3':3}

[40]: for item in d:
print(item)

k1
k2
k3
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Notice how the above produces only the keys.

We can also use the dictionary methods .keys(), .values(), and .items() with for loops. In Python each of these methods
returns a dictionary view object. The view objects provide a view of the dictionary’s key, values, and items (pairs of
keys and values). The dictionary view objects support operations like membership tests and iterations over the keys,
values, and items. The type of the the view objects is dict_items. If we make changes to the dictionary, the view
objects will keep track of the changes.

[41]: # Create a dictionary view object
d.items()

[41]: dict_items([('k1', 1), ('k2', 2), ('k3', 3)])

Since the .items() method supports iteration, we can print both the keys and values.

[42]: # Dictionary unpacking
for k,v in d.items():

print(k)
print(v)

k1
1
k2
2
k3
3

If we want to obtain a list of keys, values, or key-value tuples, we can cast the dictionary view objects as a list.

[43]: list(d.keys())

[43]: ['k1', 'k2', 'k3']

[44]: # Compare to
d.keys()

[44]: dict_keys(['k1', 'k2', 'k3'])

[45]: list(d.values())

[45]: [1, 2, 3]

[46]: list(d.items())

[46]: [('k1', 1), ('k2', 2), ('k3', 3)]

Another used function is range which allows to quickly generate a list of integers, and it is often used with for loops.

[47]: string = 'abcde'

n = len(string)
for i in range(n): # i is the index

print('Index', i, 'Letter', string[i])

Index 0 Letter a
Index 1 Letter b
Index 2 Letter c

(continues on next page)
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Index 3 Letter d
Index 4 Letter e

In general, range can have 3 parameters to pass: a start, a stop, and a step size. Let’s see some examples.

[48]: # To get a list when using range, we need to cast it to a list
# Parameters: start, stop, step size
list(range(0, 101, 10))

[48]: [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

[49]: # Default step size is 1
# Notice that 11 is not included
list(range(0, 11))

[49]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[50]: # Default start is 0
list(range(6))

[50]: [0, 1, 2, 3, 4, 5]

The enumerate function is another useful function to use with for loops. It returns both the index and the item in each
loop.

[51]: string = 'abcde'

for i,letter in enumerate(string):
print('Index', i,'Letter:', letter)

Index 0 Letter: a
Index 1 Letter: b
Index 2 Letter: c
Index 3 Letter: d
Index 4 Letter: e

3.1.3 while Loops

The while statement in Python is another way to perform iteration. A while statement will repeatedly execute a single
statement or group of statements as long as the condition is true. The reason it is called a ‘loop’ is because the code
statements are looped through over and over again until the condition is no longer met.

The general format of a while loop is:

while test:
code to execute -> perform action 1

else:
code to execute -> perform action 2

Let’s look at a few simple while loops in action.

[52]: x = 0

(continues on next page)

64 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

(continued from previous page)

while x < 5:
print('x is currently: ', x)
print('x is still less than 5, adding 1 to x')
x+=1

x is currently: 0
x is still less than 5, adding 1 to x
x is currently: 1
x is still less than 5, adding 1 to x
x is currently: 2
x is still less than 5, adding 1 to x
x is currently: 3
x is still less than 5, adding 1 to x
x is currently: 4
x is still less than 5, adding 1 to x

We can also add an else statement:

[53]: x = 0

while x < 5:
print('x is currently: ',x)
print(' x is still less than 5, adding 1 to x')
x+=1

else:
print('All Done!')

x is currently: 0
x is still less than 5, adding 1 to x
x is currently: 1
x is still less than 5, adding 1 to x
x is currently: 2
x is still less than 5, adding 1 to x
x is currently: 3
x is still less than 5, adding 1 to x
x is currently: 4
x is still less than 5, adding 1 to x
All Done!

[ ]: ## DO NOT RUN THIS CODE!!!!
# while True:
# print("I'm stuck in an infinite loop!")

A quick note: If you did run the above cell, click on the Kernel menu above to restart the kernel!
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3.1.4 break, continue, pass Statements

We can use break, continue, and pass statements in our loops to add additional functionality for various cases.

With the break and continue statements, the general format of the while loop looks like this:

while test:
code to execute -> perform action 1
if test:

break # Exit the 'while' loop now
continue # Skip the 'else' statements (if present) and go to top of the

→˓'while' loop now
else:

code to execute -> perform action 2 # Run these statements when the 'if' test␣
→˓is False

The break and continue statements can appear anywhere inside the loop’s body, but they are usually nested in an if
statement to perform an action based on some condition.

[54]: for letter in "string":
if letter == "i":

break # exit the 'for' loop now
print(letter)

print("The end")

s
t
r
The end

[55]: for letter in "string":
if letter == "i":

continue # go to the top of the 'for' loop now (skip the commands following
→˓'continue')

print(letter)

print("The end")

s
t
r
n
g
The end

Two more examples follow with an else statement.

[56]: x = 0

while x < 5:
print('x is currently: ', x)
print(' x is still less than 5, adding 1 to x')
x += 1
if x == 3:

(continues on next page)
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print('Breaking because x == 3')
break # terminate the 'while' loop, go to the 'print('The end')' statement

else:
print('continuing...')

print('The end')

x is currently: 0
x is still less than 5, adding 1 to x
continuing...
x is currently: 1
x is still less than 5, adding 1 to x
continuing...
x is currently: 2
x is still less than 5, adding 1 to x
Breaking because x == 3
The end

[57]: x=0

while x < 5:
print('x is currently: ', x)
print(' x is still less than 5, adding 1 to x')
x += 1
if x == 3:

print('Continuing to the next step')
continue # Skip the rest of the lines, and go to the while loop
print('This line will be skipped and will not be printed')

else:
print('continuing...')

print('The end')

x is currently: 0
x is still less than 5, adding 1 to x
continuing...
x is currently: 1
x is still less than 5, adding 1 to x
continuing...
x is currently: 2
x is still less than 5, adding 1 to x
Continuing to the next step
x is currently: 3
x is still less than 5, adding 1 to x
continuing...
x is currently: 4
x is still less than 5, adding 1 to x
continuing...
The end

The statement pass is generally used as a placeholder and it does not do anything. Suppose we have a loop or a function
that is not implemented yet, but we want to implement it in the future. They cannot have an empty body, because this
would give an error. So, we use the pass statement to construct a body that does nothing.
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[58]: # Pass is just a placeholder for functionality to be added later
sequence = {'p', 'a', 's', 's'}
for val in sequence:

pass

[59]: # Pass can be used as a placeholder for a function or a class
def my_function(arguments):

pass

class Example:
pass

7.3.2 3.2 Files

Python uses file objects to interact with external files on your computer. These file objects can be any sort of file you
have on your computer, such as a text file, Excel document, email, audio file, picture, etc.

Python has a built-in open() function that allows us to open and write to files.

The open() function requires to pass two arguments: filename and processing mode. The filename is simply the name
of the file, and for reading it, it is assumed that the file exists in the current working directory: if that is not the case,
the filename should also include the path to the file. The processing mode can be either the string 'r' to read the
file, 'w' to write to the file (create a file and open it for writing), or 'a' to append text to an existing file. Also, adding
+ to the mode allows to both read and write to a file (e.g., 'r+', 'a+'). Both the filename and processing mode should
be strings.

afile = open(filename, mode)

The open function creates a Python file object named afile in this example (we can select any valid name for it),
which serves as a link to the file residing on the computer named filename. The file object allows to transfer strings
of data to and from the linked file filename.

Writing to a File

For example, let’s create a simple text file called test.txt having two lines of text. The open function in the example
below will return a file object named myfile, which has a write() method for data transfer.

The file test.txt will be saved in the current working directory.

[60]: # Create an empty file
myfile = open('test.txt','w')

The write(string) method of the file object named myfile allows to write a string to the file. In the next example,
the string 'hello text file\n' is written. Note also that we need to include the end-of-line terminator \n in the
string, otherwise the next write command will continue the current line.

[61]: # Write a line of text: string
myfile.write('hello text file\n')
# Note that the write call returns the number of characters in the string

[61]: 16
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[62]: myfile.write('goodbye text file\n')

[62]: 18

[63]: myfile.close()

Now, click on the test.txt file in the Jupyter Lab dashboard, to inspect if it looks as we expect.

Use caution when opening an existing file for writing with w, as it truncates the original file, meaning that any existing
content in the original file is deleted. Let’s try the following code.

[64]: myfile = open('test.txt','w')
myfile.write('This is a first line\n')
myfile.write('This is a second line\n')
myfile.close()

Now open the file test.txt and you will notice that it has been overwritten.

Opening a file

Let’s open the file test.txt.

[65]: # Open for text input: 'r' is default mode and it can be omitted
myfile = open('test.txt','r')

[66]: # Read the lines one at a time
myfile.readline()

[66]: 'This is a first line\n'

[67]: # Read the lines one at a time
myfile.readline()

[67]: 'This is a second line\n'

[68]: # Empty string: end-of-file (EOF)
myfile.readline()

[68]: ''

In addition, using the read method we can read the entire file into a string all at once.

[69]: myfile = open('test.txt')
myfile.read()

[69]: 'This is a first line\nThis is a second line\n'

Or, if we use print the content will be displayed in a readable format without showing the \ncharacters.

[70]: myfile = open('test.txt')
print(myfile.read())

This is a first line
This is a second line
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Also note that we can write the above cell into one single line:

[71]: print(open('test.txt').read())

This is a first line
This is a second line

One confusing thing about reading files is that if we try to read the same file object twice, we’ll find out that it only
gets read once.

[72]: myfile = open('test.txt')
myfile.read()

[72]: 'This is a first line\nThis is a second line\n'

[73]: # What happens if we try to read the file again?
myfile.read()

[73]: ''

This happens because file objects remember their position, and after we read the file the first time, the reading ‘cursor’
was at the end of the file, and there was nothing left to read.

We can reset the ‘cursor’ like this:

[74]: # Seek to the start of file (index 0)
myfile.seek(0)

[74]: 0

[75]: # Now read again
myfile.read()

[75]: 'This is a first line\nThis is a second line\n'

When we have finished using the file, it is always good practice to close it.

[76]: myfile.close()

You can also sometimes see another code variant, where open is used within a with statement, like in the example
shown below. An advantage of this approach is that the with statement automatically closes the file after the block, as
well as it makes handling any unexpected errors easier. Thus, it is the preferred way for opening files by many Python
users.

[77]: with open('test.txt', 'r') as myfile:
data = myfile.read()

print(data)

This is a first line
This is a second line

Alternatively, to read files from other directories on your computer (instead of the current working directory), enter the
entire file path.

For Windows, one option is to use double backslashes \\, so that Python doesn’t treat the second \ as part of an escape
character (such as \n, \t, etc.):
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myfile = open('C:\\Users\\YourUserName\\Desktop\\MyFolder\\test.txt')

For example, note that the \n escape character in the following cell introduces an unwanted new line.

[78]: print('C:\some\name')

C:\some
ame

This is corrected by using double backslashes.

[79]: print('C:\\some\\name')

C:\some\name

For Mac OS and Linux, use forward slashes.

myfile = open('/Users/YourUserName/MyFolder/test.txt')

In latest Python versions open works with either forward slashes or backward slashes, so either is fine. However, the
problem with the single and double slashes in the examples above is that codes written on a Windows machine will not
work on Unix machines, and vice versa. Therefore, a preferred option for Windows would be to use a raw string
and single backslashes as shown below.

myfile = open(r'C:\Users\YourUserName\Desktop\MyFolder\test.txt')

The raw string form (use of r before the string) turns off escape characters in strings.

Note that C:\Users\YourUserName\Desktop\MyFolder\test.txt is an absolute path because it lists all direc-
tories on the disk C: to access the file test.txt. The path can also be a relative path, where for example if we are
currently in a current working directory C:\Users\YourUserName\Desktop we can use MyFolder\test.txt as a
path for the filename relative to the current working directory.

Appending to a File

Passing the argument 'a' as a processing mode opens the file and puts the pointer at the end for appending. Similarly,
'a+' allows us to both read and write to a file. If the file does not exist, one will be created.

[80]: myfile = open('test.txt','a+')
myfile.write('\nThis is text being appended to test.txt\n')
myfile.write('And another line here\n')

[80]: 22

[81]: myfile.seek(0)
print(myfile.read())

This is a first line
This is a second line

This is text being appended to test.txt
And another line here
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[82]: myfile.close()

Iterating through a File

When reading a file line by line, the entire file is held in the memory. Using file iterators, such as a for loop, is often
preferred with large files. The created file object by open will automatically read and return one line on each loop
iteration.

[83]: for line in open('test.txt'):
print(line)

This is a first line

This is a second line

This is text being appended to test.txt

And another line here

Reading and Writing Binary Files

In the above sections, we used the open() function in text mode, which allows to read and write strings from and to
files. The open() function can also be used in binary mode that allows to read and write binary files. This mode is
useful for working with non-textual files in Python, such as images, audio files, compressed files, etc. For reading and
writing binary files, the processing mode in the open() function should be set to 'rb' to read the file, and 'wb' to
write to the file, where the added letter b indicates that the function is applied to processing binary files.

When reading a file in binary mode, Python will read every byte in the file as is, and return a byte string. Conversely,
in text mode, Python will decode the information in the file into text characters, and return a text string.

[84]: image_file = open('images/house.png', 'rb')
image_content = image_file.read()
image_file.close()

[85]: type(image_content)

[85]: bytes

Note however that there are other Python packages that provide advanced functionalities for working with non-textual
files, in comparison to the open() function. For instance, for working with image files, the Python libraries OpenCV,
Pillow, ImageIO are almost always preferred by the users.
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Storing Python Objects in Files: Conversions

Let’s next consider an example where multiple Python objects are written into a text file on multiple lines. The objects
need to be first converted to strings, as the write method does not do any automatic to-string formatting.

[86]: # Introduce numbers, string, dictionary, and list objects
S = 'Spam'
X, Y, Z = 43, 44, 45
D = {'a': 1, 'b': 2}
L = [1, 2, 3]

# Create output text file
F = open('datafile.txt', 'w')
# The lines in the string variable S above should end with \n
F.write(S + '\n')
# Convert numbers to strings
F.write('%s,%s,%s\n' % (X, Y, Z))
# Convert to strings and separate wtih \n
F.write(str(L) + '\n' + str(D) + '\n')
F.close()

Next, let’s open the file and read it.

Notice in the next two cells that the displayed output gives the raw string content, while the print operation interprets
the embedded end-of-line characters to render a formatted display.

[87]: content = open('datafile.txt').read()
# String display
content

[87]: "Spam\n43,44,45\n[1, 2, 3]\n{'a': 1, 'b': 2}\n"

[88]: # User-friendly display
print(content)

Spam
43,44,45
[1, 2, 3]
{'a': 1, 'b': 2}

To convert the strings in the text file into Python objects, we will need to use conversion tools.

For instance, rstrip() removes the end-of-line character \n.

[89]: # Open the file again, this time using the object named F
F = open('datafile.txt')
# Read the first line (see above)
line = F.readline()
line

[89]: 'Spam\n'

[90]: # Remove end-of-line
s = line.rstrip()
s
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[90]: 'Spam'

The next line contains the string of numbers '43,44,45\n', for which split() can be used to separate the numbers.

[91]: # Next line from file
line = F.readline()
line

[91]: '43,44,45\n'

[92]: # Split on commas
parts = line.split(',')
parts

[92]: ['43', '44', '45\n']

[93]: # int() converts to integer numbers
numbers = [int(P) for P in parts]
numbers

[93]: [43, 44, 45]

[94]: x, y, z = numbers
x, y, z

[94]: (43, 44, 45)

To covert the list and dictionary we will use eval() which treats a string as executable code containing a Python
expression.

[95]: line = F.readline()
line

[95]: '[1, 2, 3]\n'

[96]: line.rstrip()

[96]: '[1, 2, 3]'

[97]: l = eval(line)
l

[97]: [1, 2, 3]

[98]: type(l)

[98]: list

[99]: line = F.readline()
line

[99]: "{'a': 1, 'b': 2}\n"

[100]: d = eval(line)
d
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[100]: {'a': 1, 'b': 2}

[101]: type(d)

[101]: dict

The above process of converting strings to Python objects is time-consuming and tedious, even for this simple example.
Fortunately, there are simpler ways to write and read files in Python, which do not require the above conversion steps.
Next, we will learn about the Python built-in modules pickle and JSON for storing Python objects, and in another
lecture we will learn about the library pandas for reading and writing to files.

Storing Python Objects with pickle

Python’s module pickle allows storing almost any Python object in a file directly, without the requirement for con-
versions to and from strings. To store the above list L in a file, we can pickle it directly by using the method pickle.
dump().

[102]: import pickle
F = open('newdatafile.pkl', 'wb') # 'wb' used for writing to a binary file, indicates␣
→˓that the content of the file is not text
# Pickle any object to file
pickle.dump(L, F)
F.close()

Then, to read the file and get the list, we simply use pickle again (a.k.a. unpickling) via the method pickle.load().

[103]: # Load any object from file
F = open('newdatafile.pkl', 'rb') # similarly, 'rb' used for reading a binary file
list1 = pickle.load(F)
list1

[103]: [1, 2, 3]

[104]: F.close()

The picklemodule performs conversion of Python objects to string representation, referred to as object serialization,
and reverse conversion of strings to Python objects, which is called object deserialization.

Storing Python Objects with JSON

JSON (stands for JavaScript Object Notation) is a newer data interchange format, which allows using stored data across
programming languages (unlike pickle which works only with Python). On the other hand, JSON does not support as
broad range of Python object types as pickle.

The following example shows translating the above dictionary D into JSON format to be saved into a file, and recreating
the dictionary from the JSON format when it is loaded from the file.

[105]: import json
FJ = open('json_datafile.text', 'w')
# Serialize the dictionary to a text file
json.dump(D, FJ)
FJ.close()
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[106]: # Deserialize the text file to a dictionary
new_d = json.load(open('json_datafile.text'))
new_d

[106]: {'a': 1, 'b': 2}

7.3.3 Appendix: Python Interpreter

The material in the Appendix is not required for quizzes and assignments.

The interpreter in Python is the program that executes other programs. When you run your programs in Python, the
interpreter reads your programs, and carries out the instructions contained in the program. Or, we can say that the
interpreter interprets your codes and enables the hardware on your computer to execute the program.

When you install Python on your computer, the Python interpreter will be part of the installation, either as an executable
program, or as a set of linked libraries. Note that there are several different Python installations, and depending on the
type of Python installation you have on your computer, the interpreter may be implemented as a C program, a set of
Java classes, or in another programming language.

Understanding how the programs are executed in Python can be helpful for programmers. For instance, I saved the
following simple file as module1.py.

When I run the file in the Command Prompt, Python executed the file, and the output of the program is Hello world!
and 10.

When we run programs in Python, the programs are first compiled into byte code, and are afterward run by a Python
virtual machine (PVM), as shown in the figure below.
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Figure source: Reference [1].

Byte code is a format into which the source code (the statements in the file) is compiled by the Python interpreter.
Byte-code is platform-independent (i.e., it can be run on Windows, Linux, MacOS), and it can be run more quickly
than the source code program.

The byte code is stored in a file with a .pyc extension, which stands for compiled .py file. The .pyc files are saved in a
subdirectory named __pycache__ located in the same directory where the source file is saved.

For example, the directory where module1.py is saved on my computer is shown below, and the __pycache__ subdi-
rectory was automatically created by Python.

Within the subdirectory is the byte code file named module1.cpython-36. The name indicates that the Python installation
on my computer uses the CPython interpreter, and the installed Python version is 3.6. Note that the file type is PYC
file, meaning a .pyc extension.

Byte code is saved for speed optimization. When I run module1.py next time, Python will skip the compilation step,
and it will directly load the saved .pyc byte code file. However, if the original source code file module1.py was modified,
Python will re-compile and update the byte code file. Similarly, if a different version of Python is installed, a new byte
code file will be created that matches the current version of Python.

Python virtual machine (PVM) is the last part of the Python interpreter. PVM executes the byte code instructions
one-by-one, i.e., it is the component that runs the programs. PVM is not a separate program, and it does not need to
be installed separately: it is part of the Python installation. PVM needs a software layer to allocate physical computing
resources—such as processors, memory, and storage.

Python belongs to the group of interpreted languages, or they are also called scripting languages (other languages
in this group are Perl, Ruby, and JavaScript). As we explained, the Python interpreter reads the statements in source
files and converts them into byte code files, which are afterwards executed by the PVM. Conversely, Java, C, and C++
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belong to the group of compiled languages. In these languages, a compiler converts the statements in source files into
binary machine code, which is afterwards executed by the computer hardware. Note that byte code files are different
than binary machine code files. Consequently, running Python programs is slower than running C or C++ programs,
because the code is interpreted as it is executed. On the other hand, writing and testing Python programs is faster
and easier than writing and testing programs using compiled languages. (One last clarification: Python does compile
source files, but the result is not a binary machine code, and because of that it is not considered a compiled language).

As we mentioned earlier, there are several different implementations of the Python interpreter. They include CPython,
Jython, IronPython, Stackless Python, and PyPy. CPython is the standard, original implementation of Python, Jython
is a Python implementation targeted for integration with the Java programming language, IronPython was designed to
allow Python programs to integrate with applications coded to work with Microsoft’s .NET Framework for Windows,
etc.

7.3.4 References

1. Mark Lutz, “Learning Python,” 5-th edition, O-Reilly, 2013. ISBN: 978-1-449-35573-9.

2. Pierian Data Inc., “Complete Python 3 Bootcamp,” codes available at: https://github.com/Pierian-Data/
Complete-Python-3-Bootcamp.
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7.4.1 4.1 Functions

Functions are one of the main building blocks in Python allowing to construct and reuse code, without the need to
repeatedly write the same code again and again. A function is a self-contained block of code that encapsulates a specific
task or related group of tasks. The code defines the relationships between the inputs and the outputs of the function.
The input arguments are passed when the function is called, afterward the program executes the code, and returns the
output of the function.

Functions in programming languages are similar to mathematical functions that define a relationship between one or
more inputs and outputs. For instance, the mathematical function represented with z = f(x, y) maps the inputs x
and y into an output z. In programming languages, functions also operate over inputs and produce outputs, however,
programming functions are much more generalized and versatile than mathematical functions, as they can operate over
different objects and data types and can perform a wide variety of operations over the inputs.

4.1.1 Function Definition and Function Call

The basic syntax of functions in Python has the following form:

def name_of_function(argument1, argument2, ...): # header line
'''
Optional Document String (docstring)
This is where the function's docstring goes.
When help(name_of_function) is called,
this section will be printed out.
'''
# Define actions to perform
# Return outputs (optional)

The syntax of functions begins with the def keyword, which informs Python that a new function is defined. The
keyword def is followed by a space and the name of the function. Try to keep function names relevant, and avoid
using function names that have the same names as built-in functions in Python (such as len, str, print, etc.).

The arguments of the function are written inside a pair of parentheses () in the header line and are separated by a
comma. The arguments are the input parameters for the function.

At the end of the Python function header there is a colon punctuation mark :.

The code under the header line needs to be indented properly, by following the indentation rules which we mentioned
in the previous lecture.

The docstring section is optional, and it should contain a basic description of the function. Although docstrings are
not necessary for simple functions, it is good practice to write them for more complex functions, so that other people
can easily understand our code.

After the docstring follows the body of the function which contains code block of statements that define the actions
the function should perform.

Lastly, the function can return desired results as outputs.

The following figure illustrates the elements of a simple function.
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Figure source: Reference [4].

One very simple example of a function is shown next. In the header line, the def keyword indicates that a function
say_hello is being defined. Execution of the cell only creates the definition of say_hello. The following indented
line is part of the body of the function say_hello, but it is not executed yet.

[1]: def say_hello():
print('hello')

Note that although this function doesn’t take any arguments, the parentheses () are still required in the header line.

We call the function with its name and parentheses (), as in the next cell.

[2]: say_hello()

hello

When the function is called, Python executes the code inside the function. The function say_hello has only one line
print('hello'), and the output of that line is shown after the cell.

If we forget the parentheses () when calling the function, Python will simply display the fact that say_hello is a
function, as in the cell below.

[3]: say_hello

[3]: <function __main__.say_hello()>

Therefore, both a function definition and a function call must always include parentheses (), even if the function does
not have any arguments.

To modify the function say_hello so that it accepts arguments, let’s rewrite it to greet people with their names.

[4]: def greeting(name):
print(f'Hello {name}')

[5]: greeting(name='John')

Hello John
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The return Statement

The return statement is used with functions to pass data back to the caller. This is very convenient for reusing or saving
the resulting variables from a function.

For example, the following function add_two increases the value of the input argument x by 2 and returns the result.

[6]: def add_two(x):
"""Increase x by 2."""
return x+2

[7]: # Call the function
add_two(x=3)

[7]: 5

We can assign the returned value to a variable as in the next cell. Note the difference with the above cell: when the
returned value is assigned to the variable a, the value is not displayed in the output of the cell. We will need to type it
or use print to display the variable a.

[8]: # Assign the result to the variable 'a'
a = add_two(x=5)

[9]: # Show
a

[9]: 7

Also note in cell [8] that the first equal sign a = is used for assigning the value of the function to the variable name a,
whereas the second equal sign in x=5 is used for passing the value 5 to the argument x in the function.

Besides passing the outputs of a function, the return statement also immediately terminates the function and passes
the execution control back to the caller. In general, the return statement doesn’t need to be at the end of a function,
and it can appear anywhere in a function body, and it can even appear multiple times. Consider the following example.

[10]: def check_number(x):
if x < 0:

return
if x > 100:

return
print(x)

[11]: check_number(x=-3)

[12]: check_number(x=125)

[13]: check_number(x=50)

50

The first two calls to the function check_number() don’t produce any output, because when the return statements
are executed, they terminate the function immediately, before the print statement in the last line is reached.

This property of the return statements can be useful for error checking in a function. We can check several error
conditions at the start of a function with return statements that terminate the code if there are any errors. If none of the
error conditions are encountered, then the function can proceed with processing the block of statements.
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def func():
if error_condition1:

return
if error_condition2:

return
if error_condition3:

return
block of statements

A function can return multiple outputs, as in the following example.

[14]: def multioutput(x):
return x**2, x**3, x**4, x**5

multioutput(x=4)

[14]: (16, 64, 256, 1024)

Also, a function can return any type of object in Python. For instance, the following function returns a list.

[15]: def func1():
"""Return a list"""
return ['foo', 'bar', 'baz', 'qux']

[16]: # Call the function
func1()

[16]: ['foo', 'bar', 'baz', 'qux']

[17]: # Or, assign the result to a variable 'b'
b = func1()
b

[17]: ['foo', 'bar', 'baz', 'qux']

[18]: type(b)

[18]: list

Or, a function can return a dictionary, as in this example.

[19]: def build_person(first_name, last_name):
"""Return a dictionary of information about a person."""
return {'first': first_name, 'last': last_name}

musician = build_person('jimi', 'hendrix')
musician

[19]: {'first': 'jimi', 'last': 'hendrix'}

If a value is not provided after the return statement, the function returns the special Python data type None.

[20]: def func2(x):
x = x + 10
return
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[21]: c = func2(x=5)
c

[22]: type(c)

[22]: NoneType

Similarly, if a function does not have a return statement, None data type will be returned. An example is presented
in the next section.

Returning vs Printing Function Values

It is important to observe the difference between print and return statements in a function.

When the next function add_two_print is executed, the print statement displays the output 6, however this value
is not assigned to the variable d below, and instead the variable d has None data type. This means that the print
statement can not be used to pass the output of a function to a variable.

[23]: def add_two_print(x):
print(x+2)

[24]: # Call the function and assign it to variable 'd'
d = add_two_print(x=4)

6

[25]: type(d)

[25]: NoneType

Conversely, when the following function add_two_return is executed, and its value is assigned to the variable e, we
can notice that the value of the variable e is 6 and its type is integer.

[26]: def add_two_return(x):
return x+2

[27]: # Call the function and assign it to variable 'e'
e = add_two_return(x=4)

[28]: e

[28]: 6

[29]: type(e)

[29]: int
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Polymorphism

Note that Python does not require to specify the type of input objects to functions, and the same function can work with
strings, numbers, or lists as input arguments. This behavior is called polymorphism, where polymorphism literally
means occurrence in different forms. In other words, an operation depends on the type of objects being operated upon.

Polymorphism in Python refers to using a single entity (e.g., operator, method) to represent different
object types in different scenarios.

Let’s see an example.

[30]: def add_num(num1,num2):
return num1+num2

# Call the function with numbers
add_num(4,5)

[30]: 9

[31]: # Call the function with strings
add_num('one','two')

[31]: 'onetwo'

While the above function add_num performs addition for numbers, it does concatenation for strings. The example
demonstrates polymorphism, since different operations are applied based on the type of input arguments to the function.

Conditional Statements in Functions

Functions in Python often contain conditional statements such as if, else, and for and while loops, to define rela-
tionships between the inputs and the outputs.

Let’s see an example of a function to check if a number is prime (i.e., divisible only by 1 and itself).

[32]: def is_prime(num):
'''
Naive method of checking for prime numbers.
'''
for n in range(2,num):

if num % n == 0:
print(num,'is not prime')
break

else: # If modulo is not zero, then it is prime
print(num,'is prime!')

[33]: is_prime(num=16)

16 is not prime

[34]: is_prime(num=17)

17 is prime!

Note how the else statement is aligned under for and not if. This is because we want the for loop to exhaust all
possibilities in the range before printing that the number is prime.
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Also note how we break the code after the first print statement. As soon as we determine that a number is not prime
we break out of the for loop.

Following is another example where for a given string the function returns a string in which every character from the
original string is repeated three times.

[35]: def threepeat(text):
result = ''
for char in text:

result += char * 3
return result

[36]: # Check
threepeat('Mississippi')

[36]: 'MMMiiissssssiiissssssiiippppppiii'

4.1.2 Argument Passing

As we mentioned, arguments are objects that are passed to functions as inputs. Arguments are also referred to as input
parameters of a function.

Recall that functions do not need to have any arguments, as in the say_hello function above, and we used empty
parentheses when we call such functions, as say_hello().

Let’s see an example where we used message and character as arguments to the function print_box.

[37]: def print_box(message, character):
print(character*10)
print(message)
print(character*10)

This function can be called in two ways by using positional arguments or keyword arguments.

Positional Arguments

Function call with positional arguments matches passed argument objects to the argument names in the function header
by position, from left to right.

In the next cell we call the function print_box, and assign Hi there! to the argument message and * to the argument
character for the function to display.

[38]: print_box('Hi there!','*')

**********
Hi there!
**********

If we change the order of the arguments in the function call, the objects will be still passed based on their position.

[39]: print_box('*', 'Hi there!')
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Hi there!Hi there!Hi there!Hi there!Hi there!Hi there!Hi there!Hi there!Hi there!Hi␣
→˓there!
*
Hi there!Hi there!Hi there!Hi there!Hi there!Hi there!Hi there!Hi there!Hi there!Hi␣
→˓there!

Positional arguments are the recommended way for passing arguments with functions that take only one or two argu-
ments. However, if a function takes many positional arguments it may be difficult to tell which argument is which.

Keyword Arguments

Function call with keyword arguments matches passed argument objects to the argument names in the function header
by using the name=value syntax, where name is the keyword for the argument. Keyword arguments are recommended
when a function needs to take many arguments, since each argument has a name and it is easy to see which argument
object is matched to which argument name.

[40]: print_box(message='Hi there!', character='*')

**********
Hi there!
**********

If keywords are not passed, then by default, arguments are matched by position, from left to right.

In this example, the integers 3, 5, and 2 are passed by position, where a is matched to 3, b is matched to 5, and c is
matched to 2.

[41]: def f(a, b, c):
print(a, b, c)

f(3, 5, 2)

3 5 2

To call the same function with keyword arguments, we can use matching by name, and in this case, we don’t need to
worry about the order of the arguments when the function is called. In the next cell, the value 2 is passed to the name
c, which is matched to the argument c in the function definition. The same holds for arguments a and b.

[42]: f(c=2, a=3, b=5)

3 5 2

Keywords improve the code readability and make the function calls more self-documenting. For example, the func-
tion call f(name='Bob', age=40, job='dev') is much more meaningful than the function call f('Bob', 40,
'dev'), although they will both produce the same result.

However, passing keyword arguments that don’t match any of the declared parameters in the function header results in
an error.

[43]: f(c=2, a=3, d=5)

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\1014038404.py in <module>
----> 1 f(c=2, a=3, d=5)

(continues on next page)
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(continued from previous page)

TypeError: f() got an unexpected keyword argument 'd'

When a function is called with positional arguments, we must pass exactly as many argument objects as there are
argument names in the function header. If we try to pass any number of arguments other than 3 to the above function,
we will obtain an error (check the TypeError message below).

[ ]: f(3, 5, 2, 1)

It is also possible to combine positional and keyword arguments in a single call. In the next call, first all positional
arguments are matched based on their position going from left to right in the function header, and afterwards keywords
arguments are matched by name.

[44]: f(3, c=2, b=5)

3 5 2

Check the following error in the next cell: first 3 is assigned to a, afterward 2 is attempted to be assigned to a which
results in an error.

[45]: f(3, a=2, b=5)

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\1919709918.py in <module>
----> 1 f(3, a=2, b=5)

TypeError: f() got multiple values for argument 'a'

Also, when positional and keyword arguments are combined, positional arguments must be listed first, otherwise, we
will get an error message.

[46]: f(c=2, b=5, 3)

File "C:\Users\Alex\AppData\Local\Temp\ipykernel_8724\3772222469.py", line 1
f(c=2, b=5, 3)

^
SyntaxError: positional argument follows keyword argument

4.1.3 Default Values of Arguments

In the function definition header we can assign a default value to some arguments in the form name=value. Then,
value becomes the default value for that argument. These arguments are also referred to as optional arguments. That
is, if values are not passed to these arguments when the function is called, these arguments are assigned the default
values.

For example, here is the same function that requires argument a and has default values for arguments b and c.

[47]: # a is required argument, b and c are optional arguments
def f(a, b=5, c=2):

print(a, b, c)

When we call this function, we must provide a value for argument a either by position or by keyword, and providing
values for arguments b and c is optional. If we don’t pass values to b and c, they default to 5 and 2, respectively.
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[48]: f(1)

1 5 2

[49]: f(1, 2, 3)

1 2 3

[50]: f(1, 4)

1 4 2

[51]: f(1, c=6)

1 5 6

[52]: f(c=6, a=6)

6 5 6

Note that there is a difference between the name=value syntax used in a function header and a function call. In the
function header name=value specifies a default value for an optional argument. In the function call, name=value
means a match-by-name keyword argument.

In both cases, name=value is a special syntax that is different from a regular assignment statement outside of a function
(e.g., a Python line a = 8 where the integer object 8 is assigned to the variable name a).

One small style detail that Python programmers do is to omit spaces around the = sign in the function header and call
(e.g., a=8), to differentiate it from a general assignment statement a = 8.

4.1.4 Arbitrary Number of Arguments

Python also supports functions that take an arbitrary (i.e., variable) number of arguments. To achieve this, we need to
use an asterisk sign * in front of the arguments name in the function definition header. Let’s look at an example.

[53]: def f1(*pargs):
print(pargs)
print(type(pargs))

When this function f1 with *pargs is called, Python collects positional arguments as a tuple, and assigns the variable
pargs to the tuple. The tuple can then be processed using regular tuple tools.

[54]: f1(1,2)

(1, 2)
<class 'tuple'>

[55]: f1(1, 2, 4, 10, 5, 100, 10000)

(1, 2, 4, 10, 5, 100, 10000)
<class 'tuple'>

Let’s see an example where a function is used to calculate the average value of a collection of numbers entered by the
user, where the user can enter as many numbers as they wish.
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[56]: def avg(*pargs):
total = 0
for i in pargs:

total += i
return total / len(pargs)

[57]: # Call avg
avg(1, 2, 3)

[57]: 2.0

[58]: # Call avg
avg(1, 2, 3, 4, 5, 6, 7, 8)

[58]: 4.5

In the above example, when the function avg is called, the passed arguments are packed into a tuple that the function
uses with the name pargs to perform operations on the elements of the tuple.

Or, we could have even written the function avg in a more concise form.

[59]: def avg(*pargs):
return sum(pargs) / len(pargs)

[60]: avg(2, 10, 100, 1000)

[60]: 278.0

As with other Python objects, we could have also used whatever variable name we wanted instead of pargs in the
above examples. However, pargs or args are commonly used for this purpose, and if we use them, other people
familiar with Python coding conventions will know immediately what we mean. Or, alternative the term varargs as
an abbreviation for variable-length arguments is also used.

This feature of using a variable number of arguments is often referred to as varargs, after a variable-length argument
tool in the C language.

Similarly, it is possible to use two asterisks signs ** in front of the arguments name in the function definition header.
This case works only for keyword arguments. The arguments are collected into a dictionary, which can then be
processed using regular dictionary tools.

[61]: def f2(**kwargs):
print(kwargs)
print(type(kwargs))

[62]: f2(a=1, b=2)

{'a': 1, 'b': 2}
<class 'dict'>

[63]: f2(a=1, b=2, c=4, d=10, e=5, f=100, g=10000)

{'a': 1, 'b': 2, 'c': 4, 'd': 10, 'e': 5, 'f': 100, 'g': 10000}
<class 'dict'>

Let’s next see one example of a function that concatenates a variable number of entered words by the user.
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[64]: def concatenate_words(**kwargs):
result = ""
for arg in kwargs.values():

result = result + arg
return result

[65]: concatenate_words(item1='The', item2='quick', item3='brown', item4='fox')

[65]: 'Thequickbrownfox'

[66]: concatenate_words(item1='The', item2='quick', item3='brown', item4='fox',
item5='jumped', items6='over')

[66]: 'Thequickbrownfoxjumpedover'

[67]: concatenate_words(item1='The', item2='quick', item3='brown',
item4='fox', item5='jumped', items6='over',
item7='the', item9='lazy', item10='dog')

[67]: 'Thequickbrownfoxjumpedoverthelazydog'

When the function concatenate_words is called the passed keyword arguments are packed into a dictionary, which
the function uses with the name kwargs to perform operations upon its elements. Notice in the code that the concate-
nated words are taken to be the values of the dictionary in kwargs.values().

Function headers can also combine positional or keyword arguments, and arguments with preceding * and **. For
instance, in the following function call, 1 is passed to a by position, 2 and 3 are collected into the *pargs (positional
arguments) tuple, and x and y are collected in the **kwargs (keyword arguments) dictionary.

[68]: def f3(a, *pargs, **kwargs):
print(a, pargs, kwargs)

[69]: f3(1, 2, 3, x=1, y=2)

1 (2, 3) {'x': 1, 'y': 2}

This type of argument definition in the function header is useful when we don’t know the number of arguments that
will be passed to a function when we write the code.

Unpacking Arguments in Function Calls

The * syntax can also be used in a function call. In this context, its meaning is opposite of its meaning in the function
definition as it unpacks a collection of arguments, rather than builds a collection of arguments.

[70]: def f4(a, b, c, d):
print(a, b, c, d)

When the tuple t1 is passed to the function f4 with *, Python unpacks the tuple into the individual arguments a, b, c,
and d.

[71]: t1 = (2, 4, 6, 8)
f4(*t1)
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2 4 6 8

In function calls, we don’t even need to pass the arguments as a tuple with the * syntax, and instead we can pass a list,
or any other iterable object.

[72]: l1 = ['one', 'two', 'three', 'four']
f4(*l1)

one two three four

[73]: s1 = 'spam'
f4(*s1)

s p a m

Similarly, the ** syntax in a function call unpacks a dictionary of key/value pairs into separate keyword arguments.

[74]: d1 = {'a': 1, 'b': 3, 'c': 6, 'd': 9}
f4(**d1)

1 3 6 9

Note that if we tried to pass the tuple t1 with the ** syntax, we will get an error message.

[75]: f4(**t1)

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\621137479.py in <module>
----> 1 f4(**t1)

TypeError: __main__.f4() argument after ** must be a mapping, not tuple

To summarize again, the */** argument syntax in the function header collects a variable number of arguments, while
in the function call it unpacks a variable number of arguments.

In both, one asterisk * applies to positional arguments, and two asterisks ** apply to keywords arguments.

Arguments Ordering Rules

The general syntax for function arguments is summarized in the table.

In a function caller (first four syntax rules in the table), normal values are matched by position. The name=value form
is used to match keyword arguments by name. Using an *iterable or **dict in a function call allows to package
up positional or keyword objects in iterables and dictionaries, respectively, and unpack them as separate, individual
arguments when they are passed to the function.

In a function header, a simple name is matched by either position or name, depending on how the caller passed it. The
name=value form specifies a default value. The *name form collects any extra unmatched positional arguments in a
tuple, and the **name form collects extra keyword arguments in a dictionary. Any normal or defaulted argument names
following a *name or an asterisk * are keyword-only arguments and must be passed by keyword in calls.
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Figure source: Reference [1].

The steps that Python internally carries out to match arguments before assignment can roughly be described as follows:

1. Assign keyword arguments by position.

2. Assign keyword arguments by matching names.

3. Assign extra arguments to *pargs tuple.

4. Assign extra keyword arguments to **kwargs dictionary.

5. Assign default values to unassigned arguments in header.

After this, Python checks to make sure each argument is passed just one value; if not, an error is raised.

4.1.5 Namespace and Scope

It is very important to understand how Python handles the assigned variable names. In Python, the variable names are
stored in a namespace.

A namespace is a collection of names along with information about the object that each name references.

When an object is assigned to a name, Python internally creates a dictionary where the name is the key and the object
is the value. This dictionary is updated with new keys and values as new names are created and objects are assigned.
Python maintains several different namespaces, which include namespaces for each module, for each function, as well
as a namespace for built-in Python functions.

Although there are different namespaces, Python may not be able to access each namespace from every part of the
script. For instance, the names defined outside of a function cannot be accessed inside a function. The visibility of
variable names to other parts in the code is determined by the scope.

Scope is the portion of code from where a namespace can be accessed directly..

The benefit of having different namespaces in Python is that we can define and use variables within a function even if
these variables have the same name as other variables defined in other functions or in the main program. In these cases,
there will be no conflicts or interference between variables that have the same names, because they are kept in separate
namespaces. This means that when we write code within a function we can use variable names and identifiers without
worrying about whether they are already used elsewhere outside the function.
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Let’s see an example. Here, the name x is defined inside the function printer. This name x is not visible outside of
the function. When we tried to access the name x in the cell outside the function printer, Python reported an error.

[76]: def printer():
x = 50 # x assigned in function: local name
return x

x # x accesed in module: global name

---------------------------------------------------------------------------
NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\3041531381.py in <module>

3 return x
4

----> 5 x # x accesed in module: global name

NameError: name 'x' is not defined

If we define the name x in the cell (i.e., in the module), then we can expect that we can access it without any errors.

[77]: x = 25 # x assigned in module: global name

def printer():
x = 50 # x assigned in function: local name
return x

x

[77]: 25

The more important question is: what would be the output of printer()? Here we have two names x, where one is
local (lives in the local namespace of the function printer) and the other one is global (lives in the global namespace
of the cell).

Let’s check.

[78]: printer()

[78]: 50

Note that the value of x in the first cell is 25, and in the second is 50. Python follows a set of rules to decide which x
variable is referenced in the code.

When Python searches for a name, it checks four scopes defined by the LEGB rule. The rule means that when a name
is used, Python will first search the local (L) scope, then the scopes of any enclosing (E) functions, then the global (G)
scope, and finally the built-in (B) scope. If the name is not found, Python reports an error.

LEGB Rule

L: Local scope — All names assigned within a def function are local (unless they are declared global in that function).

E: Enclosing function scope — Names in the local scope of any enclosing functions, from inner to outer functions.

G: Global (module) scope — Names assigned at the top level of a module file, or declared global within a def function
with the global statement.

B: Built-in Python scope — Names preassigned in the built-in names module, such as open, True, range, etc.
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Local Names

When we declare variables inside a function definition, they are visible only to the code inside the def function. Local
variables are not related in any way to other variables having the same names used outside the function: i.e., the variable
names are local to the function.

Examples:

[79]: # x is local here:
def squared(x):

return x**2 # x assigned in function: local name

[80]: x = 50 # x assigned in module: global name

def func(x):
print('x is', x) # x is global
x = 2 # x assigned in function: local name
print('Changed local x to', x) # x is local

[81]: func(x)

x is 50
Changed local x to 2

[82]: print('x is still', x) # x is global

x is still 50

In the above example, the first time that we print the value of the name x with the first line in the function’s body
(i.e., the line print('x is', x), Python uses the value of the variable declared in the main block, above the function
definition. This means that variables defined in the main module are visible inside functions.

Next, we assign the value 2 to x. The name x is local to this function. So, when we change the value of x in the function,
the variable x defined in the main block remains unaffected. That is, the local name is visible only within the function,
and not visible outside the function.

With the last print statement print('x is still', x), we display the value of x as defined in the main block,
thereby confirming that it is actually unaffected by the local assignment within the previously called function.

Local variables serve as temporary names that are needed only while a function is running. They are removed from the
memory after the function call exits.

In Jupyter, a quick way to test for global variables is to see if another cell recognizes the variable.

[83]: print(x)

50
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The global statement

If we want to assign a value to a name defined at the module level of the program (i.e., not inside any function), then
we can use the global statement to indicate that the name is not local.

This allows to use the values of such variables outside the function. However, this is not encouraged and declaring global
variables should be minimized, because it becomes unclear to the reader of the program as to where that variable’s
definition is.

Here is an example.

[84]: x = 50 # x assigned in module: global name

def func():
global x # x is declared global
print('This function is now using the global x!')
print('Because of global, x is:', x)
x = 2 # x assigned in function, but now it is global
print('Now global x changed to', x) # x is global

[85]: func()

This function is now using the global x!
Because of global, x is: 50
Now global x changed to 2

[86]: print('Value of x outside of func is:', x) # x is global, assigned to 2 in the function

Value of x outside of func is: 2

The global statement is used to declare that x is a global variable - hence, when we assign a value to x inside the
function, that change is reflected when we use the value of x in the main block.

We can specify more than one global variable using the same global statement, e.g. global x, y, z.

One last mention is that we can use the globals() and locals() functions to check what are our current local and global
variables.

Built-in Function Names

Built-in names refer to standard names used in Python, like open, True, None, etc. Since Python searches last in the
LEGB lookup for built-in names, this means that names in the local scope may override names in the built-in scope.
For instance, if we create a local variable called open, then the built-in function for opening a file open(data.txt')
will not work.

[87]: def some_function():
open = 'Hello' # Local variable, hides the built-in open function
open('data.txt') # Error: this function no longer opens a file in this scope
print(open)

[88]: some_function()

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\2867438862.py in <module>

(continues on next page)
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(continued from previous page)

----> 1 some_function()

~\AppData\Local\Temp\ipykernel_8724\2724584223.py in some_function()
1 def some_function():
2 open = 'Hello' # Local variable, hides the built-in open function

----> 3 open('data.txt') # Error: this function no longer opens a file in this␣
→˓scope

4 print(open)

TypeError: 'str' object is not callable

Enclosing Function Names

Enclosing functions occurs when we have a function inside a function (that is, nested functions). With enclosing
functions, Python first looks for a name in the local scope of a function, and next in the scopes of all enclosing functions,
from inner to outer.

[89]: x = 'This is a global name' # x assigned in module: global name

def greet():
# 'Greet' is an enclosing function to 'hello'
x = 'Sammy' # x assigned in enclosing function: enclosing function name
def hello():

print('Hello '+ x)
hello()

[90]: greet() # x is defined in an enclosing function

Hello Sammy

Note that because the function hello is enclosed inside of the function greet, hello has access to the name x that is
defined in the enclosing function. Also note that this did not change the value of the global name x.

[91]: # Check if global
x

[91]: 'This is a global name'

4.1.6 The Importance of Python Functions

All programming languages support user-defined functions similar to Python, although in other languages functions
may be referred to as subroutines, procedures, or subprograms.

The most important reason for using functions is code abstraction and reusability. For instance, when we write code
we often need to implement tasks that are repeated in different locations in an application. Instead of replicating the
code over and over again, we can just define a function that can be reused where needed. Also, if we need to modify
the written code, it is easier to modify it only in one location in the defined function, instead of modifying all copies of
the code scattered across many locations in the application.

Another reason for using functions is code modularity, since functions allow to break down complex processes into
smaller blocks of code, organized into functions that focus on performing specific tasks. Such modularized code is
more readable and understandable, and easier to maintain and update.
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Docstrings

As we mentioned, the lines after the function header can be used to provide an optional description of the function,
known as the docstring of the function. A docstring can include information about the purpose of the function, inputs
arguments it takes, returned outputs values, or any other information that would be helpful to the users.

Here is an example of a docstring for the avg function that we used above.

[92]: def avg(*args):
"""Returns the average of a list of numbers"""
return sum(args) / len(args)

Docstrings are written inside quotes, and the recommended convention is to use three double-quote characters """,
although any type of quotes are acceptable.

For more complex functions, multi-line docstrings are used, which typically consist of a summary line, followed by
a blank line, followed by a more detailed description. The closing quotes should be on a separate line. Here is an
example.

[93]: def add_binary(a, b):
'''
Returns the sum of two decimal numbers in binary digits.

Parameters:
a (int): A decimal integer
b (int): Another decimal integer

Returns:
binary_sum (str): Binary string of the sum of a and b

'''
binary_sum = bin(a+b)[2:]
return binary_sum

We can type help(function_name) to display the docstring for any Python function.

[94]: help(add_binary)

Help on function add_binary in module __main__:

add_binary(a, b)
Returns the sum of two decimal numbers in binary digits.

Parameters:
a (int): A decimal integer
b (int): Another decimal integer

Returns:
binary_sum (str): Binary string of the sum of a and b
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Function Annotations

Function annotations in Python can be used to attach metadata to the input arguments and return values of a function.
To add an annotation to a Python input argument, insert a colon : followed by an expression, and to add an annotation
to the return value, add the characters -> and an expression between the closing parenthesis of the argument list and
the colon that terminates the function header.

Here is an example, where the annotations for the function indicate that the first argument is int, the second argument
is str, and the return value is float.

[95]: def func3(a: int, b: str) -> float:
print(a, b)
return(3.5)

func3(2, 'python')

2 python

[95]: 3.5

Annotations are optional, and they don’t impose restrictions on the type of arguments passed to the function, nor have
any impact on the execution of the code. They are simply metadata that provides information to the user regarding the
arguments and the return values. Also, they can provide any other information about the arguments and return values,
and not only the data type. Although it is possible to insert this information in the docstring of the function, placing it
directly in the function definition adds clarity.

4.1.7 The lambda Expression

Similarly to using the def statement to define a new function, the lambda expression can also be used to create a
new function in Python, but without assigning a name to the function. This is why lambdas are sometimes known as
anonymous (i.e., unnamed) functions.

For example, let’s use the def statement to create a simple function named func1 that returns the sum of three numbers.

[96]: def func1(x, y, z):
return x + y + z

func1(2, 3, 4)

[96]: 9

The same can be achieved with a lambda expression. The newly created function can be assigned to a name func2
which can be later called when needed.

[97]: func2 = lambda x, y, z: x + y + z
func2(1, 2, 3)

[97]: 6

Let’s compare the function objects func1 and func2 in the next cell. As we can see, the lambda expression creates a
function object, which can be called later.

[98]: func1

[98]: <function __main__.func1(x, y, z)>
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[99]: func2

[99]: <function __main__.<lambda>(x, y, z)>

The general syntax of a lambda expression consists of the keyword lambda, followed by one or more arguments, after
the arguments comes a colon :, which is followed by an expression using the listed arguments.

lambda argument1, argument2,... argumentN : expression using arguments

Although lambda creates new functions in a similar way as def, there are a few differences.

• lambda is an expression, not a statement. Because of this, a lambda can appear in places a def is not allowed
by Python’s syntax, such as inside a list or inside a function call’s arguments.

• lambda’s body is a single expression, not a block of statements. Because of that, lambda is less general than
def.

• lambda is designed for coding simple functions, and def is designed for more complex tasks.

To illustrate the first bullet point above, consider the following list, which consists of three lambda functions defined
inline within the list. A def won’t work inside a list, because def is a statement, not an expression.

[100]: # The items output a number raised to 2, 3, 4 power
list3 = [lambda x: x ** 2,

lambda x: x ** 3,
lambda x: x ** 4]

for x in list3:
print(x(2))

4
8
16

The lambda expression allows to use default values for arguments, just like in def functions.

[101]: # Default values for x, y, and z are defined in the lambda expression
func3 = lambda x=3, y=4, z=5: x + y + z
func3(1)

[101]: 10

Similarly, to introduce conditional logic in a lambda expression, we can use the if-else ternary expression that we
mentioned in the earlier lecture on if tests (i.e., a if x else b).

For example, the following function returns the greater of two numbers.

[102]: greater_number = (lambda x, y: x if x > y else y)
greater_number(5, 8)

[102]: 8

Although it is possible to encode quite complex logic expressions using lambdas, or even to nest lambdas within
other def functions, lambda is still intended only to embed small pieces of code inline at the place it needs to be used.
When there is a need for more complex logic, it is recommended to use def functions for simplicity and improved code
readability.

7.4. Lecture 4 - Functions, Iterators, Generators 99



Fall 2023 Python Programming for Data Science, Release 0.1

7.4.2 4.2 Iterators

In the previous lecture we mentioned that iteration loops like for and while loops can work on any objects that are
sequences, such as strings, lists, and tuples.

[103]: # Iteration over items in a list
for x in ['book', 'pencil', 'board']:

print(x, end = ' ') # print the items on the same line by adding an empty space ' ' ␣
→˓after each

book pencil board

These sequences are iterable objects and loops iterate over their elements. For example, integer and floating-point
numbers are not iterable objects, and if we try to iterate over them, we will get an error message.

[104]: for x in 16:
print(x)

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\2559496794.py in <module>
----> 1 for x in 16:

2 print(x)

TypeError: 'int' object is not iterable

Furthermore, for loops can work on other objects that are not sequences, such as files. The files can be scanned line
by line, and therefore it is possible to iterate over them. All such objects in Python are called iterable objects.

An object is considered an iterable object if it is either a sequence object, or an object that produces one
result at a time when an iteration tool (like a for loop) is applied.

To explain how iteration over files works, let’s create a simple file having two lines.

[105]: # Creating a new file
myfile = open('data/test.txt','w')
myfile.write('This is a first line\n')
myfile.write('This is a second line\n')
myfile.close()

[106]: # Reading the file line by line
myfile = open('data/test.txt','r')
myfile.readline()

[106]: 'This is a first line\n'

[107]: myfile.readline()

[107]: 'This is a second line\n'

[108]: myfile.readline()

[108]: ''

As we explained earlier, the iterator remembers the position in the file, and when the end-of-file is reached, the file
cannot be read again without resetting the iterator to the beginning of the file.
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[109]: # If we try to read the file again, we cannot read the file since the iterator is at the␣
→˓end of the file
myfile.readline()

[109]: ''

Files have an important method named __next__() that acts almost identically to .readline(). The only difference
is that __next__() raises a StopIteration exception at the end-of-file (EOF).

[110]: myfile = open('data/test.txt','r')
myfile.__next__()

[110]: 'This is a first line\n'

[111]: myfile.__next__()

[111]: 'This is a second line\n'

[112]: # StopIteration exception at the end-of-file
myfile.__next__()

---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\334399950.py in <module>

1 # StopIteration exception at the end-of-file
----> 2 myfile.__next__()

StopIteration:

[113]: myfile.close()

And, in addition, there is also a Python built-in function next() that does the same thing as __next__().

[114]: myfile = open('data/test.txt','r')
next(myfile)

[114]: 'This is a first line\n'

[115]: next(myfile)

[115]: 'This is a second line\n'

[116]: # StopIteration exception at the end-of-file
next(myfile)

---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\2838511806.py in <module>

1 # StopIteration exception at the end-of-file
----> 2 next(myfile)

StopIteration:

[117]: myfile.close()
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In Python, all iteration tools (like for loops) work internally by calling __next__() on each iteration and catching the
StopIteration exception to determine when to exit.

For instance, the following cell shows code for reading the file using a for loop. Note also that using a for loop is
preferred to using the readline() method shown above, because it is simpler to code, runs quicker, and is better in
terms of memory usage (i.e., readline() loads the entire file into memory all at once, and it will not even work for
large files that cannot fit into the memory space available on your computer).

[118]: # Use file iterators to read by lines
for line in open('data/test.txt'):

print(line, end = '')

This is a first line
This is a second line

Internally, in Python the above code is implemented somewhat similar to this next cell, where __next__() is called
on each iteration to advance to the next position, and try-except is used to catch the StopIteration exception at the
end-of-file.

[119]: # Manual iteration
myfile = open('data/test.txt','r')
while True:

try:
line = myfile.__next__()

except StopIteration:
break

print(line, end = '')

This is a first line
This is a second line

Not only the for loops, but all iteration tools work by calling __next__() on each iteration and catching the StopIt-
eration exception. This includes list comprehensions, in membership tests, and other tools.

An iterator is an object that uses a __next__() method to advance to the next item, and raises StopIter-
ation at the end of the series of results.

In the above example myfile is an iterator, and it is also an iterable object.

In fact, all iterators are iterable objects, but not all iterable objects are iterators. For instance, although lists, strings,
and tuples are iterable objects, we cannot directly use __next__() to iterate over them.

[120]: L = [1, 2, 3]
# Raises an error message
L.__next__()

---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\3841945041.py in <module>

1 L = [1, 2, 3]
2 # Raises an error message

----> 3 L.__next__()

AttributeError: 'list' object has no attribute '__next__'

To obtain an iterator for a list, we need to use either the __iter__() method or the built-in function iter().
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[121]: L = [1, 2, 3]
# Obtain an iterator
I = iter(L)
# Call iterator's next to advance to next item
I.__next__()

[121]: 1

[122]: I.__next__()

[122]: 2

[123]: I.__next__()

[123]: 3

[124]: I.__next__()

---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\3023204773.py in <module>
----> 1 I.__next__()

StopIteration:

We can perform a check to find out if an object is an iterator. As we learned, iterators for lists are different than the list
object itself. This also holds for directories. For such objects, we must call iter to start iterating.

[125]: iter(L) is L

[125]: False

However, for files, the iterable object is also its own iterator, therefore it is not needed to use the iter() function to
create an iterator.

[126]: iter(myfile) is myfile

[126]: True

The internal iteration for a list looks similar to this code.

[127]: # Manual iteration
L = [1, 2, 3]
I = iter(L)
while True:

try:
X = I.__next__()

except StopIteration:
break

print(X)

1
2
3

Many other functions in Python that scan objects from left to right perform iterations in a similar way. Examples are
sorted for sorting items in an iterable; zip combines items from iterables; enumerate pairs items in an iterable with
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relative positions; filter selects items for which a function is true, etc.

For example, note how enumerate works.

[128]: for i, x in enumerate('hello'):
print(i, x)

0 h
1 e
2 l
3 l
4 o

[129]: # Iteration
S = enumerate('hello')
S.__next__()

[129]: (0, 'h')

[130]: S.__next__()

[130]: (1, 'e')

To show all index-value pairs in enumerate we can wrap it in a list.

[131]: list(enumerate('hello'))

[131]: [(0, 'h'), (1, 'e'), (2, 'l'), (3, 'l'), (4, 'o')]

[132]: # Compare to:
enumerate('hello')

[132]: <enumerate at 0x1b85a99abc0>

The same holds for other functions.

[133]: zip('abc', 'xyz')

[133]: <zip at 0x1b85a9960c0>

[134]: list(zip('abc', 'xyz'))

[134]: [('a', 'x'), ('b', 'y'), ('c', 'z')]

[135]: range(5)

[135]: range(0, 5)

[136]: list(range(5))

[136]: [0, 1, 2, 3, 4]
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7.4.3 4.3 Generators

Generator functions are a special type of functions that return one result at a time. This is different from the regular
functions that we studied so far, which return all the values at the same time at the end of the execution, and after that
they exit. Generators yield a value after value, by suspending and resuming the execution of the function from where
they left off.

Generator functions are coded using the def statement similarly to regular functions; however, they use the yield
statement at the end of the function block, instead of the return statement.

This allows generators to produce a series of values over time, rather than computing the returned values all at once
and sending them back when the function is called.

Generators are special functions that return an iterable set of items, one at a time. They are defined using
a def statement, and they output values using a yield statement.

Here is one example of a simple generator function.

[137]: def my_gen():
n = 1
print('This is printed first')
yield n

n = 2
print('This is printed second')
yield n

n = 3
print('This is printed at last')
yield n

[138]: for item in my_gen():
print(item)

This is printed first
1
This is printed second
2
This is printed at last
3

Let’s look at another example of the generator gen_squares which generates squared values of a series of numbers.

[139]: # Generator function definition
def gen_squares(N):

for i in range(N):
# Generators use yield instead of return
yield i ** 2

Because generators output a series of results, we can not call a generator in the same way as we would call a regular
function. If we do, we will obtain a message that this object is a generator object.

[140]: # The output is a generator object
gen_squares(5)

[140]: <generator object gen_squares at 0x000001B85A99CC10>
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We can call the generator gen_squares using a for loop, and the output in this case are the squares of the numbers
0, 1, 2, 3, and 4.

The generator gen_squares yields a value each time it is called within the for loop. When it is resumed, its prior
state is restored, including the last values of its variables i and N, and the control picks up again immediately after the
yield statement.

[141]: for i in gen_squares(5):
print(i)

0
1
4
9
16

Iterations with generator functions are similar to iterations over items in a list. The __next__() method starts the
iteration and resumes it from where it last yielded a value, and raises a StopIteration exception when the end of the
series of values is reached. Also note that for generators it is not required to apply the iter() method, since generators
are their own iterators.

[142]: y = gen_squares(5)
y.__next__()

[142]: 0

[143]: y.__next__()

[143]: 1

[144]: y.__next__()

[144]: 4

[145]: y.__next__()

[145]: 9

[146]: y.__next__()

[146]: 16

[147]: y.__next__()

---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\81612537.py in <module>
----> 1 y.__next__()

StopIteration:

We can check if the iterator of the generator object (named y in this case) is the same as the generator, and as expected,
the answer is yes.

[ ]: iter(y) is y

Also, note that yield works only within the function block of statements, and if used outside of a function will get an
error message.
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[ ]: yield 'hello'

An easy way to think about generators is to compare them to our computers. When we suspend a computer, it goes
into a stand-by mode, and we can later continue using the computer and all of our programs are still there, just like they
were when we left. Similarly, generators output some results, and they resume outputting the results the next time they
are called.

By now, you may be asking yourself why and when we should use generators. They are used when the outputs of the
functions are very large or when it takes a lot of computation to produce each output value. Generators are advantageous
in terms of both memory use and performance in large programs.

One example application of generators is for machine learning applications with large datasets. For instance, latest
datasets for image processing are often very large, and they consist of tens of thousands, or sometimes, millions of
images. Loading such large datasets at once in the computer memory is not possible. Using generators allows to
process such large datasets, by loading and processing a batch of images at a time that can fit into the computer’s
memory. Once a batch is processed, the generator will load the next batch and process it, and this step is repeated until
all images are processed.

On the other hand, if you work with simpler programs and smaller datasets, using generator functions is not needed.
The above example of generating squared values of a list of 5 numbers is too simple to illustrate the value of generators
(because we could have used a for loop to achieve the same result); still, the example is useful for explaining the
concept of generators.

Also, generators can yield items in any iterable object, like tuples, strings, dictionaries, and files.

Python also supports generator expressions which are very similar to list comprehensions, and support all the syntax
that is used with list comprehensions. They are also called generator comprehensions. Differently from list compre-
hensions that use square brackets, generator expressions are enclosed in parentheses.

For the above example of squared values, the list comprehension has the following form.

[148]: L = [x ** 2 for x in range(4)]
L

[148]: [0, 1, 4, 9]

The corresponding generator expression is shown below.

[149]: G = (x ** 2 for x in range(4))
G

[149]: <generator object <genexpr> at 0x000001B85A9A5580>

Unlike list comprehensions, generator expressions do not build a list, but they return a generator object. This object is
an iterator object, that yields one item at a time. The generator also retains the state of the variable x while it is active.

To display the outputs of the generator we can use a for loop, similar to generator functions.

[150]: for item in G:
print(item)

0
1
4
9

Or, if we would like to display all output results of the generator expression at once, we can simply wrap it in a list.
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[151]: list(x ** 2 for x in range(4))

[151]: [0, 1, 4, 9]

Like generator functions, generator expressions provide memory-space optimization, since they do not require the entire
result list to be constructed all at once, as the square-bracketed list comprehension does. Also like generator functions,
they divide the work into smaller time slices as they yield results in piecemeal fashion, instead of making the caller
wait for the full set to be created in a single call.

On the other hand, generator expressions may also run slightly slower than list comprehensions in practice, so they are
best used only for very large result sets, or applications that cannot wait for full results generation.

7.4.4 Appendix: Additional Functions Info

The material in the Appendix is not required for quizzes and assignments.

Function Decorators

A decorator is a design pattern in Python that allows to add new functionality to an existing object without modifying
its structure. Decorators are typically called before the definition of a function that is to be decorated by using the
syntax @decorator.

Using decorators is also called metaprogramming because a part of the program tries to modify another part of the
program at execution time.

Let’s consider the following simple function divide, which accepts two arguments a and b. We know it will give an
error if we pass in b as 0.

[152]: def divide(a, b):
return a/b

[153]: divide(12,3)

[153]: 4.0

[154]: divide(2,0)

---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\2734703358.py in <module>
----> 1 divide(2,0)

~\AppData\Local\Temp\ipykernel_8724\560253271.py in divide(a, b)
1 def divide(a, b):

----> 2 return a/b

ZeroDivisionError: division by zero

Let’s assume that we would like to modify the function divide so that it checks for the case of division by 0 that will
cause the error.

One way to achieve this is to create a new function that will take as an argument the function divide and modify it.
This way, we can apply the same functionality to other similar functions as well, if we needed to.

The following function named smart_divide does exactly that.
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[155]: def smart_divide(func):
def inner_function(a, b):

print("Divide", a, "and", b)
if b == 0:

print("Cannot divide by 0")
return

return func(a, b)
return inner_function

Now, we can use the function divide as an argument in the new function smart_divide. We can name the new
function my_divide.

[156]: my_divide = smart_divide(divide)

[157]: my_divide(12,3)

Divide 12 and 3

[157]: 4.0

[158]: my_divide(12,0)

Divide 12 and 0
Cannot divide by 0

Modifying existing functions using a decorator is a common construct in Python, and the syntax uses the @ symbol
along with the name of the decorator function placed above the definition of the function to be decorated.

[159]: @smart_divide
def divide(a, b):

print(a/b)

[160]: divide(12,3)

Divide 12 and 3
4.0

[161]: divide(12,0)

Divide 12 and 0
Cannot divide by 0

Using @smartdivide in the above code is equivalent to writing divide = smart_divide(divide).

The new functionality added by the decorator function smart_divide to the original function divide can be seen as
similar to packing a gift, where the decorator acts as a wrapper. The actual gift inside the wrapper does not alter, but
now it looks pretty since it got decorated.

Or, in other words, the decorator is a function that modifies another function. When the decorated function is invoked
through its original name divide, the decorator is applied to augment the original function in some way.
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Example 2

One more simple example follows, where the function ordinary() does not take any input arguments.

[162]: def ordinary():
print("Ordinary function")

ordinary()

Ordinary function

A decorator function called make_pretty() wraps around the code of the argument function func_1 and inserts
additional print statements before and after the function func_1.

[163]: def make_pretty(func_1): # the input argument to the decorator is another function,␣
→˓here called 'func_1'
def inner(): # this is the wrapper for the function

print("The function will be decorated")
func_1() # this executes the initial function
print("The function was decorated")

return inner

Let’s apply the decorator, and call the function ordinary() after it has been decorated.

[164]: @make_pretty
def ordinary():

print("Ordinary function")

ordinary()

The function will be decorated
Ordinary function
The function was decorated

In practice, we don’t even need to ever use decorators, and we can achieve the same results by just using
make_pretty(ordinary) as shown below. However, decorators have advantages over such approach, and are com-
monly used.

[165]: def ordinary():
print("Ordinary function")

ordinary = make_pretty(ordinary)

ordinary()

The function will be decorated
Ordinary function
The function was decorated
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Functions as Arguments, Inner Functions, and Returns in Other Functions

In order to better understand decorators, we will now take a step back and explain several related concepts in Python.

As we mentioned before, everything in Python is an object. Names that we assign to objects are simply identifiers
bound to these objects. Functions are no exceptions, and they are objects too.

Functions can be passed as arguments to another function. Here is an example, where the functions increase and
decrease are passed as arguments to the function operate. Functions like operate that take other functions as
arguments are also called higher order functions.

[166]: def increase(x):
# Increse x by 1
return x + 1

def decrease(x):
# Decrease x by 1
return x - 1

def operate(func, x): # Operate takes 2 arguments: a function `func` and a number `x`
result = func(x)
return result

[167]: # call 'operate' with 'increase' as argument
operate(increase,3)

[167]: 4

[168]: # call 'operate' with 'decrease' as argument
operate(decrease,3)

[168]: 2

Furthermore, other functions can be nested under another function, and are referred to as inner functions.

Here’s an example of a function with two inner functions.

[169]: def parent():
print("Printing from the parent() function")

def first_child():
print("Printing from the first_child() function")

def second_child():
print("Printing from the second_child() function")

second_child()
first_child()

[170]: parent()

Printing from the parent() function
Printing from the second_child() function
Printing from the first_child() function
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Note that the order in which the inner functions are defined does not matter, and what matter is the order in which
the inner functions are called within the parent() function. That is, second_child is called first, and afterward
first_child is called.

As we know, the inner functions are in the local scope to the outer (enclosing) function parent(), and they only exist
inside the parent() function as local variables. If we try calling first_child() we will get an error.

[171]: first_child()

---------------------------------------------------------------------------
NameError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\2276402280.py in <module>
----> 1 first_child()

NameError: name 'first_child' is not defined

Python also allows to use other functions as returns of a function. The following example returns one of the inner
functions from the outer parent() function, based on an if test.

[172]: def parent(num):
def first_child():

return "Hi, I am Emma"

def second_child():
return "Call me Liam"

if num == 1:
return first_child

else:
return second_child

[173]: my_func1 = parent(1)
my_func1()

[173]: 'Hi, I am Emma'

[174]: my_func2 = parent(5)
my_func2()

[174]: 'Call me Liam'

[175]: type(my_func2)

[175]: function

[176]: # my_func_2 is a function object
my_func2

[176]: <function __main__.parent.<locals>.second_child()>

Also note that in the previous example we executed the inner functions within the parent function, because we used
first_child() and second_child(). However, in this last example, we did not add parentheses to the inner func-
tions first_child and second_child in the return lines. That way, we obtained a reference to each function that we
can later call, that is my_func1 and my_func2 above are function objects, and we need to call them with parentheses
(e.g., my_func1()) in order to obtain the print statement. If we don’t use parentheses (as in my_func2), Python will
just display that this is a function object.
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Compare to the code below, where we called the inner functions in the return lines.

[177]: def parent(num):
def first_child():

return "Hi, I am Emma"

def second_child():
return "Call me Liam"

if num == 1:
return first_child()

else:
return second_child()

[178]: my_func2 = parent(5)
my_func2

[178]: 'Call me Liam'

[179]: type(my_func2)

[179]: str

[180]: # my_func2 here is a string and not a function, we cannnot call it
my_func2()

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\1447515405.py in <module>

1 # my_func2 here is a string and not a function, we cannnot call it
----> 2 my_func2()

TypeError: 'str' object is not callable

One more similar simple example is shown below where a nested function is returned in an outer function. Each time
we call first_function(), nested_function() is returned.

[181]: def first_function(): # created 1st function

print('First line in the called function')

def nested_function(): # Created 2nd function (nested)
print('Hello, this is inside the nested function')

return nested_function

[182]: new_function = first_function()

new_function()

First line in the called function
Hello, this is inside the nested function

[183]: # Compare to the following
first_function()

7.4. Lecture 4 - Functions, Iterators, Generators 113



Fall 2023 Python Programming for Data Science, Release 0.1

First line in the called function

[183]: <function __main__.first_function.<locals>.nested_function()>

General Syntax of a Decorator

The following code provides a general syntax of a decorator. The decorator_function takes a function called func
as its argument, and returns a modified version of it called new_function.

def decorator_function(func): # the 'decorator_function' will be␣
→˓later invoked using the @ syntax

def new_function(*args, **kwargs): # this function is often named 'wrapper
→˓' or 'inner' function

# Perform actions with `func`, `args` and `kwargs`
...

return new_function

@decorator_function
def my_function(arg1, arg2, arg3, ....): # my_function is passed as an argument␣
→˓to 'decorator_function'

# Peform some actions, equivalent to 'my_function = decorator_function(my_function)'

my_function(arg1=v1, arg2=v2, arg3=v3,....) # call 'my_function', with the values v1,
→˓ v2, v3, ... passed to 'new_function'

Why Use Decorators

Like other advanced Python tools, decorators are never strictly required from a purely technical perspective: we can
implement the same functionality using simple helper functions or other techniques. Or, we can always manually
modify the code in a function instead of using a decorator.

However, imagine the scenario where instead of adding some functionality to one function, we have a large package
with hundreds of functions to which we would like to add the same functionality. To do that, we would need to copy
the same thing over and over again, which is error-prone, as we could miss one place where it is required, or paste it in
the wrong place. Using decorators allows to modify all functions in a manner that is less error-prone.

There are also other reasons for using decorators that go beyond just avoiding repetitive typing. When we need to
modify the logic in our programs, we can modify the logic in just one place, instead of trying to find related code
everywhere, and perhaps make mistakes along the way.

Furthermore, decorators have a very explicit syntax with the @ symbol, which makes them easier to spot than helper
function calls that may be arbitrarily far-removed from the functions upon which they act.

In summary, decorators offer advantages in terms of both code maintenance and consistency. Although the choice to
use decorators is still subjective, their advantages are compelling enough so that they are adopted by many Python
users.
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Keyword-Only Function Arguments

As we explained, the order of arguments in a function header is as follows, where first come normal arguments (args),
then default arguments (defargs, such as name=value), followed by * positional arguments, and last are ** keyword
arguments.

def some_function(args, defargs, *pargs, **kwargs):

Python also allows to specify arguments that must be passed by keyword only. Such arguments should be placed in the
function header after *pargs in the list of arguments.

In the following example, a may be passed by name or position, b collects any extra positional arguments, and c must
be passed by keyword only. I.e., c cannot be passed as a positional argument.

[184]: def keyword_only(a, *b, c):
print(a, b, c)

[185]: keyword_only(1, 2, c=3)

1 (2,) 3

If c is passed by position, we will get an error message.

[186]: keyword_only(1, 2, 3)

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\1433115857.py in <module>
----> 1 keyword_only(1, 2, 3)

TypeError: keyword_only() missing 1 required keyword-only argument: 'c'

We can also use an asterisk character * by itself in the arguments’ list to indicate that a function does not accept a
variable-length argument list, but still expects all arguments after the * to be passed as keywords.

[187]: def keyword_only2(a, *, b, c, d=4):
print(a, b, c, d)

[188]: keyword_only2(1, c=5, b=3, d=7)

1 3 5 7

[189]: keyword_only2( d=7, c=5, a=2, b=3)

2 3 5 7

[190]: # d uses the default value from the function header d=4, d is optional in the function␣
→˓call
keyword_only2(6, c=5, b=3)

6 3 5 4

[191]: # Keyword only arguments that don't have a default value are required, not optional
keyword_only2(6)
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---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\2458061151.py in <module>

1 # Keyword only arguments that don't have a default value are required, not␣
→˓optional
----> 2 keyword_only2(6)

TypeError: keyword_only2() missing 2 required keyword-only arguments: 'b' and 'c'

Note also that keyword-only arguments cannot be specified after **kwargs.

[192]: def keyword_only3(a, **b, c):
print(a, b, c)

File "C:\Users\Alex\AppData\Local\Temp\ipykernel_8724\3712509756.py", line 1
def keyword_only3(a, **b, c):

^
SyntaxError: invalid syntax

Also, ** cannot appear by itself in the function header, unlike * that can appear by itself.

[193]: def keyword_only4(a, **, b, c):
print(a, b, c)

File "C:\Users\Alex\AppData\Local\Temp\ipykernel_8724\55769500.py", line 1
def keyword_only4(a, **, b, c):

^
SyntaxError: invalid syntax

Keyword-only arguments must appear before **kwargs in the function header.

[194]: def keyword_only5(a, *b, c, **d):
print(a, b, c, d)

[195]: keyword_only5(1, 2, 3, c=4, d=5)

1 (2, 3) 4 {'d': 5}

Similarly, when keyword-only arguments are passed in a function call, they must appear before **kwargs form.

[196]: keyword_only5(1, *(2, 3, 4), c=5, **{'d':6, 'e':7})

1 (2, 3, 4) 5 {'d': 6, 'e': 7}

Keyword-only arguments are helpful when we want to make sure that positional arguments are not incorrectly matched
in a function call. For instance, if we write a function to move a file from one folder to another folder, and we have an
argument overwrite (=True or False), we may want to specify that overwrite is always called by keyword, to make
sure that overwrite is not accidentally matched to another argument, causing to inadvertently delete another file.
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Positional-only Arguments

As of Python 3.8, function parameters can also be declared as positional-only, by following them in the list of arguments
with a forward slash /. In the next example, the arguments x and y must be passed as positional arguments and can not
be passed as keyword arguments.

[197]: def func5(x, y, /, z):
print(x, y, z)

func5(1, 2, 3)

1 2 3

If x and y are passed as keyword arguments, that will raise an error.

[198]: func5(x=1, y=2, z=3)

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_8724\2185976999.py in <module>
----> 1 func5(x=1, y=2, z=3)

TypeError: func5() got some positional-only arguments passed as keyword arguments: 'x, y'

More on Argument Passing in Python

In Python, arguments are passed by automatically assigning objects to local variable names. All arguments are passed
by references to objects stored in the memory of the local computer. This means that the objects are assigned to
arguments, and these objects are only referenced, i.e., copies of the objects are not created. This way, it is possible to
pass objects to functions in our programs without making multiple copies of the objects along the way.

When mutable objects (like lists or dictionaries) are passed to arguments in a function, the mutable objects can be
changed in-place, and the results may affect the called objects. On the other hand, immutable objects (like integers,
floats, tuples) cannot be changed when passed as arguments.

The following example demonstrates this.

[199]: def func1(a, b):
a = 2
b[0] = 'spam'

[200]: # X is a global name, it is assigned to integer, which is an immutable object
X = 1
# L is a global name, it is assigned to a list, which is a mutable object
L = [1, 2]

# Pass both immutable and mutable objects as arguments to the function
func1(X, L)

# Check how they are affected: X is unchanged, L is different!
X, L

[200]: (1, ['spam', 2])

In the example, argument a is a local variable name in the function’s scope, and when X is called, since X is an integer
(immutable object), a will just reference to its global name, which points to the object that has a value 1.
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Argument b is also a local variable name, but it is passed to the list L, which is a mutable object. This results in an
in-place object change, and the assignment to b[0] in the function impacts the value of L.

If we don’t want in-place changes within functions to impact mutable objects we pass to them, we can simply pass
copies of mutable objects as function arguments.

[201]: L = [1, 2]

# Instead of L we pass a copy of L
func1(X, L.copy())
# L didn't change this time
L

[201]: [1, 2]
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7.5.1 5.1 Overview

Object-oriented programming (OOP) is a programming approach to structuring programs based on the concept of
objects, which can contain data and behavior in the form of attributes and methods, respectively. For instance, an
object could represent a person with attributes like name, age, and address, and methods such as walking, talking, and
running. Or, it could represent an email with attributes like a recipient list, subject, and body, and methods like adding
attachments and sending.

In OOP, computer programs are designed by defining objects that interact with one another. In Python, the main tool
for achieving OOP are Python classes. Classes are created using the class statement. Then, from classes we can
construct object instances, which are specific objects created from a particular class.

Besides OOP, other programming paradigms on which other languages are based include procedural, functional, and
logic programming paradigms.

7.5.2 5.2 Defining a Class

The class Statement

Let’s define a class Dog by using the class statement and the name of the class. It is a convention in Python to begin
class names with an uppercase letter, and module and function names with a lowercase letter. This is not a requirement,
but if you follow this naming convention it will be appreciated by others who are to use your codes.

[1]: # Create a new class called Dog
class Dog:

"""Class object for a dog."""
pass

[2]: # Create an instance object of the class Dog
sam = Dog()

print(type(sam))

<class '__main__.Dog'>

In the above code, inside the class definition we currently have just the pass command, which is only a placeholder for
the code that we intend to write afterwards and means do nothing for now.

Classes can be thought of as blueprints for creating objects. When we defined the class Dog using the line class Dog:,
we didn’t actually create an object.

To create an object of the class Dog, we called the class by its name and a pair of parentheses (and optionally we can
pass arguments in the parentheses as we did with functions in Python). That is, we instantiated the Dog class, and
sam is now the reference to our new instance of the Dog class. Or, the action of creating instances (objects) from an
existing class is known as instantiation.

The name sam is referred to as a class instance, or instance object, or just an instance. We will use these terms
interchangeably.

We can create many instances of the class by calling the class with Dog(). For example, below we created two Dog
instances sam and frank. Note that although they are both instances of the class Dog, they represent two distinct
objects.

[3]: sam = Dog()
frank = Dog()

(continues on next page)
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(continued from previous page)

sam == frank

[3]: False

Note below that the two instances sam and frank have different memory addresses, shown after at in the cell outputs.
The addresses for these two instances in your computer’s memory will be different than those shown here.

[4]: sam

[4]: <__main__.Dog at 0x2c132164160>

[5]: frank

[5]: <__main__.Dog at 0x2c132164550>

In summary:

Classes serve as instance factories. They provide attributes and methods that are inherited by all the
instances created from them.

Instances represent the concrete objects of a class. Their attributes consist of information that varies per
specific object. Their methods describe behavior that is different for specific objects.

Class objects can have attributes and methods.

An attribute is an individual characteristic of an instance of the class. Or, attributes are variables that
hold class data.

A method is an operation that is performed with the instance of the class. Or, methods are functions that
provide behavior to class objects.

5.2.1 Attributes

As we explained, attributes allow us to attach data to class objects. Python classes can have two types of attributes:
instance attributes and class attributes.

Instance Attributes

In Python, instance attributes are defined by using the __init__() constructor method. The term init is abbreviated
from initialize, since it is used to initialize the attributes of class instances.

In the parentheses of the __init__() method first self is listed, and afterwards the attributes are listed.

The syntax for creating attributes is:

def __init__(self, attribute1, attribute2, ...):
self.attribute1 = attribute1
self.attribute2 = attribute2

For example:

[6]: class Dog:
def __init__(self, breed, name):

self.breed = breed
self.name = name
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[7]: # Create an instance from the 'Dog' class by passing breed and name, assign it to the␣
→˓name 'sam'
sam = Dog(breed='Labrador', name='Sam')
# Create another instance from the 'Dog' class by passing breed and name, assign it to␣
→˓the name 'frank'
frank = Dog(breed='Huskie', name='Frank')
# Create another instance from the 'Dog' class by passing breed and name, assign it to␣
→˓the name 'my_dog'
my_dog = Dog(breed='Terrier', name='Scooby')

The __init__() method is present in almost every class, and it is used to initialize newly created class instances
by passing attributes. In the above example, the attributes breed and name are the arguments to the special method
__init__(). Each attribute in a class definition begins with a reference to the class instance, which by convention is
named self, such as in self.breed = breed.

When we created the instances of the class Dog, __init__() initialized these objects by passing the assigned values
for breed and name to the instances sam, frank, and my_dog. In the __init__() method, the word self is the newly
created instance. Therefore, for the instance sam, the line self.breed = breed is equivalent to stating sam.breed =
'Labrador'. Similarly, self.name = name is equivalent to stating sam.name = 'Sam'. Similarly, for the instance
frank, self.breed = breed is equivalent to stating frank.breed = 'Huskie' and self refers to the instance
frank.

Notice again that sam, frank, and my_dog are three separate instances of the Dog class, and they have their own
attributes, i.e., different breed and name.

Accessing Instance Attributes

The syntax for accessing an attribute of a class instance uses the dot operator.

instance.attribute

We can therefore access the attributes breed and name as in the next examples.

[8]: # Access the 'breed' attribute of the class instance 'sam'
sam.breed

[8]: 'Labrador'

[9]: # Access the 'breed' attribute of the class instance 'frank'
frank.breed

[9]: 'Huskie'

[10]: # Access the 'name' attribute of the class instance 'my_dog'
my_dog.name

[10]: 'Scooby'

Note that we cannot access the instance attributes through the class, as in class.attribute, since they are specific
to concrete instances of the class. If we try to do that, we will get an Attribute Error.

[11]: Dog.name
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---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_32936\4053790346.py in <module>
----> 1 Dog.name

AttributeError: type object 'Dog' has no attribute 'name'

In general, it is possible to create new classes without the __init__() construction method. This is shown below,
where we used a def statement to introduce a method called enterinfo to the class Dog.

[12]: class Dog:
def enterinfo(self, breed):

self.breed = breed

[13]: sam = Dog()
sam.enterinfo(breed='Labrador')

[14]: sam.breed

[14]: 'Labrador'

However, in this case, we need to first create a new class instance sam as shown above, and afterward assign the breed
attribute using the enterinfo() method.

On the other hand, by using the __init__()method, we can initialize the instance attributes at the same time when the
new instance is created. Therefore, using __init__() is preferred and always recommended. Without __init__(),
an empty instance is created, and we need to initialize it afterwards.

In addition, we can dynamically attach new instance attributes to existing class objects that we have already created. In
the next cell, the new attribute age is attached to the instance sam. However, it is preferred to define instance attributes
inside the class definition, since it makes the code more organized and makes it easier for others to understand or debug
our code.

[15]: sam.age = 3
print(sam.age)

3

Modifying Instance Attributes

We can modify the attributes of an instance by using the dot . notation and an assignment statement, as in:

instance.attribute = new_value

[16]: frank.name

[16]: 'Frank'

[17]: # Modify attribute
frank.name = 'Franki'
frank.name

[17]: 'Franki'
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To delete any instance attribute, use the del keyword.

[18]: del frank.name

[19]: # Error, the name attribute does not exist for 'frank'
print(frank.name, frank.breed)

---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_32936\2831644747.py in <module>

1 # Error, the name attribute does not exist for 'frank'
----> 2 print(frank.name, frank.breed)

AttributeError: 'Dog' object has no attribute 'name'

The above code does not delete the attribute name for the other class instances.

[20]: # The name attribute still exist for 'my_dog'
my_dog.name

[20]: 'Scooby'

Class Attributes

Class attributes in Python are also referred to as class object attributes. The class attributes are the same for all
instances of the class.

For example, we could create the attribute species for the Dog class, as shown in the next cell. Regardless of their breed,
name, or other attributes, all dog instances will have the attribute species = 'mammal'. The instances of the class
Dog in the next cell also have the instance attributes breed and name which can be unique for each class instance.

We apply this logic in the following manner.

[21]: class Dog:

# Class attribute
species = 'mammal'

# Instance attributes
def __init__(self, breed, name):

self.breed = breed
self.name = name

[22]: # Create an instance from the 'Dog' class by passing breed and name
sam = Dog('Labrador','Sam')

Accessing class attributes is the same as accessing instance attributes.

[23]: # Access class attributes
sam.species

[23]: 'mammal'

[24]: # Access instance attributes
sam.name
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[24]: 'Sam'

Note that the class attribute species is defined directly in the body of the class definition, outside of any methods in
the class. Also by convention, the class attributes are placed before the __init__() method.

Also, we can access class attributes through the class via class.attribute, as in the next example.

[25]: Dog.species

[25]: 'mammal'

Modifying Class Attributes

We cannot modify class attributes via assignment to class instances. In the next example, we used an assignment
statement frank.species = 'bird' to modify the attribute species of the class instance frank to bird.

[26]: frank = Dog(breed='Huskie', name='Frank')

[27]: frank.species

[27]: 'mammal'

[28]: # Reassing the attribute 'species' to 'bird'
frank.species = 'bird'

This didn’t change the class attribute for the newly created class instance my_dog, as shown below. Instead, the reas-
signment frank.species = 'bird' created a new instance attribute species for the class instance frank that has
the same name as the class attribute species.

[29]: my_dog = Dog(breed='Terrier', name='Scooby')

[30]: # The class attribute of the new instance is still 'mammal'
my_dog.species

[30]: 'mammal'

We can change the class atribute via assignment when using the class name, as shown in the next example.

[31]: Dog.species = 'animal'

[33]: sam = Dog('Labrador','Sam')

[34]: sam.species

[34]: 'animal'

In summary:

• Class attributes are defined in the body of the class definition directly. Class attributes are common to the class.
Their data is the same for all instances of the class.

• Instance attributes are defined inside the __init__() method within the class definition. Instance attributes
belong to a concrete instance of the class. Their data is specific to that concrete instance of the class.
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The __dict__ Attribute

Both classes and instances in Python have a special attribute called __dict__. This attribute is a dictionary, with the
keys being the attribute names and the values are the attached attribute values. For a class instance __dict__ holds
the instance attributes, and for a class __dict__ holds class attributes and methods.

[35]: my_dog.__dict__

[35]: {'breed': 'Terrier', 'name': 'Scooby'}

[36]: frank.__dict__

[36]: {'breed': 'Huskie', 'name': 'Frank', 'species': 'bird'}

[37]: Dog.__dict__

[37]: mappingproxy({'__module__': '__main__',
'species': 'animal',
'__init__': <function __main__.Dog.__init__(self, breed, name)>,
'__dict__': <attribute '__dict__' of 'Dog' objects>,
'__weakref__': <attribute '__weakref__' of 'Dog' objects>,
'__doc__': None})

Python also allows to change the value of existing instance attributes through __dict__, or even to add new attributes
through __dict__.

5.2.2 Methods

Methods are functions defined inside the body of a class. By defining it inside the class, we establish a relationship
between the method and the class. Because methods are functions, they can take arguments and return values.

In a Python class, we can define three different types of methods:

• Instance methods, which take the current instance self as their first argument.

• Class methods, which take the current class cls as their first argument.

• Static methods, which take neither the class nor the instance.

This section describes instance methods, as the most common type of methods in classes. Class methods and static
methods are described in the Appendix section.

Instance Methods

Instance methods are functions defined inside the body of a class, designed to perform operations on the class objects.

Methods have access to all attributes for an instance of the class. They can access and modify the attributes through
the argument self.

We can basically think of methods as regular functions, with one major difference that the first argument of the method
is always the instance object referenced through self.

Technically, even the word self is a convention, and any other term can be used instead of self. However, if you use
another word, that would be very unusual for other coders using your code.

Let’s see an example of creating a class for a Circle shown below. The objects of this class have three methods:
getArea which calculates the area, getCircumference which calculates the circumference, and SetRadius which
allows to change the attribute radius.
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[38]: class Circle:
pi = 3.14

# Circle gets instantiated with a radius (default is 1)
def __init__(self, radius=1):

self.radius = radius

# Method for getting Area
def getArea(self):

return self.radius * self.radius * self.pi

# Method for getting Circumference
def getCircumference(self):

return self.radius * self.pi * 2

# Method for resetting Radius
def setRadius(self, new_radius):

self.radius = new_radius

Notice that within the methods getArea and getCircumference we used the notation self.radius to reference the
instance attribute radius which we defined with the __init__ method inside the body of the class.

Similarly, we defined the class attribute pi = 3.14 inside the body of the class, and since we can access it as an attribute
of new instances, we used the notation self.pi to reference it within the methods getArea and getCircumference.
As we explained in the previous section, we can also access class attributes through the class name, that is, we could
have used the notation Circle.pi within the methods getArea and getCircumference to get access to the class
attribute pi.

The two methods getArea and getCircumference don’t take any other arguments except self. The method
setRadius takes another argument new_radius, and it allows to change the value of the current attribute radius.

The methods are accessed by using the dot notation.

instance.method()

[39]: # Let's call it
c = Circle()

print('Radius is: ', c.radius)
print('Area is: ', c.getArea())
print('Circumference is: ', c.getCircumference())

Radius is: 1
Area is: 3.14
Circumference is: 6.28

Now let’s change the radius with the method setRadius and see how that affects the Circle object:

[40]: c.setRadius(3)

print('Radius is: ', c.radius)
print('Area is: ', c.getArea())
print('Circumference is: ', c.getCircumference())
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Radius is: 3
Area is: 28.26
Circumference is: 18.84

Notice again in the above cell that when we call getArea and getCircumference methods, we don’t need to provide
a value for the self argument. Python takes care of that step, and it automatically passes the class instance to self.

However, if we wish, we can manually provide the desired class instance when calling these methods. To do this though,
we need to call the method on the class, as shown next.

[41]: Circle.getCircumference(c)

[41]: 18.84

If we try to call the methods on the instance c, that will raise an exception.

[42]: c.getCircumference(c)

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_32936\521085191.py in <module>
----> 1 c.getCircumference(c)

TypeError: getCircumference() takes 1 positional argument but 2 were given

Shown next is one more example of a class Customer with attributes name and balance, and methods withdraw and
deposit.

[43]: class Customer():
"""A customer of ABC Bank with a checking account. Customers have the
following properties:

Attributes:
name: A string representing the customer's name.
balance: A float tracking the current balance of the customer's account.

"""

def __init__(self, name, balance=0.0):
"""Return a Customer object whose name is *name* and starting
balance is *balance*."""
self.name = name
self.balance = balance

def withdraw(self, amount):
"""Return the balance remaining after withdrawing *amount*
dollars."""
if amount > self.balance:

raise RuntimeError('Amount greater than available balance.')
self.balance -= amount
return self.balance

def deposit(self, amount):
"""Return the balance remaining after depositing *amount*
dollars."""

(continues on next page)
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self.balance += amount
return self.balance

[44]: # Create a new instance
bob = Customer('Bob Smith', 1000)

[45]: bob.withdraw(100)

[45]: 900

[46]: bob.deposit(400)

[46]: 1300

[47]: # Based on the exception in the 'withdraw' method
bob.withdraw(1600)

---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_32936\323204834.py in <module>

1 # Based on the exception in the 'withdraw' method
----> 2 bob.withdraw(1600)

~\AppData\Local\Temp\ipykernel_32936\2930014863.py in withdraw(self, amount)
18 dollars."""
19 if amount > self.balance:

---> 20 raise RuntimeError('Amount greater than available balance.')
21 self.balance -= amount
22 return self.balance

RuntimeError: Amount greater than available balance.

Polymorphism in Classes

We learned about polymorphism in functions, and we saw that when functions take in different arguments, the actions
depend on the type of objects. Similarly, in Python polymorphism exists with classes, where different classes can
share the same method name, and these methods can perform different actions based on the object they act upon.

Let’s see an example.

[48]: class Dog:
def __init__(self, name):

self.name = name

def speak(self):
return self.name+' says Woof!'

class Cat:
def __init__(self, name):

self.name = name

def speak(self):
(continues on next page)
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return self.name+' says Meow!'

niko = Dog('Niko')
felix = Cat('Felix')

print(niko.speak())
print(felix.speak())

Niko says Woof!
Felix says Meow!

Here we have a Dog class and a Cat class, and each has a speak() method. When called, each object’s speak()
method returns a result that is unique to the class of the instance. This demonstrated polymorphism, because we passed
in different object types to the speak() method, and we obtained object-specific results from the same method.

Naming Conventions in Classes

The recommended naming convention for Python classes is to use capitalized names, and for longer names each word
is capitalized and connected without underscores. For example, examples of classes in the machine learning library
Keras include Conv2DTranspose, CheckpointCallback, BatchNormalization, etc.

Another naming convention is to include a leading underscore in the names of attributes and methods (e.g., _radius,
_calculate_area() in the class Circle) to communicate them as non-public attributes and methods. All regular
names (such as radius and calculate_area()) are public attributes and methods.

Public members are intended to be part of the official interface or API of the classes, while non-public members are
not intended to be part of the API. This naming convention indicates that the non-public members should not be used
outside their defining class. However, the naming convention does not prevent direct access. Non-public members exist
only to support the internal implementation of a given class and may be removed at any time, so we should not rely on
them.

7.5.3 5.3 Inheritance

For our programs to be truly object-oriented, it is required that they use inheritance hierarchy. Inheritance is the
process of creating a new class by reusing the attributes and methods from an existing class. This way, we can edit only
what we need to modify in the new class, and this will override the behavior of the old class.

The newly formed inheriting class is known as a subclass or child class or derived class, and the class it inherits from
is known as a superclass or parent class or base class.

Important benefits of inheritance are code reuse and reduction of complexity of a program, because the child classes
override or extend the functionality of parent classes.

Let’s see an example by incorporating inheritance. In this example, we have four classes: Animal, Dog, Cat, and Fish.
The Animal is the parent class (superclass), and Dog, Cat, and Fish are the child classes (subclasses).

Note that when defining the child classes Dog, Cat, and Fish, the parent class Animal is listed in parentheses in the
class header, i.e., class Dog(Animal).

[49]: class Animal:
def __init__(self):

print("Animal created")

def whoAmI(self):
(continues on next page)
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print("Animal")

def eat(self):
print("Eating")

class Dog(Animal): # The class Dog inherits the functionalities of the class Animal
def __init__(self):

Animal.__init__(self) # This can also be replaced with: super().__init__()
print("Dog created")

def whoAmI(self):
print("Dog")

def bark(self):
print("Woof!")

class Cat(Animal): # The class Cat inherits the functionalities of the class Animal
def __init__(self):

# The line Animal.__init__(self) is missing in the Cat class
print("Cat created")

def whoAmI(self):
print("Cat")

class Fish(Animal): # The class Fish inherits the functionalities of the class Animal
# attributes are not specified

def whoAmI(self):
print("Fish")

Let’s create instances of the child classes.

[50]: d = Dog()

Animal created
Dog created

[51]: # Note the difference in the attributes in comparison to Dog
c = Cat()

Cat created

[52]: # Note the difference in the attributes in comparison to Cat
f = Fish()

Animal created

Parent classes typically provide generic and common functionality that we can reuse throughout multiple child classes.
In this sense, the Animal class provides properties that are common for most other animals.

Child classes inherit attributes and methods from the parent class. For instance, notice that if call the eat() method
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with the class instances of Dog and Fish, the word Eating is printed. Although the method eat() is not defined in
the classes Dog and Fish, the instances inherit the method from the parent class Animal.

[53]: d.eat()

Eating

[54]: f.eat()

Eating

The child classes not only inherit attributes and methods from the parent class, but they can also modify attributes
and methods existing in the parent class. This is shown by the method whoAmI(). When this method is called, Python
searches for the name first in the child class, and if it is not found, afterwards it searches in the parent class. In this
case, whoAmI() method is found in the child classes Dog, Cat, and Fish.

[55]: d.whoAmI()

Dog

[56]: c.whoAmI()

Cat

Finally, the child class Dog extends the functionality of the parent class by defining a new bark() method that does
not exist in the Animal class.

[57]: d.bark()

Woof!

Similar to inheritance in nature, only child classes inherit from the parent class, and the parent class does not inherit
attributes and methods from the child classes.

One more example follows, where Person is a parent class, and Manager is a child class of Person and inherits
attributes and methods.

[58]: class Person:
def __init__(self, name, job=None, pay=0):

self.name = name
self.job = job
self.pay = pay

def giveRaise(self, percent):
self.pay = int(self.pay * (1 + percent))

class Manager(Person):
def giveRaise(self, percent, bonus=.10):

self.pay = int(self.pay * (1 + percent + bonus))

[59]: # Create a new instance of Person
bob = Person('Bob Smith', pay=50000)
bob.giveRaise(percent=0.1) # 50000 * (1+ 0.1) = 50000 * 1.1 = 55000
bob.pay

[59]: 55000
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[60]: # Create a new instance of Manager
tom = Manager('Tom Jones', 'mgr', 50000)
print(tom.name, tom.job, tom.pay)

Tom Jones mgr 50000

[61]: # On a salary of 50,000, giveRaise for Person applied 10% raise, and giveRaise for␣
→˓Manager applied 10% bonus
tom.giveRaise(percent=0.1, bonus=0.1) # 50000 * (1+ 0.1 + 0.1) = 50000 * 1.2 = 60000
tom.pay

[61]: 60000

Another way to define the method giveRaise for the Manager child class is by using the syntax below superclass.
method(self, arguments), as in Person.giveRaise(self, percent + bonus) shown below. Note that this is
different from the syntax above self.method(arguments) as in self.pay = int(self.pay * (1 + percent
+ bonus)). However, this coding approach using self.method(arguments) does not rely on the superclass Person,
and if Person is changed, the code will not work as expected. Therefore, it is preferred to use the syntax superclass.
method(self, arguments).

[62]: class Manager(Person):
def giveRaise(self, percent, bonus=.10):

Person.giveRaise(self, percent + bonus)

[63]: tom = Manager('Tom Jones', 'mgr', 50000)
# On a salary of 50,000, giveRaise for Person applied 10% raise, and giveRaise for␣
→˓Manager applied 10% bonus
tom.giveRaise(percent=0.1, bonus=0.1) # Person.giveRaise(.10+0.10) = Person.
→˓giveRaise(0.20) # 50000 * 1.2 = 60000
tom.pay

[63]: 60000

The super() function

The super() function in Python returns a temporary object of the parent class that then allows to call methods from
the parent class in child classes. This allows to define new methods in the child class with minimal code changes.

For instance, in the example below, a parent class Rectangle is defined, and a child class Cube is created that inherits
from Rectangle. To calculate the volume of a Cube, the child class Cube inherited the method area() from the class
Rectangle via super().area(). Since the method volume() for a cube relies on calculating the area of a single
face, rather than reimplementing the area calculation, we use the function super() to extend the area calculation.
The function super() returns an object of the superclass, and allows to call the method volume() directly through
super().area().

[64]: class Rectangle:
def __init__(self, length, width):

self.length = length
self.width = width

def area(self):
return self.length * self.width

(continues on next page)
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def perimeter(self):
return 2 * self.length + 2 * self.width

class Cube(Rectangle):
def __init__(self, length, width, height):

self.length = length
self.width = width
self.height = height

def volume(self):
face_area = super().area()
return face_area * self.height

[65]: cube1 = Cube(4, 4, 2)
cube1.volume()

[65]: 32

One more example is provided next, with a parent class Person and child class Student. Note that
in the definition of the Student class, we called the __init__() function from the superclass to initial-
ize the attributes student_name, student_age, and student_residence. The call to the parent class
super().__init__(student_name, student_age, student_residence) is equivalent to calling the function
as Person.__init__(self, student_name, student_age, student_residence).

[66]: class Person:

def __init__(self, name, age, residence):
self.name = name
self.age = age
self.residence = residence

def show_name(self):
print(self.name)

def show_age(self):
print(self.age)

class Student(Person):

def __init__(self, student_name, student_age, student_residence, student_id):
super().__init__(student_name, student_age, student_residence)
self.studentId = student_id

def show_id(self):
print(self.studentId)

[67]: # Create an object of the child class
student1 = Student("Max", 22, "Moscow", "100022")
student1.show_name()

Max
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[68]: student1.show_id()

100022

Class Hierarchies

Using inheritance, we can build class hierarchies, also known as inheritance trees. A class hierarchy is a set of closely
related classes that are connected through inheritance and arranged in a tree-like structure. The class or classes at the
top of the hierarchy are the parent classes, while the classes below are derived classes or child classes.

Therefore, classes at the top of the hierarchy are generic classes with common functionality, while classes down the
hierarchy are more specialized and they inherit attributes and methods from their parent classes and also have their own
attributes and methods.

Let’s revisit again the example with the animals, where the following tree hierarchy will be created.

Figure source: Reference [3].

In this hierarchy, a parent class Animal is at the top. Below this class, we have subclasses like Mammal, Bird, and
Fish, which inherit the attributes and methods from the class Animal. At the bottom level, we can have classes like
Dog, Cat, Eagle, Penguin, Salmon, and Shark. E.g., Dog and Cat are both mammals and animals, and they inherit
from both of these superclasses and have their own attributes and methods.

[69]: class Animal:
def __init__(self, name, sex, habitat):

self.name = name
self.sex = sex
self.habitat = habitat

class Mammal(Animal):
unique_feature = "Mammary glands"

(continues on next page)
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class Bird(Animal):
unique_feature = "Feathers"

class Fish(Animal):
unique_feature = "Gills"

class Dog(Mammal):
def walk(self):

print("The dog is walking")

class Cat(Mammal):
def walk(self):

print("The cat is walking")

class Eagle(Bird):
def fly(self):

print("The eagle is flying")

class Penguin(Bird):
def swim(self):

print("The penguin is swimming")

class Salmon(Fish):
def swim(self):

print("The salmon is swimming")

class Shark(Fish):
def swim(self):

print("The shark is swimming")

[70]: d = Dog('Fido', 'M', 'Europe')

[71]: d.unique_feature

[71]: 'Mammary glands'

[72]: d.walk()

The dog is walking

7.5.4 5.4 Special Methods

Python has many other built-in methods which can be used with user-defined classes. These methods are also known as
special methods or magic methods. Similar to the __init__() method, all special methods have leading and trailing
double underscores (also called dunders).

For instance, the list of special methods for mathematical operators in Python involve the following.

a + b a.__add__(b)
a - b a.__sub__(b)
a * b a.__mul__(b)

(continues on next page)
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a / b a.__truediv__(b)
a // b a.__floordiv__(b)
a % b a.__mod__(b)
a << b a.__lshift__(b)
a >> b a.__rshift__(b)
a & b a.__and__(b)
a | b a.__or__(b)
a ^ b a.__xor__(b)
a ** b a.__pow__(b)
-a a.__neg__()
~a a.__invert__()
abs(a) a.__abs__()

Special methods for item access in sequences involve the following.

len(x) x.__len__()
x[a] x.__getitem__(a)
x[a] = v x.__setitem__(a,v)
del x[a] x.__delitem__(a)

Other type of special methods are used for access to object attributes. These include:

x.a x.__getattr__(a)
x.a = v x.__setattr__(a,v)
del x.a x.__delattr__(a)

And there are other types of special methods that are not listed above.

The use of special methods with user-defined classes is also called operator overloading in OOP, because these meth-
ods allow the new instances of our user-defined classes to exhibit the behaviors of the applied special methods. For
example, the operator + is implemented using the special method __add__() and it can perform addition of numbers,
concatenation of strings, etc. Operator overloading in Python is an example of polymorphism in Python. Note that the
term polymorphism is more general, and it describes actions performed upon different objects in a different way based
on the object, as we saw in the example from the previous section.

By implementing special methods into our user-defined classes, our classes can behave like built-in Python types.

Sequence Length with __len__()

We can implement the special method __len__() in our custom classes, which will allow us to use len() with the
instances of the class.

In the example below, we used the method __len__() in the class Employee, which returns the length of the attribute
self.pay.

[73]: class Employee:

def __init__(self, name, pay):
self.name = name
self.pay = pay

def __len__(self):
return len(self.pay)

136 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

[74]: bob = Employee(name='Bob Smith', pay=[50000, 55000, 53000, 60000])
print(bob.name, bob.pay)

Bob Smith [50000, 55000, 53000, 60000]

[75]: # Length of the bob.pay object
len(bob.pay)

[75]: 4

[76]: sue = Employee(name='Sue Jones', pay=[50000, 60000])
print(sue.name, sue.pay)

Sue Jones [50000, 60000]

[77]: len(sue.pay)

[77]: 2

See the Appendix for additional information about special methods for classes in Python.

7.5.5 5.5 When to Use Classes

Classes allow to leverage the power of Python while writing and organizing code. The benefits of using classes include:

• Reuse code and avoid repetition: we can define hierarchies of related classes, where the parent classes at the top
of a hierarchy provide common functionality that we can reuse later in the child classes down the hierarchy. This
allows to reuse code and reduces code duplication.

• Group related data and behaviors in a single entity: classes allow to group together related attributes and methods
in a single entity. This helps you better organize code using modular entities that can be reused across multiple
projects.

• Abstract away the implementation details of concepts and objects: classes allow to abstract away the imple-
mentation details of core concepts and objects. This helps provide the users with intuitive interfaces to process
complex data and behaviors.

In conclusion, Python classes can help write more organized, structured, maintainable, reusable, flexible, and user-
friendly code. appears, then go for it.

On the other hand, we should not use classes for everything in Python, since in some situations, they can overcomplicate
our solutions. Sometimes, writing a couple of functions are enough for solving a problem.

For example, we don’t need to use classes when we need to:

• Store only data: if there are no any methods inside the body of a class, we can use a dictionary or a named tuple
instead.

• Provide a single method: if a class has only one method, it would be better to use a function instead.

• When a fucntionality is available through built-in types or third-party classes: in that case, we should avoid
creating custom classes.

Also, there are other situations where we may not need to use classes, such as: in short and simple programs with
simple logic and data structures, in performance-critical programs where classes may slow down the performance,
when working in a team with a coding style that doesn’t rely on classes, etc.

Therefore, although classes provide many benefits, they don’t need to be used in every situations. Often, it is preferred
to begin with a simple but working code, and if there is a need to use classes, then go for it.
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7.5.6 Appendix: Additional OOP Info

The material in the Appendix is not required for quizzes and assignments.

Static Methods and Class Methods

In Section 5.2 above we studied instance methods, and we explained that they are applied to class instances through
the use of the keyword self.

In Python there are also static methods and class methods, that are defined inside a class and are not connected
to a particular instance of that class. These methods are created with the built-in decorators @staticmethod and
@classmethod.

The following code shows the difference in the syntax between instance method, @classmethod and @staticmethod.

[78]: class MyClass:
def instance_method(self, arg1, arg2, argN):

return 'instance method called', self

@classmethod
def classmethod(cls, arg1, arg2, argN):

return 'class method called', cls

@staticmethod
def staticmethod(arg1, arg2, argN):

return 'static method called'

Static Methods with @staticmethod

In Python and other programming languages, a static method is a method that does not require the creation of an
instance of a class. For Python, it means that the first argument of a static method is not self, but a regular positional
or keyword argument. Also, a static method can have no arguments at all, as in the following example.

In general, static methods are used to create helper functions that have a logical connection with the class but do not
have access to the attributes or methods of the class, or to the class instances.

[79]: class Cellphone:
def __init__(self, brand, number):

self.brand = brand
self.number = number

def get_number(self):
return self.number

@staticmethod
def get_emergency_number():

return "911"

[80]: Cellphone.get_emergency_number()

[80]: '911'

In this example, get_number() is a regular instance method of the class and requires the creation of an instance. The
method get_emergency_number() is a static method because it is decorated with the @staticmethod decorator.
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Also note that get_emergency_number() does not have self as the first argument, which means that it does not
require the creation of an instance of the Cellphone class.

Again, get_emergency_number() can just work as a standalone function, and it does not need to be defined as a
static method. However, it makes sense and is intuitive to put it in the Cellphone class because a cellphone should be
able to provide the emergency number.

Here is one more example of using a static method. The method is_full_name() just checks whether the entered
name for a student consists of more than one string.

[81]: class Student():

def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

@staticmethod
def is_full_name(name_str):

names = name_str.split(' ')
return len(names) > 1

[82]: scott = Student('Scott', 'Robinson')

[83]: # call the static method
Student.is_full_name('Scott Robinson')

[83]: True

[84]: # call the static method
Student.is_full_name('Scott')

[84]: False

And one more example of using @staticmethod follows. In order to convert the slash-dates to dash-dates, we used
the function toDashDate within the Dates class. It is a static method because it doesn’t need to access any properties
of the class Dates through self. It is also possible to create a function toDashDate() outside the class, but since it
works for dates, it is logical to keep it inside the Dates class.

[85]: class Dates:
def __init__(self, date):

self.date = date

def getDate(self):
return self.date

@staticmethod
def toDashDate(slash_date):

return slash_date.replace("/", "-")

[86]: date1 = Dates("15/12/2016")
date1.getDate()

[86]: '15/12/2016'
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[87]: date2 = Dates.toDashDate("15/12/2016")
date2

[87]: '15-12-2016'

In addition, static methods are used when we don’t want subclasses of a superclass to change or override a specific
implementation of a method. Because @staticmethod is ignorant of the class it is attached to, we can use it in
subclasses just as it was defined in the superclass.

In the following code, DatesWithSlashes is derived from the superclass Dates. We wouldn’t want the subclass
DatesWithSlashes to override the static method toDashDate() because it only has a single use, i.e., change slash-
dates to dash-dates. Therefore, we will use the static method to our advantage by overriding getDate() method in the
subclass so that it works well with the DatesWithSlashes class.

[88]: class Dates:
def __init__(self, date):

self.date = date

def getDate(self):
return self.date

@staticmethod
def toDashDate(date):

return date.replace("/", "-")

class DatesWithSlashes(Dates):
def getDate(self):

return Dates.toDashDate(self.date)

[89]: date1 = Dates("15/12/2016")
date1.getDate()

[89]: '15/12/2016'

[90]: date2 = DatesWithSlashes("15/12/2016")
date2.getDate()

[90]: '15-12-2016'

Class Methods with @classmethod

In Python, a class method is created with the @classmethod decorator and requires the class itself as the first argument,
which is written as cls. A class method returns an instance of the class with supplied arguments or adds other additional
functionality.

[91]: class Cellphone:
def __init__(self, brand, number):

self.brand = brand
self.number = number

def get_number(self):
return self.number

(continues on next page)
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(continued from previous page)

@staticmethod
def get_emergency_number():

return "911"

@classmethod
def iphone(cls, number):

print("An iPhone is created.")
return cls("Apple", number)

[92]: # create an iPhone instance using the class method
iphone = Cellphone.iphone("1112223333")

An iPhone is created.

[93]: # call the instance method
iphone.get_number()

[93]: '1112223333'

[94]: # call the static method
iphone.get_emergency_number()

[94]: '911'

[95]: samsung1 = Cellphone('Samsung', '123456789')

[96]: samsung1.get_number()

[96]: '123456789'

[97]: # the 'iphone' method cannot modify the instance 'samsung1'
samsung1.iphone('222222222')

An iPhone is created.

[97]: <__main__.Cellphone at 0x2c1326f49d0>

[98]: # the brand atribute of the instance was not modified by the 'iphone' method
# class method cannot modify specific instances
samsung1.brand

[98]: 'Samsung'

[99]: # the number atribute of the instance was not modified by the 'iphone' method
samsung1.number

[99]: '123456789'

In this example, iphone() is a class method since it is decorated with the @classmethod decorator and has cls as
the first argument. It returns an instance of the Cellphone class with the brand preset to 'Apple'.

Class methods are often used as alternative constructors beside the __init__() constructor method, or as factory
methods in order to create instances based on different use cases.

This is shown in the following example. Here, the __init__() constructor method takes two parameters name and age.
The class method fromBirthYear() takes class, name, and birthYear, and calculates the current age by subtracting it
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from the current year. That is, it allows to create instances based on the year of birth, instead of based on the age. The
reason for it is because we don’t want the list of arguments in the __init__() method to be lengthy and confusing.
Instead, we can use class methods to return a new instance based on different arguments.

Note again that the fromBirthYear() method takes Person class as the first parameter cls, and not an instance of
the class Person via self. Also, this method returns cls(name, date.today().year - birthYear), which is
equivalent to Person(name, date.today().year - birthYear).

[100]: from datetime import date

# random Person
class Person:

def __init__(self, name, age):
self.name = name
self.age = age

@classmethod
def fromBirthYear(cls, name, birthYear):

return cls(name, date.today().year - birthYear)

def display(self):
print(self.name + "'s age is: " + str(self.age))

[101]: person1 = Person('Adam', 19)
person1.display()

Adam's age is: 19

[102]: person2 = Person.fromBirthYear('John', 1985)
person2.display()

John's age is: 38

[103]: # class method cannot modify specific instances
person1.fromBirthYear('John', 1985)

[103]: <__main__.Person at 0x2c1326e97c0>

[104]: person1.name

[104]: 'Adam'

The main difference between a static method and a class method is:

• Static methods can neither modify the class nor class instances, and they just handle the attributes. They are
used to create helper or utility functions. Static methods have a logical connection with the class but do not have
access to class or instance states.

• Class methods can modify the class since its parameter is always the class itself, but they cannot modify class
instances. They can be used as factory methods to create new instances based on alternative information about a
class.
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Abstract Classes

An abstract class is one that never expects to be instantiated. In the next example, we will never instantiate an Animal
object, but only Dog and Cat objects will be derived from the class Animal.

Abstract classes allow to create a set of methods that must be created within any subclasses built from the abstract class.
An abstract method is a method that has a declaration but does not have an implementation. An example is the speak
method in the Animal class. Abstract classes are helpful when designing large functional units and we want to provide
a common interface for different implementations of a method.

An abstract class is one that is not expected to be instantiated, and contains one or more abstract methods.

Python supports abstract classes through the abcmodule, which provides the infrastructure for defining abstract classes.
Defining an abstract method is achieved by using the @abstractmethod decorator.

[105]: from abc import ABC, abstractmethod

# Abstract class
class Animal(ABC):

def __init__(self, name):
self.name = name

@abstractmethod
def speak(self): # Abstract method, it is not implemented

pass

# Subclass of Animal
class Dog(Animal):

def speak(self):
return self.name+' says Woof!'

# Subclass of Animal
class Cat(Animal):

def speak(self):
return self.name+' says Meow!'

# Create instances
fido = Dog('Fido')
isis = Cat('Isis')

# The method 'speak' has different implementations for the subclasses Dog and Cat
print(fido.speak())
print(isis.speak())

Fido says Woof!
Isis says Meow!

Note that the abstract class Animal cannot be instantiated, because it has only an abstract version of the speak method.

[106]: a = Animal('fido')

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)

(continues on next page)
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~\AppData\Local\Temp\ipykernel_32936\3885960488.py in <module>
----> 1 a = Animal('fido')

TypeError: Can't instantiate abstract class Animal with abstract method speak

By defining an abstract class, one can define common methods for a set of subclasses. This capability is especially
useful in situations where a third-party is going to provide implementations, or it can also help when working in a large
team or with a large code-base where maintaining all classes is difficult or not possible.

One more example is shown, where the abstract class Employee has an abstract method get_salary. The subclasses
FulltimeEmployee and HourlyEmployee are derived, and they define different get_salarymethods for each class.
The class Payroll has methods to add an employee and print the name and salary information.

[107]: from abc import ABC, abstractmethod

# Abstract class Employee
class Employee(ABC):

def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

@abstractmethod
def get_salary(self):

pass

# Subclass
class FulltimeEmployee(Employee):

def __init__(self, first_name, last_name, salary):
super().__init__(first_name, last_name)
self.salary = salary

def get_salary(self):
return self.salary

# Subclass
class HourlyEmployee(Employee):

def __init__(self, first_name, last_name, worked_hours, rate):
super().__init__(first_name, last_name)
self.worked_hours = worked_hours
self.rate = rate

def get_salary(self):
return self.worked_hours * self.rate

# A separate class Payroll
class Payroll:

def __init__(self):
self.employee_list = []

def add(self, employee):
self.employee_list.append(employee)

def display(self):
(continues on next page)
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for e in self.employee_list:
print(f'{e.first_name} {e.last_name} \t ${e.get_salary()}')

[108]: payroll = Payroll()

payroll.add(FulltimeEmployee('John', 'Doe', 6000))
payroll.add(FulltimeEmployee('Jane', 'Doe', 6500))
payroll.add(HourlyEmployee('Jenifer', 'Smith', 200, 50))
payroll.add(HourlyEmployee('David', 'Wilson', 150, 100))
payroll.add(HourlyEmployee('Kevin', 'Miller', 100, 150))

[109]: payroll.display()

John Doe $6000
Jane Doe $6500
Jenifer Smith $10000
David Wilson $15000
Kevin Miller $15000

Additional Special Methods

Indexing and Slicing with __getitem__() and __setitem__()

Indexing in Python is implemented with the built-in method __getitem__().

[110]: list1 = [1, 2, 3]
list1[0]

[110]: 1

[111]: list1.__getitem__(0)

[111]: 1

We can implement the special method __getitem__() in our classes to provide built-in indexing behaviors of Python
sequences to our class instances.

In the following code, the index argument is used to specify the elements in self.pay.

[112]: class Employee:

def __init__(self, name, pay):
self.name = name
self.pay = pay

def __getitem__(self, index):
return self.pay[index]

[113]: bob = Employee(name='Bob Smith', pay=[50000, 55000, 53000, 60000])
print(bob.name, bob.pay)

Bob Smith [50000, 55000, 53000, 60000]

7.5. Lecture 5 - Object-Oriented Programming 145



Fall 2023 Python Programming for Data Science, Release 0.1

[114]: bob[1]

[114]: 55000

[115]: bob[-1]

[115]: 60000

Interestingly, in addition to indexing, __getitem__() is also used for slicing expressions, as shown below. The Python
slice object is used for this purpose to define the starting and stopping index (and optional index step) for extracting the
elements from a sequence.

[116]: list1 = [1, 2, 3, 4, 5]

[117]: list1[slice(2, 4)]

[117]: [3, 4]

[118]: list1[slice(1, -1)]

[118]: [2, 3, 4]

[119]: list1[slice(3, None)]

[119]: [4, 5]

This means that we can use the __getitem__() method within our defined class to perform slicing, if we wanted to,
and not only indexing.

[120]: print(bob.name, bob.pay)

Bob Smith [50000, 55000, 53000, 60000]

[121]: bob[0:2]

[121]: [50000, 55000]

[122]: bob[1:]

[122]: [55000, 53000, 60000]

On the other hand, if we want to change the value of bob.pay outside of the class, we won’t be able to do that.

[123]: bob[0] = 25000

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_32936\64624401.py in <module>
----> 1 bob[0] = 25000

TypeError: 'Employee' object does not support item assignment

The special method __setitem__() allows to assign values to sequence objects. In the example below, new value can
be assigned to the elements of the instance bob with a user-entered index.
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[124]: class Employee:

def __init__(self, name, pay):
self.name = name
self.pay = pay

def __setitem__(self, index, value):
self.pay[index] = value

[125]: bob = Employee(name='Bob Smith', pay=[50000, 55000, 53000, 60000])
print(bob.name, bob.pay)

Bob Smith [50000, 55000, 53000, 60000]

[126]: bob[0] = 45000

[127]: print(bob.name, bob.pay)

Bob Smith [45000, 55000, 53000, 60000]

Printing using __str__() and __repr__()

We know that str() is used to convert an object to a str object. Internally, it is implemented by the __str__()
method. Moreover, Python uses __str__() when we call print() to display an object.

Let’s consider again the instance of the Employee class. If we call the instance bob which we created before or if we
try to print it, we can see a general Python output that tells us that it is an object created by the Employee class and
Python also provides its memory address.

[128]: bob

[128]: <__main__.Employee at 0x2c1326f8040>

[129]: print(bob)

<__main__.Employee object at 0x000002C1326F8040>

We can implement the __str__() method, so that, when the class instance self is printed, we can customize the
displayed output. The code below instructs the output to list the employee name and pay. Recall the string formatting
methods, which we covered earlier: %s with % (name) formatting, {} with .format(name) formatting, and f strings
f with {name} formatting.

[130]: class Employee:
def __init__(self, name, pay):

self.name = name
self.pay = pay

def __str__(self):
return 'Employee name %s and pay %s' % (self.name, self.pay)
# return 'Employee name {0} and pay {1}'.format(self.name, self.pay)
# return f'Employee name {self.name} and pay {self.pay}'
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[131]: bob = Employee(name='Bob Smith', pay=50000)
print(bob.name, bob.pay)

Bob Smith 50000

[132]: print(bob)

Employee name Bob Smith and pay 50000

[133]: sue = Employee(name='Sue Jones', pay=60000)
print(sue)

Employee name Sue Jones and pay 60000

If we enter only the instance name without print, we will still obtain the general Python output.

[134]: sue

[134]: <__main__.Employee at 0x2c1326f8a00>

Besides the __str__() method, another similar method is __repr__() which stands for representation and it is also
used for overloading the print method in Python. It provides another way to customize the printed outputs, and
returns what is known as formal string representation. Similarly, the __str__() method is known as informal string
representation.

[135]: class Employee:
def __init__(self, name, pay):

self.name = name
self.pay = pay

def __repr__(self):
return '<The name and pay for the employee are {} and {} dollars>'.format(self.

→˓name, self.pay)

[136]: sue = Employee(name='Sue Jones', pay=60000)
print(sue)

<The name and pay for the employee are Sue Jones and 60000 dollars>

Note also in the cell below that the displayed output for sue is the same as for print(sue). I.e., Python uses
__repr__() to display the object in the interactive prompt.

[137]: sue

[137]: <The name and pay for the employee are Sue Jones and 60000 dollars>

The method __repr__() is more general than _str__() and it applies to nested appearances and a few other additional
cases. The __str__() and __repr__() methods are very useful, because when other people are using our codes, they
can get a good idea of what an object is by just printing it.

148 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

7.5.7 References

1. Mark Lutz, “Learning Python,” 5th edition, O-Reilly, 2013. ISBN: 978-1-449-35573-9.

2. Pierian Data Inc., “Complete Python 3 Bootcamp,” codes available at: link.

3. Leodanis Pozo Ramos, Python Classes: The Power of Object-Oriented Programming, available at: link

4. Python - Made with ML, Goku Mohandas, codes available at: link.

5. Jeff Knupp, Improve Your Python: Python Classes and Object Oriented Programming, available at link.

6. Python Tutorial, Python Abstract Classes, available at link.

7. Kyle Stratis, Supercharge Your Classes with Python super(), available at link.

BACK TO TOP

7.6 Lecture 6 - Exception Coding, Modules and Packages

• 6.1 Exception Coding

• 6.2 Module Coding Basics

• 6.3 Module Packages

• Appendix: Modules and Packages Extras

• References

7.6.1 6.1 Exception Coding

Most Python codes contain errors when initially developed. For example, in the second cell below, in the print
function we used the name Var2 instead of the name of the defined variable var2. When we tried to run the cell, we
got a NameError, with the further description that name 'Var2' is not defined. This message is specific enough
for us to realize that we used a name in the print function that is different than the name we defined.

[1]: var1 = 5
print(var1)

5

[2]: var2 = 6
print(Var2)

---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[2], line 2

1 var2 = 6
----> 2 print(Var2)

NameError: name 'Var2' is not defined

Errors detected during code execution are called exceptions. In this example, NameError is an exception. When an
exception occurs, the Python interpreter terminates the program, and an error is displayed.
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Errors in Python are displayed in a specific form that provides: the traceback, the type of the exception, and the error
message. Traceback is the sequence of function calls that led to the error. In the above example, the arrow indicates
that the exception occurred in line 2 of the cell. This example is extremely simple, and in actual programs the traceback
will list all modules and functions which led to the exception. Most often, you can just pay attention to the last level in
the traceback, which is the actual place where the error occurred.

The try/except/else Statement

To handle exceptions in our programs, we can use try and except. This is also known as catching the exception. In
the following cell, the code that can cause an exception to occur is indented under the try header, and the NameError
is listed after except. If the exception occurs, the block indented under except is executed. Notice that this time the
cell ran despite the error in our code, and we only printed a statement.

[3]: try:
var2 = 6
print(Var2)

except NameError:
print('Oops, something went wrong!')

Oops, something went wrong!

If the try part succeeds (i.e., there are no errors in the block of indented statements under try), then the except part
is not executed.

[4]: try:
var2 = 6
print(var2)

except NameError:
print('Oops, something went wrong!')

6

Similarly, if we try adding an integer number and a string, this will result in a TypeError.

[5]: 123 + 'abc'

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[5], line 1
----> 1 123 + 'abc'

TypeError: unsupported operand type(s) for +: 'int' and 'str'

We can again use try and except to catch this exception, only this time we use TypeError instead of NameError
after the except keyword.

[6]: try:
123 + 'abc'

except TypeError:
print('Oops, something went wrong!')

Oops, something went wrong!

What if we used the NameError in the except statement instead of TypeError? The result is shown below. The
exception was not caught this time, because when Python executes the try block, it tries to match the exception type

150 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

with those listed in the except clause. This means that we always need to use the correct exception type in order to be
caught.

[7]: try:
123 + 'abc'

except NameError:
print('Oops, something went wrong!')

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[7], line 2

1 try:
----> 2 123 + 'abc'

3 except NameError:
4 print('Oops, something went wrong!')

TypeError: unsupported operand type(s) for +: 'int' and 'str'

But then, what if we are not sure about the type of exception that we expect to occur in our code? One solution is to
except for both NameError and TypeError. This way, we can catch either a NameError or a TypeError exception.

[8]: try:
123 + 'abc'

except NameError:
print('Oops, wrong name error!')

except TypeError:
print('Oops, wrong type error!')

Oops, wrong type error!

[9]: try:
var2 = 6
print(Var2)

except NameError:
print('Oops, wrong name error!')

except TypeError:
print('Oops, wrong type error!')

Oops, wrong name error!

Python allows to insert multiple except statements under a single try statement for catching different exception types.

It is also possible to catch any of multiple exceptions by providing a tuple of exception types after the except keyword,
as shown in the following example.

[10]: try:
123 + 'abc'

except (NameError, TypeError):
print('Oops, wrong name or wrong type error!')

Oops, wrong name or wrong type error!

When there are multiple except statements, the try block is executed line by line until the first matching exception
is caught. In this example, that is the NameError exception, and the print line under except NameError is executed.
The error in the line 123 + 'abc' is not caught because the execution of the try block is interrupted after the first
exception is detected.
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[11]: try:
var2 = 6
print(Var2)
123 + 'abc'

except TypeError:
print('Oops, wrong type error!')

except SyntaxError:
print('Oops, wrong syntax error!')

except NameError:
print('Oops, wrong name error!')

except (IndexError, IndentationError):
print('Oops, wrong index or indentation error!')

Oops, wrong name error!

Another alternative is to write only except without specifying any exception type. An empty except clause will catch
all exception types, and with that, we don’t need to list the expected error types in the code.

[12]: try:
var2 = 6
print(Var2)

except:
print('Oops, something went wrong!')

Oops, something went wrong!

Despite this convenience, it is not generally recommended to use the empty except statement very often. One reason
is that in the previous example we will only know that something was wrong with our code, but we won’t know what
caused the error. This makes fixing the program difficult. In addition, the empty except statement can also catch some
system errors that are not related to our code (such as system exit, Ctrl+C interrupt). And even worse, it may also catch
genuine programming mistakes in our code for which we probably want to see an error message.

Therefore, it is better to be specific about what types of exceptions we want to catch and where, instead of catching
everything we can in the whole program.

Similarly, writing Exception after the except statement will catch all exceptions, and acts the same as an empty
except clause. Differently from an empty except clause, the Exception statement does not catch system-related
exceptions, and it is therefore somewhat preferred, but it should still be used with caution.

[13]: try:
var2 = 6
print(Var2)

except Exception:
print('Oops, something went wrong!')

Oops, something went wrong!

It is also possible to catch an exception and store it in a variable. In the following cell, we are catching an exception
and storing it in the variable my_error.

[14]: try:
123 + 'abc'

except TypeError as var3:
my_error = var3
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[15]: my_error

[15]: TypeError("unsupported operand type(s) for +: 'int' and 'str'")

The syntax of the try/except statement can also include an optional else statement. The block of statements indented
under else is executed if there is no exception caught in the try block.

In this example, there is an exception in the print(Var2) line, and because of that, the statement under except is
executed.

[16]: try:
var2 = 6
print(Var2)
print('This message is not printed')

except NameError:
print('Oops, something went wrong!')

else:
print('The code is executed successfully, no exception occurred!')

Oops, something went wrong!

On the contrary, the following code does not raise an exception, and therefore, the statements under try are executed,
and also, the statement under else is executed.

[17]: try:
var2 = 6
print(var2)
print('This message is printed')

except NameError:
print('Oops, something went wrong!')

else:
print('The code is executed successfully, no exception occurred!')

6
This message is printed
The code is executed successfully, no exception occurred!

The general syntax of the try/except/else statement is as shown below. It is a compound, multipart statement, that
starts with a try header. It is followed by one or more except blocks, which identify exceptions to be caught and
blocks to process them. The else statement is optional, and it is listed after the except blocks; the else block runs
if no exceptions are encountered. The words try, except, and else should be indented to the same level (vertically
aligned).

try:
Place your operations here.
...
...

except ExceptionI:
If there is ExceptionI, then execute this block.

except ExceptionII:
If there is ExceptionII, then execute this block.

except (ExceptionIII, ExceptionIV):
If there is ExceptionIII or ExceptionIV, then execute this block.

except ExceptionV as Var1:
If there is ExceptionV, store it in the variable Var1, and then execute this block.

(continues on next page)
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except:
If there are any other exceptions, then execute this block.
...
...

else:
If there is no exception, then execute this block.

The finally Statement

The finally statement is another statement that can be combined with try. The general syntax is shown below. The
goal is to always execute the block of code indented under finally regardless of whether there was an exception in
the try block or not.

try:
Place your operations here
...
...
Due to exceptions, these lines of code may be skipped.

finally:
This code block is always executed, regardless of whether exceptions occurred.

The try/finally form is useful when we want to be completely sure that an action will happen after some code runs,
without considering the exception behavior of the program. In practice, this allows to specify cleanup actions that must
always occur, such as file closes or server disconnects.

The next example opens a file named testfile for writing, then writes some text, and closes the file. The code under
finally is executed.

[18]: try:
f = open('testfile', 'w')
f.write('First sentence, second sentence, end')
f.close()

finally:
print('The finally code block is always executed')

The finally code block is always executed

Then, this cell reads the file.

[19]: try:
f = open('testfile', 'r')
print(f.read())
f.close()

finally:
print('The finally code block is always executed')

First sentence, second sentence, end
The finally code block is always executed

For practice, let’s make an intentional mistake and try to open a file for reading that does not exist. As expected, we
got a FileNotFoundError, however the code under finally was still executed.
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[20]: try:
f = open('wrongfile', 'r')
print(f.read())
f.close()

finally:
print('The finally code block is always executed')

The finally code block is always executed

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
Cell In[20], line 2

1 try:
----> 2 f = open('wrongfile', 'r')

3 print(f.read())
4 f.close()

File ~\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py:284, in _modified_
→˓open(file, *args, **kwargs)

277 if file in {0, 1, 2}:
278 raise ValueError(
279 f"IPython won't let you open fd={file} by default "
280 "as it is likely to crash IPython. If you know what you are doing, "
281 "you can use builtins' open."
282 )

--> 284 return io_open(file, *args, **kwargs)

FileNotFoundError: [Errno 2] No such file or directory: 'wrongfile'

The finally clause can also be combined with except and else. The logic remains the same, that is, the block under
finally will always be executed. In this example the exception is caught, and the print statement under except and
finally are displayed.

[21]: try:
f = open('wrongfile', 'r')
print(f.read())
f.close()

except FileNotFoundError:
print('Oops, there is no such file')

finally:
print('The finally code block is always executed')

Oops, there is no such file
The finally code block is always executed
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Error Types

Besides the above types NameError and TypeError, let’s briefly look at several other common error types in Python.

SyntaxError occurs when there is a problem with the structure of the code in the program (e.g., EOL below stands
for End-Of-Line error, meaning that we forgot the single quote at the end of the string in this example). IndexError
points to wrong indexing of sequences. IndentationError, FileEror, ZeroDivisionError are self-explanatory.

[22]: print('Hello world)

Cell In[22], line 1
print('Hello world)

^
SyntaxError: unterminated string literal (detected at line 1)

[23]: list1 = [1, 2, 3]
list1[10]

---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
Cell In[23], line 2

1 list1 = [1, 2, 3]
----> 2 list1[10]

IndexError: list index out of range

[24]: def func1():
msg = 'Hello world'
print(msg)
return msg

Cell In[24], line 4
return msg
^

IndentationError: unexpected indent

[25]: myfile = open('newfile.txt', 'r')

---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
Cell In[25], line 1
----> 1 myfile = open('newfile.txt', 'r')

File ~\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py:284, in _modified_
→˓open(file, *args, **kwargs)

277 if file in {0, 1, 2}:
278 raise ValueError(
279 f"IPython won't let you open fd={file} by default "
280 "as it is likely to crash IPython. If you know what you are doing, "
281 "you can use builtins' open."
282 )

--> 284 return io_open(file, *args, **kwargs)
(continues on next page)
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FileNotFoundError: [Errno 2] No such file or directory: 'newfile.txt'

[26]: 10/0

---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
Cell In[26], line 1
----> 1 10/0

ZeroDivisionError: division by zero

[27]: # The zero division error is not detected because the indentation error was first␣
→˓detected and the line didn't run
x = 0
print(10/x)

Cell In[27], line 3
print(10/x)
^

IndentationError: unexpected indent

All exceptions in Python are shown below. Detailed explanations about each exception can be found here.

Note that the exceptions have a hierarchy, where for instance, catching an ArithmeticError exception will catch
everything that is under it in the tree, i.e., FloatingPointError, OverflowError, and ZeroDivisionError. There
are also a few exceptions that are not in this tree, like SystemExit and KeyboardInterrupt, but most of the time we
shouldn’t catch these exceptions.

Exception
ArithmeticError

FloatingPointError
OverflowError
ZeroDivisionError

AssertionError
AttributeError
BufferError
EOFError
ImportError
LookupError

IndexError
KeyError

MemoryError
NameError

UnboundLocalError
OSError

BlockingIOError
ChildProcessError
ConnectionError

BrokenPipeError
ConnectionAbortedError
ConnectionRefusedError

(continues on next page)
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ConnectionResetError
FileExistsError
FileNotFoundError
InterruptedError
IsADirectoryError
NotADirectoryError
PermissionError
ProcessLookupError
TimeoutError

ReferenceError
RuntimeError

NotImplementedError
StopIteration
SyntaxError

IndentationError
TabError

SystemError
TypeError
ValueError

UnicodeError
UnicodeDecodeError
UnicodeEncodeError
UnicodeTranslateError

Warning
BytesWarning
DeprecationWarning
FutureWarning
ImportWarning
PendingDeprecationWarning
ResourceWarning
RuntimeWarning
SyntaxWarning
UnicodeWarning
UserWarning

The raise Statement

In Python, we can also trigger exceptions and create error messages manually. This is known as raising an exception,
and it is coded with the raise keyword followed by the exception and an optional error message.

The general syntax is as follows:

if test_condition:
raise Exception(Message)

In the following example, we raise an exception and stop the program if x is less than 0. In the parentheses, we specified
the text that is to be displayed in the error message.

[28]: x = -1

if x < 0:
raise Exception('Sorry, no numbers below zero')
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---------------------------------------------------------------------------
Exception Traceback (most recent call last)
Cell In[28], line 4

1 x = -1
3 if x < 0:

----> 4 raise Exception('Sorry, no numbers below zero')

Exception: Sorry, no numbers below zero

We can also define the type of exception to raise after the raise keyword, such as TypeError in the next example.

[29]: y = 'hello'

type(y)

[29]: str

[30]: if type(y) is not int:
raise TypeError('Only integers are allowed')

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[30], line 2

1 if type(y) is not int:
----> 2 raise TypeError('Only integers are allowed')

TypeError: Only integers are allowed

When an exception is not raised, the indented block under raise is not executed.

[31]: y = 3

if type(y) is not int:
raise TypeError('Only integers are allowed')

We can also create custom exceptions ahead of time, and use them afterward in our code.

[32]: my_exception = TypeError('Sorry, the input should be an integer number')

z = 'one'

if type(z) is not int:
raise my_exception

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[32], line 6

3 z = 'one'
5 if type(z) is not int:

----> 6 raise my_exception

TypeError: Sorry, the input should be an integer number

In the above cell, my_exception is in fact an instance of the class TypeError. The error message that we typed above
is an attribute of the created instance of TypeError class.
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Additionally, the raise statement can be used alone, without an exception name. In that case, it simply reraises the
current exception. This form is typically used if we need to catch and handle an exception, but don’t want the exception
to be hidden and terminated in the code.

Consider the following example where except catches a ZeroDivisionError.

[33]: a = 10
b = 0
try:

print(a/b)
except ZeroDivisionError:

print('Oops, something went wrong')

Oops, something went wrong

Including the raise statement alone at the end of the code causes the exception to be reraised.

[34]: a = 10
b = 0
try:

print(a/b)
except ZeroDivisionError:

print('Oops, something went wrong')
raise

Oops, something went wrong

---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
Cell In[34], line 4

2 b = 0
3 try:

----> 4 print(a/b)
5 except ZeroDivisionError:
6 print('Oops, something went wrong')

ZeroDivisionError: division by zero

Here is another example, where the function quad is used for calculating the roots of a quadratic function with coef-
ficients a, b, and c. The user-defined QuadError raises an exception if the function is not quadratic, or if it does not
have real roots. The raise statement allows us to introduce application-specific errors in our codes.

[35]: import math
class QuadError(Exception): pass

def quad(a, b, c):
if a == 0:

raise QuadError('Not quadratic')

if b*b-4*a*c < 0:
raise QuadError('No real roots')

x1 = (-b+math.sqrt(b*b-4*a*c))/(2*a)
x2 = (-b-math.sqrt(b*b-4*a*c))/(2*a)

return (x1, x2)

160 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

[36]: x1, x2 = quad(3, 4, 4)
print("Roots are", x1, x2)

---------------------------------------------------------------------------
QuadError Traceback (most recent call last)
Cell In[36], line 1
----> 1 x1, x2 = quad(3, 4, 4)

2 print("Roots are", x1, x2)

Cell In[35], line 9, in quad(a, b, c)
6 raise QuadError('Not quadratic')
8 if b*b-4*a*c < 0:

----> 9 raise QuadError('No real roots')
11 x1 = (-b+math.sqrt(b*b-4*a*c))/(2*a)
12 x2 = (-b-math.sqrt(b*b-4*a*c))/(2*a)

QuadError: No real roots

[37]: x1, x2 = quad(1, -5, 6)
print("Roots are", x1, x2)

Roots are 3.0 2.0

[38]: x1, x2 = quad(0, -5, 6)
print("Roots are", x1, x2)

---------------------------------------------------------------------------
QuadError Traceback (most recent call last)
Cell In[38], line 1
----> 1 x1, x2 = quad(0, -5, 6)

2 print("Roots are", x1, x2)

Cell In[35], line 6, in quad(a, b, c)
4 def quad(a, b, c):
5 if a == 0:

----> 6 raise QuadError('Not quadratic')
8 if b*b-4*a*c < 0:
9 raise QuadError('No real roots')

QuadError: Not quadratic

The assert Statement

The assert statement is similar to the raise statement, and it can be thought of as a conditional raise statement.

The general syntax is:

assert test_condition, message(optional)

If the test condition evaluates to False, Python raises an AssertionError exception. If the message item is
provided, it is used as the error message in the displayed exception.

Conversely, if the test condition evaluates to True, the program will continue to the next line and will do nothing.

Like all exceptions, the AssertionError exception will terminate the program if it’s not caught with a try statement.
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In the following example, assert is used to ensure that the values for the Temperature are non-negative.

[39]: def KelvinToFahrenheit(Temperature):
assert Temperature >= 0, 'Colder than absolute zero!'
return ((Temperature-273)*1.8)+32

[40]: KelvinToFahrenheit(273)

[40]: 32.0

[41]: KelvinToFahrenheit(-10)

---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[41], line 1
----> 1 KelvinToFahrenheit(-10)

Cell In[39], line 2, in KelvinToFahrenheit(Temperature)
1 def KelvinToFahrenheit(Temperature):

----> 2 assert Temperature >= 0, 'Colder than absolute zero!'
3 return ((Temperature-273)*1.8)+32

AssertionError: Colder than absolute zero!

The equivalent assert code of the next cell using the raise statement is shown in the cell below.

[42]: x = -1

if x < 0:
raise Exception('Sorry, no numbers below zero')

---------------------------------------------------------------------------
Exception Traceback (most recent call last)
Cell In[42], line 4

1 x = -1
3 if x < 0:

----> 4 raise Exception('Sorry, no numbers below zero')

Exception: Sorry, no numbers below zero

[43]: x = -3

assert x >= 0, 'Sorry, no numbers below zero'

---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[43], line 3

1 x = -3
----> 3 assert x >= 0, 'Sorry, no numbers below zero'

AssertionError: Sorry, no numbers below zero

Here is one more simple example, where assert is used to ensure that no empty lists are passed to marks.
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[44]: def average(marks):
assert len(marks) != 0, 'List is empty'
return sum(marks)/len(marks)

[45]: marks1 = [55, 88, 78, 90, 79]
print('Average of marks is:', average(marks1))

Average of marks is: 78.0

[46]: marks2 = []
print('Average of marks is:', average(marks2))

---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[46], line 2

1 marks2 = []
----> 2 print('Average of marks is:', average(marks2))

Cell In[44], line 2, in average(marks)
1 def average(marks):

----> 2 assert len(marks) != 0, 'List is empty'
3 return sum(marks)/len(marks)

AssertionError: List is empty

Assert is typically used to verify program conditions during development (such as user-defined constraints), rather
than for catching genuine programming errors. Because Python catches programming errors itself, there is usually no
need to use assert to catch things like zero divides, out-of-bounds indexes, type mismatches, etc. In general, assertions
are useful for checking types, classes, or values of inputted variables, checking data structures such as duplicates in a
list or contradictory variables, and checking that outputs of functions are reasonable and as expected.

7.6.2 6.2 Module Coding Basics

Every Python file with code is referred to as a module. To create modules, we don’t need to write special syntax to tell
Python that we are making a module. We can simply use any text editor to type Python code into a text file, and save
it with a .py extension; any such file is automatically considered a Python module.

For example, I have created a simple file called my_module.py that is saved in the same directory as this Jupyter
notebook. The module does not do anything useful, it just defines a few names and prints a few statements. The code
inside my_module.py is shown below.
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Similar to the rules for naming other variables in Python, module names should follow the same rules and can contain
only letters, digits, and underscores. The module names cannot use Python-reserved keywords (e.g., such as a module
file named if.py.)

The import Statement

Python programs can use the modules file we have created by running an import or from statement. These statements
find, compile, and run a module file’s code. The main difference is that import fetches the module as a whole, while
from fetches specific names out of the module.

Let’s import my_module. Python executes the statements in the module file one after another, from the top of the file to
the bottom. For this module, the two print statements at the top level of the file are executed. The print statements inside
the two functions (main_report and sub_report) are not executed; they will be executed only when the functions
sub_report and main_report are called.

[47]: import my_module

I am inside my_module
The value of the variable X is: 3

Note that we don’t use the .py extension for the files with the import statement (i.e., import my_module.py will
raise an exception).

When the module is imported, a new module object is created. The module object is shown below, where Python
mapped the module name to an external filename by adding a directory path from the module search path to the file,
and a .py extension at the end.
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[48]: # The name my_module references to the loaded module object
my_module

[48]: <module 'my_module' from 'C:\\Users\\vakanski\\Documents\\Codes\\2023 Codes\\Python for␣
→˓Data Science Course\\Lectures_2023\\Theme_1-Python_Programming\\Lecture_6-Exceptions,_
→˓Modules\\Posted\\Lecture_6-Exceptions,_Modules\\my_module.py'>

Overall, the name my_module serves two different purposes: 1. It identifies the external file my_module.py that needs
to be loaded. 2. After the module is loaded, it becomes a reference to the module object.

During importing, all the names assigned at the top level of the module become attributes of the module object. In this
example, the variables X and Y and the functions sub-report and main_report become attributes of the module, and
we can call them by using the object.attribute syntax (a.k.a. qualification).

[49]: my_module.X

[49]: 3

[50]: my_module.Y

[50]: 5

[51]: my_module.sub_report()

The value of the variable Z is: 8
I am a function named sub_report

The from Statement

The from statement fetches specific names from the module, and allows to use the names directly (without the need
for module_object.attribute). This way, we can call the names in the module with less typing.

[52]: from my_module import X
X

[52]: 3

The from statement in effect copies the names out of the module into another scope; in this case, in the scope of this
Jupyter notebook, where the from statement appears.

When we run a from statement, internally Python first imports the entire module file as usual, then copies the specific
names out of the module file, and finally, it deletes the module file. This is similar to the following code:

import my_module
X = module.X
del my_module

With from, we can also import several names at the same time, separated by commas.

[53]: from my_module import X, Y, sub_report

[54]: sub_report()

The value of the variable Z is: 8
I am a function named sub_report

7.6. Lecture 6 - Exception Coding, Modules and Packages 165



Fall 2023 Python Programming for Data Science, Release 0.1

Another alternative is to use a * instead of specific names, which fetches all names assigned at the top level of the
referenced module. The following code fetches all four names in our module: X, Y, sub_report, and main_report.
Note again that the names Z and U are not defined at the top level in the module, but are enclosed in the functions, and
therefore, they can not be fetched with the import statement.

[55]: from my_module import *
main_report()

The value of the variable U is: 10
I am a function named main_report

[56]: U

---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[56], line 1
----> 1 U

NameError: name 'U' is not defined

One problem with using from module import * is that it can silently overwrite variables that have the same name
as existing variables in our scope.

In the following example, we have a variable X = 15, which was overwritten by the variable X with the same name in
my_module which has the value 3. The way this variable was overwritten may not be obvious (e.g., in large modules
with many variables we cannot remember and keep track of all variable names).

[57]: X = 15
from my_module import *
print(X)

3

On the other hand, if we use import, all names will be defined only within the scope of the module, and the names
will not collide with other names in our programs.

[58]: X = 15
import my_module
# The print statements this time were not displayed (the reason why it so is explained␣
→˓in the Appendix)

[59]: print(X)
print(my_module.X)

15
3

Therefore, programmers need to be careful when using the from statement (especially with *), and the import only
statement should be preferred. However, from also provides convenience of less typing, and it is still very commonly
used.
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When Using import is Required

When the same name of a variable or function is defined in two different modules, and we need to use both of the names
at the same time, then we must use the import statement.

For instance, let’s assume that another module file named module_no_2.py also contains a variable X and a function
main_report.

Using import we can load the two different variables X, because including the name of the enclosing module makes
the two names unique.

[60]: import my_module # when a module is imported the first time, it is executed
import module_no_2 # when a module is imported afterward, it is not executed

I am inside module_no_2
The value of the variable X is: 22

[61]: print(my_module.X)
print(module_no_2.X)

3
22

The same holds for the function main_report which appears in both modules.

[62]: my_module.main_report()
module_no_2.main_report()

The value of the variable U is: 10
I am a function named main_report
The value of the variable Y is: 15
I am a function named main_report

In this case, the from statement will fail because we can have only one assignment to the name X in the scope.

[63]: # Only one variable name X can exist at one time
from my_module import X

(continues on next page)
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(continued from previous page)

from module_no_2 import X
print(X)

22

Another way to resolve the name clashing problem is to use the as extension to from/import that allows to import a
name under another name that will be used as a synonym.

[64]: from my_module import X as X1
from module_no_2 import X as X2
print(X1)
print(X2)

3
22

Module Namespaces

Modules can be understood as places where collections of names are defined that we want to make visible to the rest of
our code. These collections of names live in the module’s namespace and represent the attributes of the module object.

To access the namespace of my_module object, we can use the built-in dir method. We can notice the names we
assigned to the module file: X, Y, main_report, and sub_report. However, Python also adds some names in the
module’s namespace for us; for instance, __file__ gives the path to the file the module was loaded from, and __name__
gives the module name.

[65]: dir(my_module)

[65]: ['X',
'Y',
'__builtins__',
'__cached__',
'__doc__',
'__file__',
'__loader__',
'__name__',
'__package__',
'__spec__',
'main_report',
'sub_report']

Internally, the module namespaces created by imports are stored as dictionary objects. Module namespaces can also
be accessed through the built-in __dict__ attribute associated with module objects, where the names are dictionary
keys.

[66]: my_module.__dict__.keys()

[66]: dict_keys(['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__file__', '_
→˓_cached__', '__builtins__', 'X', 'Y', 'sub_report', 'main_report'])

[67]: my_module.__dict__['__file__']

[67]: 'C:\\Users\\vakanski\\Documents\\Codes\\2023 Codes\\Python for Data Science Course\\
→˓Lectures_2023\\Theme_1-Python_Programming\\Lecture_6-Exceptions,_Modules\\Posted\\
→˓Lecture_6-Exceptions,_Modules\\my_module.py'
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[68]: my_module.__dict__['__name__']

[68]: 'my_module'

7.6.3 6.3 Module Packages

When we create programs in Python, it is helpful to organize the individual module files related to an application into
sub-directories. A directory of Python code is said to be a package or modules package. Importing a directory is
known as a package import.

For example, consider the directory MyMainPackage which is located in the same directory as this Jupyter notebook.

MyMainPackage
__init__.py
main_script
MySubPackage

__init__.py
sub_script.py

To import the module file sub_script.py which is located inside the directory MySubPackage, we can use the dotted
syntax shown in the following cell MyMainPackage.MySubPackage.sub_script. In effect, this turns the directory
MyMainPackage into a Python namespace, which has attributes corresponding to the sub-directories and module files
that the directory contains.

[69]: import MyMainPackage.MySubPackage.sub_script

I am inside sub_script, which is located in MySubPackage
The value of the variable X is: 23

As we learned previously, import fetches a module as a whole, and the names (variables and functions) that are defined
in the module sub_script.py become attributes of the imported object. These include the variable X and the function
sub_report.

[70]: MyMainPackage.MySubPackage.sub_script.X

[70]: 23
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[71]: MyMainPackage.MySubPackage.sub_script.sub_report()

I am a function inside sub_script
The value of the variable Y is: 5

The dotted path in the cell corresponds to the path through the directory hierarchy that leads to the module file
sub_script.py, i.e., MyMainPackage\MySubPackage\sub_script.py.

On the other hand, note that syntax with backward slashes does not work with the import statement.

[72]: import MyMainPackage\MySubPackage\sub_script

Cell In[72], line 1
import MyMainPackage\MySubPackage\sub_script

^
SyntaxError: unexpected character after line continuation character

Similarly to import and from statements with modules, to fetch specific names from the sub_script.py module, we
can use the from statement with packages as well.

[73]: from MyMainPackage.MySubPackage.sub_script import X

[74]: X

[74]: 23

[75]: from MyMainPackage.MySubPackage.sub_script import sub_report

[76]: sub_report()

I am a function inside sub_script
The value of the variable Y is: 5

Package __init__.py Files

When using package imports, there is one more constraint that we need to follow: each directory named within the
path of a package import statement must contain a file named __init__.py. Otherwise, the package import will fail.

In the example we have been using, note that both MyMainPackage and MySubPacakge directories contain a file called
__init__.py. The __init__.py names are special, as they declare that a directory is a Python package.

The __init__.py files are very often completely empty, and don’t contain any code. But, they can also contain Python
code, just like other module files. In our MyMainPackage example, the __init__.py files are empty.

The __init__.pyfiles are run automatically the first time a Python program imports a directory. Because of that,
__init__.py files can be used to store code to initialize the state required by files in a package (e.g., to create required
data files, open connections to databases, and so on).

On a separate note, don’t confuse __init__.py files in module packages with the __init__() class constructor
method that we used before for specifying attributes of class instances. Both have initialization roles, but they are
otherwise very different.
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Difference Between from and import with Packages

The import statement can be somewhat inconvenient to use with packages, because we may have to retype the paths
to the files and sub-directories frequently in our program. In our example, we must retype and rerun the full path from
MyMainPackage each time we want to reach the names in the sub_script.py file. Otherwise, we will get an error.

[77]: sub_script.X

---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[77], line 1
----> 1 sub_script.X

NameError: name 'sub_script' is not defined

[78]: MySubPackage.sub_script.X

---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[78], line 1
----> 1 MySubPackage.sub_script.X

NameError: name 'MySubPackage' is not defined

[79]: MyMainPackage.MySubPackage.sub_script.X

[79]: 23

[80]: # Use X in our code
print(MyMainPackage.MySubPackage.sub_script.X + 27)
print(MyMainPackage.MySubPackage.sub_script.X % 2)
print((MyMainPackage.MySubPackage.sub_script.X -13)/2)

50
1
5.0

It is often more convenient to use the from statement with packages to avoid retyping the paths at each access.

[81]: from MyMainPackage.MySubPackage.sub_script import X
X

[81]: 23

[82]: print(X + 27)
print(X % 2)
print((X - 13)/2)

50
1
5.0

In addition, if we ever restructure or rename the directory tree, the from statement requires just one path update in the
code, whereas the import statement may require updates in many lines in the code.

However, import can be advantageous if there are two modules with the same name that are located in different
directories, and are used in the same program. With the from statement, we can reach only one of the two modules at
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a time.

For example, in our MyMainPackage, there is a function sub_report in both the main_script and sub_script. If
we use from statement, the name sub_reportwill change depending on whether it is imported from the main_script
or the sub_script.

[83]: from MyMainPackage.MySubPackage.sub_script import sub_report

[84]: sub_report()

I am a function inside sub_script
The value of the variable Y is: 5

[85]: from MyMainPackage.main_script import sub_report
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I am inside main_script, which is located in MyMainPackage
The value of the variable X is: 12

[86]: # Name collision with the sub_report name used in the cell above
sub_report()

I am a function inside main_script
The value of the variable Z is: 6

But, with the import statement, we can use either of the two functions sub_report, because their names will involve
their full path, and this way, the names will not clash. The only inconvenience is that we need to type the full paths to
the two functions.

[87]: import MyMainPackage.MySubPackage.sub_script
MyMainPackage.MySubPackage.sub_script.sub_report()

I am a function inside sub_script
The value of the variable Y is: 5

[88]: import MyMainPackage.main_script
MyMainPackage.main_script.sub_report()

I am a function inside main_script
The value of the variable Z is: 6

Another alternative is to use the as extension, which will create unique synonyms for the names of the two functions.
As we mentioned before, this extension is commonly used to provide short synonyms for longer names, and to avoid
name clashes when we are already using a name in a script that would otherwise be overwritten by a regular import
statement.

[89]: from MyMainPackage.MySubPackage.sub_script import sub_report as sub_sub_report
sub_sub_report()

I am a function inside sub_script
The value of the variable Y is: 5

[90]: from MyMainPackage.main_script import sub_report as main_sub_report
main_sub_report()

I am a function inside main_script
The value of the variable Z is: 6

7.6.4 Appendix: Modules and Packages Extras

Modules Usage Modes: __name__ and __main__

We mentioned that each module has a built-in attribute called __name__, which Python assigns automatically to all
module objects. The attribute is assigned as follows: - If the file is being imported by using the import statement,
__name__ is set to the module’s name. - If the file is being run as a top-level program file, __name__ is set to the string
__main__.

Let’s check it with an example. The module file module_no_3 is shown below, and note that in the first line we will
print the assigned attribute __name__ to confirm that the above is correct.
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As expected, __name__ is assigned to module_no_3 when imported.

[91]: # The module is imported
import module_no_3

Print the built-in attribute name of the module: module_no_3
The value of the variable X is: 1

When module_no_3 is run directly, __name__ is set to __main__.

[92]: # The module is run by passing it as a command to the Python interpreter
!python module_no_3.py

Print the built-in attribute name of the module: __main__
The value of the variable X is: 1

Thus, the __name__ attribute can be used in the following if test if __name__ == '__main__' to determine
whether it is being run or imported.

Therefore, if the module is the main script in a package and represents an entry point to a package that is run by the end-
users (!python mainscript.py), the code after if __name__ == '__main__' in the main script will be executed
when the main script is run. On the other hand, all other modules in the package will be imported. Any code under the
if __name__ == '__main__' test in other modules will not be executed.

Another reason why using this is helpful is during code development for self-testing code that is written at the bottom
of a file under the __name__ test. For instance, the file module_no_3a is similar to the file module_no_3, only that it
includes several lines of code at the bottom, which test whether the function CelsiusToFahrenheit outputs expected
values. When run as a command in the cell, the if __name__ == '__main__' is True, and the lines that test the
outputs of the CelsiusToFahrenheit are run. Conversely, when the module file is imported, the various variables
and functions are imported, but the if __name__ == '__main__' is False, and the lines that test the outputs of the
CelsiusToFahrenheit are not run.
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[93]: !python module_no_3a.py

Print the built-in attribute name of the module: __main__
The value of the variable X is: 1
--------------------
Self-testing
100 degrees Fahrenheit is 37.77777777777778 degrees Celsius
32 degrees Fahrenheit is 0.0 degrees Celsius
0 degrees Fahrenheit is -17.77777777777778 degrees Celsius

[94]: import module_no_3a

Print the built-in attribute name of the module: module_no_3a
The value of the variable X is: 1

The above code allows to test the logic in our code without having to retype everything at the notebook cell or at the
interactive command line each time we edit the file. Besides, the output of the self-test call will not appear every time
this file is imported from another file.

Functions defined in files with the __name__ test can be run as standalone functions, and they can also be reused in
other programs.

Reloading Modules

As we have seen, when we import a module, the code is executed only once when the module is imported the first
time. Subsequent imports use the already loaded module object without reloading or rerunning the file’s code.

To force a module’s code to be reloaded and rerun, you need to instruct Python to do so explicitly by calling the reload
built-in function. The reload reruns a module file’s code and overwrites its existing namespace, rather than deleting
the module object and re-creating it. Also, the reload function returns the module object at the output of the cell.

[95]: import my_module
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[96]: from imp import reload
reload(my_module)

I am inside my_module
The value of the variable X is: 3

C:\Users\vakanski\AppData\Local\Temp\ipykernel_18208\2249891335.py:1: DeprecationWarning:
→˓ the imp module is deprecated in favour of importlib and slated for removal in Python␣
→˓3.12; see the module's documentation for alternative uses
from imp import reload

[96]: <module 'my_module' from 'C:\\Users\\vakanski\\Documents\\Codes\\2023 Codes\\Python for␣
→˓Data Science Course\\Lectures_2023\\Theme_1-Python_Programming\\Lecture_6-Exceptions,_
→˓Modules\\Posted\\Lecture_6-Exceptions,_Modules\\my_module.py'>

Reloading can help to examine a file, for instance, when we make changes to the file. In this case, since we use Jupyter
notebooks, to import a file again after we have made some changes to the file we can just restart the kernel, which will
allow us to import the file, without using reload.

Module Packages Reloading

Just like module files, an already imported directory needs to be passed to reload to force re-execution of the code.
As shown, reload accepts a dotted path name to reload nested directories and files. Also, reload returns the module
object in the displayed output of the cell.

[97]: # Repeated import statements do not produce any output
import MyMainPackage.MySubPackage.sub_script

[98]: from imp import reload
reload(MyMainPackage.MySubPackage.sub_script)

I am inside sub_script, which is located in MySubPackage
The value of the variable X is: 23

[98]: <module 'MyMainPackage.MySubPackage.sub_script' from 'C:\\Users\\vakanski\\Documents\\
→˓Codes\\2023 Codes\\Python for Data Science Course\\Lectures_2023\\Theme_1-Python_
→˓Programming\\Lecture_6-Exceptions,_Modules\\Posted\\Lecture_6-Exceptions,_Modules\\
→˓MyMainPackage\\MySubPackage\\sub_script.py'>

Once imported, sub-script becomes a module object nested in the object MySubPackage, which in turn is nested in
the object MyMainPackage.

Similarly, MySubPackage is a module object that is nested in the object MyMainPackage.

[99]: MyMainPackage.MySubPackage

[99]: <module 'MyMainPackage.MySubPackage' from 'C:\\Users\\vakanski\\Documents\\Codes\\2023␣
→˓Codes\\Python for Data Science Course\\Lectures_2023\\Theme_1-Python_Programming\\
→˓Lecture_6-Exceptions,_Modules\\Posted\\Lecture_6-Exceptions,_Modules\\MyMainPackage\\
→˓MySubPackage\\__init__.py'>
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Python Path

If the directory MyMainPackage is not in the current working directory, then it may need to be added to the Python
search path. To do that, either add the full path to the directory to the PYTHONPATH variable (by setting the Environ-
ment Variables on Windows systems), or the path to the directory can be added to a .pth file. Note that if the package
is a standard library directory of a built-in function (e.g., random, time, sys, os), or if it is located in the site-packages
directory (where third-party libraries are installed), it will be automatically found by Python, and it does not need to be
added to the Python search path.

Alternatively, the path to the directory can be manually added using sys.path (that is, the path attribute of the standard
library module sys). For instance, I can examine the sys.path on my computer, as shown in the following cell. Since
the sys.path is just a list of directories, we can manually add the path of the current working directory, by using the
append to list method.

[100]: import sys
sys.path

[100]: ['C:\\Users\\vakanski\\Documents\\Codes\\2023 Codes\\Python for Data Science Course\\
→˓Lectures_2023\\Theme_1-Python_Programming\\Lecture_6-Exceptions,_Modules\\Posted\\
→˓Lecture_6-Exceptions,_Modules',
'C:\\Users\\vakanski\\anaconda3\\python311.zip',
'C:\\Users\\vakanski\\anaconda3\\DLLs',
'C:\\Users\\vakanski\\anaconda3\\Lib',
'C:\\Users\\vakanski\\anaconda3',
'',
'C:\\Users\\vakanski\\anaconda3\\Lib\\site-packages',
'C:\\Users\\vakanski\\anaconda3\\Lib\\site-packages\\win32',
'C:\\Users\\vakanski\\anaconda3\\Lib\\site-packages\\win32\\lib',
'C:\\Users\\vakanski\\anaconda3\\Lib\\site-packages\\Pythonwin']

[101]: sys.path.append('C:\\Users\\Alex\\Desktop\\python\\Lecture 6 Module Packages')

[102]: sys.path
# The appended path is listed last

[102]: ['C:\\Users\\vakanski\\Documents\\Codes\\2023 Codes\\Python for Data Science Course\\
→˓Lectures_2023\\Theme_1-Python_Programming\\Lecture_6-Exceptions,_Modules\\Posted\\
→˓Lecture_6-Exceptions,_Modules',
'C:\\Users\\vakanski\\anaconda3\\python311.zip',
'C:\\Users\\vakanski\\anaconda3\\DLLs',
'C:\\Users\\vakanski\\anaconda3\\Lib',
'C:\\Users\\vakanski\\anaconda3',
'',
'C:\\Users\\vakanski\\anaconda3\\Lib\\site-packages',
'C:\\Users\\vakanski\\anaconda3\\Lib\\site-packages\\win32',
'C:\\Users\\vakanski\\anaconda3\\Lib\\site-packages\\win32\\lib',
'C:\\Users\\vakanski\\anaconda3\\Lib\\site-packages\\Pythonwin',
'C:\\Users\\Alex\\Desktop\\python\\Lecture 6 Module Packages']

Notice now that the directory MyMainPackage is now listed in the sys.path. However, this modified sys.path is
temporary and it is valid only for the duration of the current session; the path is refreshed every time Jupyter Notebook is
restarted, or the notebook kernel is shut down. On the other hand, the path configuration in PYTHONPATH is permanent,
and it lives after the current session is terminated.
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Package Relative Imports

To illustrate package relative imports in Python we will use the MyRelativeImportPackage which is similar to the
MyMainPackage and contains several simple files.

MyRelativeImportPackage
__init__.py
relative_import_script_1
relative_import_script_2
relative_import_script_5
relative_import_script_6
script_1
script_2
script_3
script_4
MySubPackage

__init__.py
relative_import_script_3
relative_import_script_4
sub_script

When modules within a package need to import other names from other modules in the same package, it is still possible
to use the full path syntax for importing, as we did in the above section. This is called an absolute import.

For instance, the relative_import_script_1.py in the first line imports script_1 by using the full name of the
directory (i.e., from MyRelativeImportPackage import script_1).

[103]: import MyRelativeImportPackage.relative_import_script_1

I am inside script_1, which is located in MyMainPackage
--------------------
I am inside the relative_import_scipt_1, which is located in MyMainPackage

However, package files can also make use of a special syntax to simplify import statements within the same package.
Instead of directly using the full path to the directory, Python allows to use a leading dot . to refer to the current
directory in the package.

Therefore, instead of using from MyRelativeImportPackage import script_1, we can use from . import
script_1. This is implemented in the relative_import_script_2.py to import script_2.
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This syntax is referred to as a relative import because the path to the module to be imported is related to the current
directory in which the module that imports is located.

The convenience of using relative imports is that we don’t need to write the name or the path of the current directory.

[104]: import MyRelativeImportPackage.relative_import_script_2

I am inside script_2, which is located in MyMainPackage
--------------------
I am inside the relative_import_scipt_2, which is located in MyMainPackage

One more example is presented in the next cell, where the module relative_import_script_3.py is located in the
directory MySubPackage and it imports the module sub_script which is located in the same directory by using the
. syntax.

[105]: import MyRelativeImportPackage.MySubPackage.relative_import_script_3

I am inside sub_script, which is located in MySubPackage
--------------------
I am inside the relative_import_scipt_3, which is located in MySubPackage

If we use two dots syntax as in .., then a module can import another module that is located in its parent directory of
the current package (i.e., the directory above). For example, the relative_import_script_4.py is located in the
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MySubPackage directory, and it uses from .. import script_3 to import the script_3 module that is located in
the parent directory of MySubPackage, that is, MyMainPacakage.

[106]: import MyRelativeImportPackage.MySubPackage.relative_import_script_4

I am inside script_3, which is located in MyMainPackage
--------------------
I am inside the relative_import_scipt_4, which is located in MySubPackage

On the other hand, if we tried to use only import script_3 instead of from . import script_3, this will fail.
We must use the from dotted syntax to import modules located in the same package. This is illustrated in the example
in the following cell.

[107]: import MyRelativeImportPackage.relative_import_script_5

---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
Cell In[107], line 1
----> 1 import MyRelativeImportPackage.relative_import_script_5

File ~\Documents\Codes\2023 Codes\Python for Data Science Course\Lectures_2023\Theme_1-
→˓Python_Programming\Lecture_6-Exceptions,_Modules\Posted\Lecture_6-Exceptions,_Modules\
→˓MyRelativeImportPackage\relative_import_script_5.py:1
----> 1 import script_3

3 print(20*'-')
4 print('I am inside the relative_import_scipt_5, which is located in MyMainPackage

→˓')

ModuleNotFoundError: No module named 'script_3'

Another way to use the relative imports is shown in the relative_import_script_6.py module, where the syntax
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from .script_4 import X is used to import the name X from the script_4 module which is located in the same
directory as the importer module. This way, we can import specific names from modules in the same package.

[108]: import MyRelativeImportPackage.relative_import_script_6

I am inside script_4, which is located in MyMainPackage
--------------------
I am inside the relative_import_scipt_6, which is located in MyMainPackage
The value of the variable X is 5

Absolute imports are often preferred because they are straightforward, and it is easy to tell exactly where the imported
module or name is located, just by looking at the statement. But, they require more typing and writing full names and
paths in the code.

One clear advantage of relative imports is that they are quite succinct, and they can turn a very long import statement
into a simple and short statement. Relative imports can be messy, particularly for projects where the organization of
the directories is likely to change. Relative imports are also not as readable as absolute ones, and it is not easy to tell
the location of the imported names.

7.6.5 References

1. Mark Lutz, “Learning Python,” 5-th edition, O-Reilly, 2013. ISBN: 978-1-449-35573-9.

2. Pierian Data Inc., “Complete Python 3 Bootcamp,” codes available at: https://github.com/Pierian-Data/
Complete-Python-3-Bootcamp.
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7.7.1 7.1 Introduction to NumPy

NumPy (short for Numerical Python) was created in 2005, and since then, the NumPy library has evolved into an
essential library for scientific computing in Python. It has become a building block of many other scientific libraries,
such as SciPy, Scikit-learn, Pandas, and others.

NumPy provides a convenient Python interface for working with multi-dimensional array data structures. The NumPy
array data structure is also called ndarray, which is short for n-dimensional array.

In addition to being mostly implemented in C and using Python as a “glue language,” the main reason why NumPy is
so efficient for numerical computations is that NumPy arrays use contiguous blocks of memory that can be efficiently
cached by the CPU. In contrast, Python lists are arrays of pointers to objects in random locations in memory, which
cannot be easily cached and come with a more expensive memory look-up. On the other hand, NumPy arrays have
a fixed size and are homogeneous, which means that all elements in an array must have the same type. Homogenous
ndarray objects have the advantage that NumPy can carry out operations using efficient C code and avoid expensive
type checks and other overheads of the Python API.

N-dimensional Arrays

NumPy is built around `ndarrays <https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html>`__
objects, which are multi-dimensional array data structures. Intuitively, we can think of a one-dimensional NumPy
array as a vector of elements – you may think of it as a fixed-size Python list where all elements share the same type.
Similarly, we can think of a two-dimensional array as a data structure to represent a matrix (or a Python list of lists).
NumPy arrays can have up to 32 dimensions. For instance, RGB images have 3 dimensions, corresponding to pixels
width and height, and the three color channels. Similarly, an RGB video has 4 dimensions, corresponding to pixels
width and height, color channel, and frame number.

In this next example, we will call the array function first to create an one-dimensional NumPy array, and afterward, a
two-dimensional NumPy array, consisting of two rows and three columns (from a list of lists).

[1]: import numpy as np

ary1d = [1., 2., 3.]
np.array(ary1d)
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[1]: array([1., 2., 3.])

[2]: lst = [[1, 2, 3],
[4, 5, 6]]

ary2d = np.array(lst)
ary2d

# rows x columns

[2]: array([[1, 2, 3],
[4, 5, 6]])

Figure source: Reference [1].

By default, NumPy infers the type of the array upon construction. Since we passed Python integers to the array, the
ndarray object ary2d should be of type int32, which we can confirm by accessing the dtype attribute.

[3]: ary2d.dtype

[3]: dtype('int32')

If we want to construct NumPy arrays of different types, we can pass an argument for the dtype parameter of the array
using the astype method (for example np.int64 to create 64-bit arrays). For a full list of supported data types, please
refer to the official NumPy documentation.

[4]: int64_ary = ary2d.astype(np.int64)
int64_ary

[4]: array([[1, 2, 3],
[4, 5, 6]], dtype=int64)

[5]: float32_ary = ary2d.astype(np.float32)
float32_ary

[5]: array([[1., 2., 3.],
[4., 5., 6.]], dtype=float32)

[6]: float32_ary.dtype
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[6]: dtype('float32')

To return the number of elements in an array, we can use the size attribute, as shown below.

[7]: ary2d.size

[7]: 6

And the number of dimensions of our array can be obtained via the ndim attribute.

[8]: ary2d.ndim

[8]: 2

If we are interested in the number of elements along each array dimension (in the context of NumPy arrays, we may
also refer to them as axes), we can access the shape attribute as shown below.

[9]: ary2d.shape

[9]: (2, 3)

The shape is always a tuple; in the code example above, the two-dimensional ary2d object has two rows and three
columns, (2, 3).

The shape of a one-dimensional array only contains a single value.

[10]: np.array([1., 2., 3.]).shape

[10]: (3,)

7.7.2 7.2 Array Construction and Indexing

This section provides several useful functions to construct arrays, e.g., containing only ones or zeros.

[11]: np.ones((3, 4), dtype=int)

[11]: array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])

[12]: np.zeros((3, 3))

[12]: array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])

We can use these functions to create arrays with arbitrary values, e.g., we can create an array containing the values 99
as follows.

[13]: np.zeros((3, 3)) + 99

[13]: array([[99., 99., 99.],
[99., 99., 99.],
[99., 99., 99.]])

Creating arrays of ones or zeros can also be useful as placeholder arrays, in cases where we do not want to use the
initial values for computations right away.
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NumPy also has functions to create identity matrices and diagonal matrices as ndarrays.

[14]: np.eye(3)

[14]: array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])

[15]: np.diag((1, 2, 3))

[15]: array([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])

Two other very useful functions for creating sequences of numbers within a specified range are arange and linspace.
NumPy’s arange function follows the same syntax as Python’s range function. If two arguments are provided, the
first argument represents the start value and the second argument defines the stop value of a half-open interval.

[16]: np.arange(4, 10)

[16]: array([4, 5, 6, 7, 8, 9])

If we only provide a single argument, the default start value of 0 is assumed.

[17]: np.arange(5)

[17]: array([0, 1, 2, 3, 4])

Similar to Python’s range, a third argument can be provided to define the step (the default step size is 1). For example,
we can obtain an array of all values between 1 and 11 with 0.1 step as follows.

[18]: ary3 = np.arange(1., 11., 0.1)
ary3

[18]: array([ 1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. ,
2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3. , 3.1,
3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4. , 4.1, 4.2,
4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. , 5.1, 5.2, 5.3,
5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6. , 6.1, 6.2, 6.3, 6.4,
6.5, 6.6, 6.7, 6.8, 6.9, 7. , 7.1, 7.2, 7.3, 7.4, 7.5,
7.6, 7.7, 7.8, 7.9, 8. , 8.1, 8.2, 8.3, 8.4, 8.5, 8.6,
8.7, 8.8, 8.9, 9. , 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7,
9.8, 9.9, 10. , 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8,
10.9])

Note the shape of this array.

[19]: np.shape(ary3)

[19]: (100,)

The linspace function is especially useful if we want to create a number of evenly spaced values in a specified interval.

[20]: np.linspace(6., 25., num=5)

[20]: array([ 6. , 10.75, 15.5 , 20.25, 25. ])
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Array Indexing

Simple NumPy indexing and slicing work similar to Python lists, as in the following examples.

[21]: ary = np.array([1, 2, 3, 4])
ary[2]

[21]: 3

Also, the same Python semantics apply to slicing operations. The following example shows how to fetch the first three
elements in ary.

[22]: ary[0:3]

[22]: array([1, 2, 3])

If we work with arrays that have more than one dimension or axis, we separate our indexing or slicing operations by
commas as shown in the following examples.

[23]: ary = np.array([[1, 2, 3],
[4, 5, 6]])

ary[0, -2] # first row, second from last element

[23]: 2

[24]: ary[-1, -1] # lower right

[24]: 6

[25]: ary[1, 1] # first row, second column

[25]: 5

Figure source: Reference [1].

[26]: ary[:, 0] # entire first column
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[26]: array([1, 4])

[27]: ary[:, :2] # first two columns

[27]: array([[1, 2],
[4, 5]])

7.7.3 7.3 Array Math

One of the core features of NumPy that makes working with ndarray so efficient and convenient is vectorization.
NumPy provides vectorized functions for performing element-wise operations implicitly via so-called ufuncs which is
short for “universal functions”.

There are more than 60 ufuncs available in NumPy; ufuncs are implemented in compiled C code and very fast and
efficient compared to Python.

To provide an example of a simple ufunc for element-wise addition, consider the following example, where we add a
scalar 1 to each element in a nested Python list.

[28]: lst = [[1, 2, 3],
[4, 5, 6]] # 2d array

for row_idx, row_val in enumerate(lst):
for col_idx, col_val in enumerate(row_val):

lst[row_idx][col_idx] += 1
lst

[28]: [[2, 3, 4], [5, 6, 7]]

We can accomplish the same using NumPy’s ufunc for element-wise scalar addition as shown below.

[29]: ary = np.array([[1, 2, 3], [4, 5, 6]])
ary = np.add(ary, 1)
ary

[29]: array([[2, 3, 4],
[5, 6, 7]])

For basic arithmetic operations we can use add, subtract, divide, multiply, power, and exp (exponential). How-
ever, NumPy uses operator overloading so that we can use mathematical operators (+, -, /, *, and **) directly.

[30]: np.add(ary, 1)

[30]: array([[3, 4, 5],
[6, 7, 8]])

[31]: ary + 1

[31]: array([[3, 4, 5],
[6, 7, 8]])

[32]: np.power(ary, 2)

[32]: array([[ 4, 9, 16],
[25, 36, 49]], dtype=int32)
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[33]: ary**2

[33]: array([[ 4, 9, 16],
[25, 36, 49]])

NumPy also has implementations for other math operations, such as sqrt (square root), log (natural logarithm), and
log10 (base-10 logarithm).

[34]: np.sqrt(ary)

[34]: array([[1.41421356, 1.73205081, 2. ],
[2.23606798, 2.44948974, 2.64575131]])

Often, we want to compute the sum or product of array elements along a given axis. For this purpose, we can use
the reduce operation. By default, reduce applies an operation along the first axis (axis=0). In the case of a two-
dimensional array, we can think of the first axis as the rows of a matrix. Thus, adding up elements along rows yields
the column sums of that matrix as shown below.

[35]: ary = np.array([[1, 2, 3],
[4, 5, 6]]) # rolling over the 1st axis, axis 0

np.add.reduce(ary, axis=0)

[35]: array([5, 7, 9])

To compute the row sums of the array above, we can specify axis=1.

[36]: np.add.reduce(ary, axis=1) # row sums

[36]: array([ 6, 15])

NumPy also provides functions for specific operations such as product and sum. For example, sum(axis=0) is
equivalent to add.reduce.

[37]: ary.sum(axis=0) # column sums

[37]: array([5, 7, 9])

[38]: ary.sum(axis=1) # row sums

[38]: array([ 6, 15])
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Figure source: Reference [1].

Note also that product and sum both compute the product or sum of the entire array if we do not specify an axis.

[39]: ary.sum()

[39]: 21

Other useful ufuncs are:

• np.mean (computes arithmetic mean or average)

• np.std (computes the standard deviation)

• np.var (computes variance)

• np.sort (sorts an array)

• np.argsort (returns indices that would sort an array)

• np.min (returns the minimum value of an array)

• np.max (returns the maximum value of an array)

• np.argmin (returns the index of the minimum value)

• np.argmax (returns the index of the maximum value)

• np.array_equal (checks if two arrays have the same shape and elements)

7.7.4 7.4 Broadcasting

Broadcasting allows to perform vectorized operations between two arrays even if their dimensions do not match.

[40]: ary1 = np.array([1, 2, 3])
ary1 + 1

[40]: array([2, 3, 4])

[41]: # this is equivalent to:
ary1 + np.array([1, 1, 1])

[41]: array([2, 3, 4])

Figure source: Refer-
ence [1].

For example, we can add a one-dimensional to a two-dimensional array, where NumPy creates an implicit multidimen-
sional grid from the one-dimensional array ary1.

[42]: ary2 = np.array([[4, 5, 6],
[7, 8, 9]])

ary2 + ary1
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[42]: array([[ 5, 7, 9],
[ 8, 10, 12]])

Figure source: Refer-
ence [1].

Using broadcasting in Python requires compatibility between the sizes of the arrays. For instance, if we try to add two
arrays of sizes (3,3) and (2,2), Python will return an error.

[43]: np.ones((3,3)) + np.ones((2,2))

---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[43], line 1
----> 1 np.ones((3,3)) + np.ones((2,2))

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

Advanced Indexing – Memory Views and Copies

In the previous sections, we used basic indexing and slicing routines. It is important to note that basic integer-based
indexing and slicing create so-called views of NumPy arrays in the memory. Working with views can be highly desirable
since it avoids making unnecessary copies of arrays to save memory resources. To illustrate the concept of memory
views, let’s look at a simple example where we access the first row in an array, assign it to a variable, and modify that
variable.

[44]: ary = np.array([[1, 2, 3],
[4, 5, 6]])

first_row = ary[0, :]

[45]: first_row

[45]: array([1, 2, 3])

[46]: first_row += 99

[47]: first_row

[47]: array([100, 101, 102])

As expected, first_row was modified, now containing the original values in the first row incremented by 99.

Note, however, that the original array was modified as well. The reason for this is that ary[0, :] created a view of
the first row in ary, and its elements were then incremented by 99.
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[48]: ary

[48]: array([[100, 101, 102],
[ 4, 5, 6]])

The same concept applies to slicing operations.

[49]: ary = np.array([[1, 2, 3],
[4, 5, 6]])

last_col = ary[:, 2]
last_col += 99
ary

[49]: array([[ 1, 2, 102],
[ 4, 5, 105]])

Therefore, it is important to be aware that indexing and slicing create views, which can speed up our code by avoiding
to create unnecessary copies in memory. However, in certain scenarios we want to create a copy of an array; we can
do this via the copy method as shown below.

[50]: ary = np.array([[1, 2, 3],
[4, 5, 6]])

first_row = ary[0].copy()
first_row += 99

[51]: first_row

[51]: array([100, 101, 102])

[52]: ary

[52]: array([[1, 2, 3],
[4, 5, 6]])

Fancy Indexing

In addition to basic single-integer indexing and slicing operations, NumPy supports advanced indexing routines called
fancy indexing. Via fancy indexing, we can use tuple or list objects of non-contiguous integer indices to return desired
array elements. Since fancy indexing can be performed with non-contiguous sequences, it cannot return a view – a
contiguous slice from memory. Thus, fancy indexing always returns a copy of an array: it is important to keep that in
mind. The following code snippets show some fancy indexing examples.

[53]: ary = np.array([[1, 2, 3],
[4, 5, 6]])

ary[:, [0, 2]] # first and and last column

[53]: array([[1, 3],
[4, 6]])

[54]: this_is_a_copy = ary[:, [0, 2]]
this_is_a_copy += 99
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Note that the values in this_is_a_copy were incremented as expected.

[55]: this_is_a_copy

[55]: array([[100, 102],
[103, 105]])

However, the contents of the original array remain unaffected.

[56]: ary

[56]: array([[1, 2, 3],
[4, 5, 6]])

Boolean Masks for Indexing

We can also use Boolean masks for indexing, that is, arrays of True and False values. Consider the following example,
where we return all values in the array that are greater than 3.

[57]: ary = np.array([[1, 2, 3],
[4, 5, 6]])

greater3_mask = ary > 3
greater3_mask

[57]: array([[False, False, False],
[ True, True, True]])

Using these masks, we can select elements given our desired criteria.

[58]: ary[greater3_mask]

[58]: array([4, 5, 6])

Or, we can also write this as follows.

[59]: ary[ary>3]

[59]: array([4, 5, 6])

We can also chain different selection criteria using the logical and operator & or the logical or operator |. The example
below demonstrates how we can select array elements that are greater than 3 and divisible by 2.

[60]: (ary > 3) & (ary % 2 == 0)

[60]: array([[False, False, False],
[ True, False, True]])

Similar to the previous example, we can use this boolean array as a mask for selecting the respective elements from the
array.

[61]: ary[(ary > 3) & (ary % 2 == 0)]

[61]: array([4, 6])

And, for example, to negate a condition, we can use the ~ operator:
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[62]: ary[~((ary < 2) | (ary > 4) )]

[62]: array([2, 3, 4])

A related, useful function to assign values to specific elements in an array is the np.where function. In the example
below, we assign a 1 to all values in the array that are greater than 2, and 0 otherwise.

[63]: ary = np.array([1, 2, 3, 4, 5])

np.where(ary > 2, 1, 0)

[63]: array([0, 0, 1, 1, 1])

7.7.5 7.5 Random Number Generators

In machine learning and data science, we often need to generate arrays of random numbers, such as the initial values
of the model parameters. NumPy has a random subpackage to create random numbers and samples from a variety of
distributions.

Let’s start with drawing a random sample of three numbers in the range [0,1] from a uniform distribution via random.
rand.

[64]: np.random.rand(3)

[64]: array([0.620625 , 0.58006405, 0.4566714 ])

If we make another draw, we will obtain a different random sample.

[65]: np.random.rand(3)

[65]: array([0.93181132, 0.1938188 , 0.85219216])

Numpy also allows to use a fixed random seed for the random number generator, and in that case, the random sample
will be same at each draw.

[66]: np.random.seed(seed=123)

np.random.rand(3)

[66]: array([0.69646919, 0.28613933, 0.22685145])

[67]: np.random.seed(seed=123)

np.random.rand(3)

[67]: array([0.69646919, 0.28613933, 0.22685145])

And, of course, if we change the random seed value, the generated random numbers will be also different.

[68]: np.random.seed(seed=43)

np.random.rand(3)

[68]: array([0.11505457, 0.60906654, 0.13339096])

Using a random seed is highly recommended in practical applications and in research projects, since it ensures that our
results are reproducible, since using the same seed will create the same random numbers.
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We can also create multi-dimensional arrays of random numbers, if needed.

[69]: np.random.rand(5,5)

[69]: array([[0.24058962, 0.32713906, 0.85913749, 0.66609021, 0.54116221],
[0.02901382, 0.7337483 , 0.39495002, 0.80204712, 0.25442113],
[0.05688494, 0.86664864, 0.221029 , 0.40498945, 0.31609647],
[0.0766627 , 0.84322469, 0.84893915, 0.97146509, 0.38537691],
[0.95448813, 0.44575836, 0.66972465, 0.08250005, 0.89709858]])

And, we can draw random numbers from other distributions. For instance, random.randn returns random numbers
from a normal, i.e., Gaussian, distribution, with mean 0, and variance 1.

[70]: np.random.randn(4)

[70]: array([-1.04683899, -0.88961759, 0.01404054, -0.16082969])

Or, for instance if we needed to generate 6 random values from a normal distribution with mean -3 and standard
deviation 10, we can write as follows.

[71]: -3 + 10*np.random.randn(6)

[71]: array([19.30359649, -6.99115719, -2.45555437, 5.84181815, -4.07980561,
2.55606984])

Also, it can be useful to create separate RandomState objects for various parts of our code, so that we can test methods
in a reproducible manner. The example below shows how we can use a RandomState object to create the same results
that we obtained via np.random.rand in the previous code.

[72]: rng2 = np.random.RandomState(seed=123)
rng2.rand(3)

[72]: array([0.69646919, 0.28613933, 0.22685145])

In the above code, np.random.RandomState() constructed a random number generator that we named rng2. When
we call rng2 to draw random numbers, it uses the specified seed (seed=123) to create random numbers in a controlled
way. Note however that the seed 123 will be applied only to the rng2 object, and it does not have effect on other
freestanding functions in our code that use np.random. If we would like to apply the random seed 123 to all other
np.random functions in our code, we will need to explicitly request this with np.random.seed(seed=123).

7.7.6 7.6 Reshaping NumPy Arrays

In practice, we often run into situations where existing arrays do not have the right shape to perform certain computa-
tions. As you might remember from the beginning of this article, the size of NumPy arrays is fixed. Fortunately, this
does not mean that we have to create new arrays and copy values from the old array to the new one if we want arrays
of different shapes. That is, the size is fixed, but the shape is not. NumPy provides a reshape method that allows to
obtain a view of an array with a different shape.

For example, we can reshape a one-dimensional array into a two-dimensional one using reshape as follows.

[73]: ary1d = np.array([1, 2, 3, 4, 5, 6])
ary2d_view = ary1d.reshape(2, 3)
ary2d_view

[73]: array([[1, 2, 3],
[4, 5, 6]])
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[74]: np.may_share_memory(ary2d_view, ary1d)

[74]: True

The True value returned from np.may_share_memory indicates that the reshape operation returns a memory view,
not a copy.

When using reshape, we need to make sure that the reshaped array has the same number of elements as the original
one. Otherwise, we will obtain an error message.

[75]: ary2d_view1 = ary1d.reshape(3, 4)

---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[75], line 1
----> 1 ary2d_view1 = ary1d.reshape(3, 4)

ValueError: cannot reshape array of size 6 into shape (3,4)

However, we do not need to specify the number of elements in each axis. NumPy can figure out how many elements
to put along an axis if only one axis is unspecified, by using the placeholder -1.

[76]: ary1d.reshape(-1, 2)

[76]: array([[1, 2],
[3, 4],
[5, 6]])

We can also use reshape to flatten an array.

[77]: ary = np.array([[[1, 2, 3],
[4, 5, 6]]])

ary.reshape(-1)

[77]: array([1, 2, 3, 4, 5, 6])

Other methods for flattening arrays exist, namely flatten, which creates a copy of the array, and ravel, which creates
a memory view.

[78]: ary.flatten()

[78]: array([1, 2, 3, 4, 5, 6])

[79]: ary.ravel()

[79]: array([1, 2, 3, 4, 5, 6])

Sometimes, we are interested in merging different arrays. Unfortunately, there is no efficient way to do this without
creating a new array, since NumPy arrays have a fixed size. While combining arrays should be avoided if possible
for reasons of computational efficiency, it is sometimes necessary. To combine two or more array objects, we can use
NumPy’s concatenate function as shown in the following examples.

[80]: ary = np.array([[1, 2, 3]])

# stack along the first axis (here: rows)
np.concatenate((ary, ary), axis=0)
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[80]: array([[1, 2, 3],
[1, 2, 3]])

[81]: # stack along the second axis (here: columns)
np.concatenate((ary, ary), axis=1)

[81]: array([[1, 2, 3, 1, 2, 3]])

Two related functions are vstack and hstack that stand for vertically or horizontally stacking arrays, respectively.

[82]: np.vstack((ary, ary))

[82]: array([[1, 2, 3],
[1, 2, 3]])

[83]: np.hstack((ary, ary))

[83]: array([[1, 2, 3, 1, 2, 3]])

7.7.7 7.7 Linear Algebra with NumPy

We can think of one-dimensional NumPy arrays as data structures that represent row vectors.

[84]: row_vector = np.array([1, 2, 3])
row_vector

[84]: array([1, 2, 3])

[85]: row_vector.shape

[85]: (3,)

Similarly, we can use two-dimensional arrays to create column vectors.

[86]: column_vector = np.array([1, 2, 3]).reshape(-1, 1)
column_vector

[86]: array([[1],
[2],
[3]])

[87]: column_vector.shape

[87]: (3, 1)

Instead of reshaping a one-dimensional array into a two-dimensional one, we can simply add a new axis as shown
below.

[88]: row_vector[:, np.newaxis]

[88]: array([[1],
[2],
[3]])

To perform matrix multiplication between matrices, we know that number of columns of the left matrix must match the
number of rows of the matrix to the right. In NumPy, we can perform matrix multiplication via the matmul function.
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[89]: matrix = np.array([[1, 2, 3],
[4, 5, 6]])

[90]: np.matmul(matrix, column_vector)

[90]: array([[14],
[32]])

Figure source: Reference [1].

However, if we are working with matrices and vectors, NumPy can be quite forgiving if the dimensions of matrices and
one-dimensional arrays do not match exactly – thanks to broadcasting. The following example yields the same result
as the matrix-column vector multiplication, except that it returns a one-dimensional array instead of a two-dimensional
one.

[91]: np.matmul(matrix, row_vector)

[91]: array([14, 32])

Similarly, we can compute the dot-product between two vectors.

[92]: np.matmul(row_vector, row_vector)

[92]: 14

NumPy has a special dot function that calculates the dot-product for one-dimensional arrays, and otherwise behaves
similar to matmul on multi-dimensional arrays.

[93]: np.dot(matrix, row_vector)

[93]: array([14, 32])

Note that an even more convenient way for executing np.dot is using the @ symbol with NumPy arrays.

[94]: matrix @ row_vector

[94]: array([14, 32])

NumPy also has a handy transpose method to transpose matrices.

[95]: matrix = np.array([[1, 2, 3],
[4, 5, 6]])

matrix.transpose()
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[95]: array([[1, 4],
[2, 5],
[3, 6]])

There is also a shorthand for transpose simply as T.

[96]: matrix.T

[96]: array([[1, 4],
[2, 5],
[3, 6]])

While this section demonstrates some of the basic linear algebra operations carried out on NumPy arrays that we use in
practice, you can find additional functions in the documentation of NumPy’s submodule for linear algebra: `numpy.
linalg <https://docs.scipy.org/doc/numpy/reference/routines.linalg.html>`__. If you want to perform a particular
linear algebra routine that is not implemented in NumPy, it is also worth consulting the `scipy.linalg documentation
<https://docs.scipy.org/doc/scipy/reference/linalg.html>`__ – SciPy is a library for scientific computing built on top of
NumPy.

One last note is that there is also a special `matrix <https://docs.scipy.org/doc/numpy/reference/generated/numpy.
matrix.html>`__ type in NumPy. NumPy matrix objects are analogous to NumPy arrays but are restricted to two
dimensions. Also, matrices define certain operations differently than arrays; for instance, the * operator performs
matrix multiplication instead of element-wise multiplication. However, NumPy matrix is less popular in the science
community compared to the more general array data structure.

7.7.8 Appendix

The material in the Appendix is not required for quizzes and assignments.

Motivation for Using NumPy: It is Fast!

Let’s compare computing a vector dot product in Python (using lists) and compare it with NumPy’s dot-product func-
tion. Mathematically, the dot product between two vectors x and w can be written as follows:

𝑧 =
∑︁
𝑖

𝑥𝑖𝑤𝑖 = 𝑥1 × 𝑤1 + 𝑥2 × 𝑤2 + ...+ 𝑥𝑛 × 𝑤𝑛 = x⊤w

First, the Python implementation using a for-loop.

[97]: def python_forloop_list_approach(x, w):
z = 0.
for i in range(len(x)):

z += x[i] * w[i]
return z

a = [1., 2., 3.]
b = [4., 5., 6.]

print(python_forloop_list_approach(a, b))

32.0

Let us compute the runtime for two larger (1000-element) vectors using IPython’s %timeit magic function.
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[98]: large_a = list(range(1000))
large_b = list(range(1000))

%timeit python_forloop_list_approach(large_a, large_b)

120 µs ± 9.22 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

Next, we use the dot function/method implemented in NumPy to compute the dot product between two vectors and
run %timeit afterwards.

[99]: def numpy_dotproduct_approach(x, w):
# same as np.dot(x, w)
# and same as x @ w
return x.dot(w)

a = np.array([1., 2., 3.])
b = np.array([4., 5., 6.])

print(numpy_dotproduct_approach(a, b))

32.0

[100]: large_a = np.arange(1000)
large_b = np.arange(1000)

%timeit numpy_dotproduct_approach(large_a, large_b)

1.58 µs ± 49 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)

As we can see, replacing the for-loop with NumPy’s dot function makes the computation of the vector dot product
approximately 100 times faster.

7.7.9 References

1. Scientific Computing in Python: Introduction to NumPy and Matplotlib, by Sebastian Raschka, available at:
https://sebastianraschka.com/blog/2020/numpy-intro.html.
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• 8.7 Exporting A DataFrame to csv

• 8.8 Dealing With Missing Values: Boolean Indexing

• References

7.8.1 8.1 Introduction to pandas

pandas is a library designed for working with structured data, such as tabular data (e.g., from .csv files, Excel files) or
relational databases (e.g., SQL).

The DataFrame object in pandas is a 2-dimensional tabular, column-oriented data structure. The Date-
Frame is similar to an Excel spreadsheet and can store data of different types (including text characters,
integers, floating-point values, categorical data, and more).

Figure source: Reference [2].

The pandas name is derived from the term panel data, which is a term from economics for multi-dimensional structured
data.

7.8.2 8.2 Importing Data and Summary Statistics

Let’s begin by importing the pandas package using the common abbreviation pd. Loading pandas as pd is standard
practice.

[1]: import pandas as pd

A wide range of input/output formats are supported by pandas:

• CSV, text

• SQL database

• Excel

• HDF5

• json

• html

• pickle

• sas, stata
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• . . .

For importing .csv files, the function read_csv() in pandas allows to easily import data. By default, it assumes that
the data is comma-separated, but we can also specify the delimiter used in the data (e.g., tab, semicolon, etc.). There
are several parameters that can be specified in read_csv(). See the documentation here.

Let’s load the data in the file country-total located in the folder data and save it under the name unemployment.
This file contains unemployment information for several countries over a time period.

The function read_csv() returns a DataFrame, as shown below. Note that the DataFrame has 20,796 rows, and the
output of the cell displayed only the first 5 and last 5 rows (or the first and last 30, depending on your system), since
displaying all 20,976 rows is probably not what we want at this point anyway.

[2]: # Import data
unemployment = pd.read_csv('data/country_total.csv')
# Show the DataFrame
unemployment

[2]: country seasonality month unemployment unemployment_rate
0 at nsa 1993.01 171000 4.5
1 at nsa 1993.02 175000 4.6
2 at nsa 1993.03 166000 4.4
3 at nsa 1993.04 157000 4.1
4 at nsa 1993.05 147000 3.9
... ... ... ... ... ...
20791 uk trend 2010.06 2429000 7.7
20792 uk trend 2010.07 2422000 7.7
20793 uk trend 2010.08 2429000 7.7
20794 uk trend 2010.09 2447000 7.8
20795 uk trend 2010.10 2455000 7.8

[20796 rows x 5 columns]

We could have also used print to display the DataFrame.

[3]: print(unemployment)

country seasonality month unemployment unemployment_rate
0 at nsa 1993.01 171000 4.5
1 at nsa 1993.02 175000 4.6
2 at nsa 1993.03 166000 4.4
3 at nsa 1993.04 157000 4.1
4 at nsa 1993.05 147000 3.9
... ... ... ... ... ...
20791 uk trend 2010.06 2429000 7.7
20792 uk trend 2010.07 2422000 7.7
20793 uk trend 2010.08 2429000 7.7
20794 uk trend 2010.09 2447000 7.8
20795 uk trend 2010.10 2455000 7.8

[20796 rows x 5 columns]

When the DataFrames have a large number of rows that take large portion of the screen, we can inspect the data by
using the .head()method. By default, this shows the header (names of the columns, commonly referred to as column
labels) and the first five rows (having indices ranging from 0 to 4, in the first column in the table). The indices are also
referred to as row labels.
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[4]: unemployment.head()

[4]: country seasonality month unemployment unemployment_rate
0 at nsa 1993.01 171000 4.5
1 at nsa 1993.02 175000 4.6
2 at nsa 1993.03 166000 4.4
3 at nsa 1993.04 157000 4.1
4 at nsa 1993.05 147000 3.9

Passing an integer number as an argument to .head(n) returns that number of rows. To see the last 𝑛 rows, use
.tail(n).

[5]: # show the last 8 rows
unemployment.tail(8)

[5]: country seasonality month unemployment unemployment_rate
20788 uk trend 2010.03 2437000 7.8
20789 uk trend 2010.04 2419000 7.8
20790 uk trend 2010.05 2419000 7.7
20791 uk trend 2010.06 2429000 7.7
20792 uk trend 2010.07 2422000 7.7
20793 uk trend 2010.08 2429000 7.7
20794 uk trend 2010.09 2447000 7.8
20795 uk trend 2010.10 2455000 7.8

To find the number of rows in a DataFrame, you can use the len() function, as with Python lists and other sequences.

[6]: len(unemployment)

[6]: 20796

Alternatively, we can use the shape attribute to find the numbers of rows and columns, as with NumPy arrays. The
cell output is a tuple, showing that there are 20,796 rows and 5 columns. Note that the left-most column in the above
table showing row indices is not part of the data.

[7]: unemployment.shape

[7]: (20796, 5)

A useful method that generates various summary statistics of a DataFrame is .describe(), as shown below.

Notice in the above cell that the DataFrame has 5 columns, but the first 2 columns (country and seasonality) have
textual (strings) data, and therefore the summary statistics are shown only for the columns with numeric data (month,
unemployment, and unemployment_rate). If .describe() is called on textual data only, it will return the count,
number of unique values, and the most frequent value along with its count.

[8]: unemployment.describe()

[8]: month unemployment unemployment_rate
count 20796.000000 2.079600e+04 19851.000000
mean 1999.401290 7.900818e+05 8.179764
std 7.483751 1.015280e+06 3.922533
min 1983.010000 2.000000e+03 1.100000
25% 1994.090000 1.400000e+05 5.200000
50% 2001.010000 3.100000e+05 7.600000
75% 2006.010000 1.262250e+06 10.000000
max 2010.120000 4.773000e+06 20.900000
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It is also possible to calculate individual statistics, such as .min(), .max (), or .mean(), instead of using summary
statistics with .describe().

[9]: unemployment.min()

[9]: country at
seasonality nsa
month 1983.01
unemployment 2000
unemployment_rate 1.1
dtype: object

To view the data types for each column use the dtypes attribute of the unemployment. The data types in this case are
strings (object type), floats (float64 type), and integers (int64 type).

[10]: unemployment.dtypes

[10]: country object
seasonality object
month float64
unemployment int64
unemployment_rate float64
dtype: object

And one more way to get a summary of a DataFrame is by using info().

[11]: unemployment.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20796 entries, 0 to 20795
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 country 20796 non-null object
1 seasonality 20796 non-null object
2 month 20796 non-null float64
3 unemployment 20796 non-null int64
4 unemployment_rate 19851 non-null float64
dtypes: float64(2), int64(1), object(2)
memory usage: 812.5+ KB

Import Data From a URL

Above, we imported the unemployment data using the function read_csv and a relative file path to the data directory.
The function read_csv is very flexible and it also allows importing data using a URL as the file path.

A csv file with data on world countries and their abbreviations is located at https://raw.githubusercontent.com/
dlab-berkeley/introduction-to-pandas/master/data/countries.csv

Using read_csv, we can import the country data and save it to the variable countries. This DataFrame has 30 rows.

[12]: countries = pd.read_csv('https://raw.githubusercontent.com/dlab-berkeley/introduction-to-
→˓pandas/master/data/countries.csv')
countries
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[12]: country google_country_code country_group \
0 at AT eu
1 be BE eu
2 bg BG eu
3 hr HR non-eu
4 cy CY eu
5 cz CZ eu
6 dk DK eu
7 ee EE eu
8 fi FI eu
9 fr FR eu
10 de DE eu
11 gr GR eu
12 hu HU eu
13 ie IE eu
14 it IT eu
15 lv LV eu
16 lt LT eu
17 lu LU eu
18 mt MT eu
19 nl NL eu
20 no NO non-eu
21 pl PL eu
22 pt PT eu
23 ro RO eu
24 sk SK eu
25 si SI eu
26 es ES eu
27 se SE eu
28 tr TR non-eu
29 uk GB eu

name_en \
0 Austria
1 Belgium
2 Bulgaria
3 Croatia
4 Cyprus
5 Czech Republic
6 Denmark
7 Estonia
8 Finland
9 France
10 Germany (including former GDR from 1991)
11 Greece
12 Hungary
13 Ireland
14 Italy
15 Latvia
16 Lithuania
17 Luxembourg
18 Malta
19 Netherlands

(continues on next page)
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(continued from previous page)

20 Norway
21 Poland
22 Portugal
23 Romania
24 Slovakia
25 Slovenia
26 Spain
27 Sweden
28 Turkey
29 United Kingdom

name_fr \
0 Autriche
1 Belgique
2 Bulgarie
3 Croatie
4 Chypre
5 République tchèque
6 Danemark
7 Estonie
8 Finlande
9 France
10 Allemagne (incluant l'ancienne RDA à partir de...
11 Grèce
12 Hongrie
13 Irlande
14 Italie
15 Lettonie
16 Lituanie
17 Luxembourg
18 Malte
19 Pays-Bas
20 Norvège
21 Pologne
22 Portugal
23 Roumanie
24 Slovaquie
25 Slovénie
26 Espagne
27 Suède
28 Turquie
29 Royaume-Uni

name_de latitude longitude
0 Österreich 47.696554 13.345980
1 Belgien 50.501045 4.476674
2 Bulgarien 42.725674 25.482322
3 Kroatien 44.746643 15.340844
4 Zypern 35.129141 33.428682
5 Tschechische Republik 49.803531 15.474998
6 Dänemark 55.939684 9.516689
7 Estland 58.592469 25.806950

(continues on next page)
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(continued from previous page)

8 Finnland 64.950159 26.067564
9 Frankreich 46.710994 1.718561
10 Deutschland (einschließlich der ehemaligen DDR... 51.163825 10.454048
11 Griechenland 39.698467 21.577256
12 Ungarn 47.161163 19.504265
13 Irland 53.415260 -8.239122
14 Italien 42.504191 12.573787
15 Lettland 56.880117 24.606555
16 Litauen 55.173687 23.943168
17 Luxemburg 49.815319 6.133352
18 Malta 35.902422 14.447461
19 Niederlande 52.108118 5.330198
20 Norwegen 64.556460 12.665766
21 Polen 51.918907 19.134334
22 Portugal 39.558069 -7.844941
23 Rumänien 45.942611 24.990152
24 Slowakei 48.672644 19.700032
25 Slowenien 46.149259 14.986617
26 Spanien 39.895013 -2.988296
27 Schweden 62.198467 14.896307
28 Türkei 38.952942 35.439795
29 Vereinigtes Königreich 54.315447 -2.232612

Similar to the above example, we can use shape and describe() the understand the countries DataFrame. In this
case .describe() is not very useful, because only 2 of the columns have numeric values.

[13]: countries.shape

[13]: (30, 8)

[14]: # explore the countries data
countries.describe()

[14]: latitude longitude
count 30.000000 30.000000
mean 49.092609 14.324579
std 7.956624 11.257010
min 35.129141 -8.239122
25% 43.230916 6.979186
50% 49.238087 14.941462
75% 54.090400 23.351690
max 64.950159 35.439795
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Import Data from Excel File

In a similar way, we can import data from an Excel file using the function read_excel() .

[15]: titanic = pd.read_excel('data/titanic.xls')
titanic

[15]: pclass survived name \
0 1 1 Allen, Miss. Elisabeth Walton
1 1 1 Allison, Master. Hudson Trevor
2 1 0 Allison, Miss. Helen Loraine
3 1 0 Allison, Mr. Hudson Joshua Creighton
4 1 0 Allison, Mrs. Hudson J C (Bessie Waldo Daniels)
5 1 1 Anderson, Mr. Harry
6 1 1 Andrews, Miss. Kornelia Theodosia
7 1 0 Andrews, Mr. Thomas Jr
8 1 1 Appleton, Mrs. Edward Dale (Charlotte Lamson)
9 1 0 Artagaveytia, Mr. Ramon
10 1 0 Astor, Col. John Jacob
11 1 1 Astor, Mrs. John Jacob (Madeleine Talmadge Force)
12 1 1 Aubart, Mme. Leontine Pauline
13 1 1 Barber, Miss. Ellen "Nellie"
14 1 1 Barkworth, Mr. Algernon Henry Wilson
15 1 0 Baumann, Mr. John D
16 1 0 Baxter, Mr. Quigg Edmond
17 1 1 Baxter, Mrs. James (Helene DeLaudeniere Chaput)
18 1 1 Bazzani, Miss. Albina
19 1 0 Beattie, Mr. Thomson

sex age sibsp parch ticket fare cabin embarked boat \
0 female 29 0 0 24160 211.3375 B5 S 2
1 male 0.9167 1 2 113781 151.5500 C22 C26 S 11
2 female 2 1 2 113781 151.5500 C22 C26 S None
3 male 30 1 2 113781 151.5500 C22 C26 S None
4 female 25 1 2 113781 151.5500 C22 C26 S None
5 male 48 0 0 19952 26.5500 E12 S 3
6 female 63 1 0 13502 77.9583 D7 S 10
7 male 39 0 0 112050 0.0000 A36 S None
8 female 53 2 0 11769 51.4792 C101 S D
9 male 71 0 0 PC 17609 49.5042 None C None
10 male 47 1 0 PC 17757 227.5250 C62 C64 C None
11 female 18 1 0 PC 17757 227.5250 C62 C64 C 4
12 female 24 0 0 PC 17477 69.3000 B35 C 9
13 female 26 0 0 19877 78.8500 None S 6
14 male 80 0 0 27042 30.0000 A23 S B
15 male None 0 0 PC 17318 25.9250 None S None
16 male 24 0 1 PC 17558 247.5208 B58 B60 C None
17 female 50 0 1 PC 17558 247.5208 B58 B60 C 6
18 female 32 0 0 11813 76.2917 D15 C 8
19 male 36 0 0 13050 75.2417 C6 C A

body home.dest
0 None St Louis, MO
1 None Montreal, PQ / Chesterville, ON

(continues on next page)
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(continued from previous page)

2 None Montreal, PQ / Chesterville, ON
3 135 Montreal, PQ / Chesterville, ON
4 None Montreal, PQ / Chesterville, ON
5 None New York, NY
6 None Hudson, NY
7 None Belfast, NI
8 None Bayside, Queens, NY
9 22 Montevideo, Uruguay
10 124 New York, NY
11 None New York, NY
12 None Paris, France
13 None None
14 None Hessle, Yorks
15 None New York, NY
16 None Montreal, PQ
17 None Montreal, PQ
18 None None
19 None Winnipeg, MN

Note that all DataFrames that we loaded so far in this Jupyter notebook, i.e., unemployment, countries, and titanic,
are stored in the memory, and we can access them when needed once they are loaded. For example, we can check the
shape of the titanic DataFrame.

[16]: titanic.shape

[16]: (20, 14)

Create a DataFrame

Alternatively, we can manually create DataFrames, instead of importing from a file. The following DataFrame called
simple_table contains information from the titanic data. You can notice that the DataFrame is created similarly
to creating a dictionary, where the column headers represent keys, and the data in each column are lists of values.

[17]: simple_table = pd.DataFrame({
"Name": ["Braund, Mr. Owen Harris",

"Allen, Mr. William Henry",
"Bonnell, Miss. Elizabeth"],

"Age": [22, 35, 58],
"Sex": ["male", "male", "female"]})

simple_table

[17]: Name Age Sex
0 Braund, Mr. Owen Harris 22 male
1 Allen, Mr. William Henry 35 male
2 Bonnell, Miss. Elizabeth 58 female

[18]: simple_table.shape

[18]: (3, 3)
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7.8.3 8.3 Rename, Index, and Slice

Let’s look again at the unemployment DataFrame. You may have noticed that the month column actually includes the
year and the month added as decimals (e.g., 1993.01 should be year 1993 and month 01).

[19]: unemployment.head(3)

[19]: country seasonality month unemployment unemployment_rate
0 at nsa 1993.01 171000 4.5
1 at nsa 1993.02 175000 4.6
2 at nsa 1993.03 166000 4.4

Let’s rename the column into year_month. The .rename() method allows modifying column and/or row names. As
you can see in the cell below, we passed a dictionary to the columns parameter, with the original name month as the
key and the new name year_month as the value. Importantly, we also set the inplace parameter to True, which
indicates that we want to modify the actual DataFrame, and not to create a new DataFrame.

[20]: unemployment.rename(columns={'month' : 'year_month'}, inplace=True)
unemployment.head(3)

[20]: country seasonality year_month unemployment unemployment_rate
0 at nsa 1993.01 171000 4.5
1 at nsa 1993.02 175000 4.6
2 at nsa 1993.03 166000 4.4

To observe the effect of inplace=True, let’s run in the next cell another .rename() method to change the column
country to year.

[21]: unemployment.rename(columns={'country' : 'year'}).head(3)

[21]: year seasonality year_month unemployment unemployment_rate
0 at nsa 1993.01 171000 4.5
1 at nsa 1993.02 175000 4.6
2 at nsa 1993.03 166000 4.4

The above code didn’t change the actual unemploymentDataFrame, as we can check that in the following cell. Instead,
it created a copy of the unemployment DataFrame in which it changed the name of the column country.

[22]: unemployment.head(3)

[22]: country seasonality year_month unemployment unemployment_rate
0 at nsa 1993.01 171000 4.5
1 at nsa 1993.02 175000 4.6
2 at nsa 1993.03 166000 4.4

Selecting Columns

To select a single column of the DataFrame, we can either use the name of the column enclosed in square brackets []
or the dot notation . (i.e., via attribute access). It is preferable to use the square brackets notation, since a column name
might inadvertently have the same name as an built-in pandas method.

[23]: # access with square brackets
unemployment['year_month'].head()
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[23]: 0 1993.01
1 1993.02
2 1993.03
3 1993.04
4 1993.05
Name: year_month, dtype: float64

[24]: # access with dot notation
unemployment.year_month.head()

[24]: 0 1993.01
1 1993.02
2 1993.03
3 1993.04
4 1993.05
Name: year_month, dtype: float64

When selecting a single column, we obtain a pandas Series object, which is a single vector of data with an associated
array of index row labels shown in the left-most column.

A Series object in pandas represents an 1-dimensional vector of data (i.e., a column of data).

If we check the type of the unemployment object and unemployment['year_month'] object, we can see that the
first one is DataFrame and the second one is Series.

[25]: type(unemployment)

[25]: pandas.core.frame.DataFrame

[26]: type(unemployment['year_month'])

[26]: pandas.core.series.Series

pandas provide many methods that can be applied to Series objects. A few examples are shown below.

[27]: print('minimum is ', unemployment['year_month'].min())
print('maximum is ', unemployment['year_month'].max())
print('mean value is ', unemployment['year_month'].mean())

minimum is 1983.01
maximum is 2010.12
mean value is 1999.4012896710906

To select multiple columns in pandas, use a list of column names within the selection brackets [].

[28]: unemployment[['country','year_month']].head()

[28]: country year_month
0 at 1993.01
1 at 1993.02
2 at 1993.03
3 at 1993.04
4 at 1993.05
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Selecting Rows

One way to select rows is by using the [] operator, similar to indexing and slicing in Python lists and other sequence
data.

[29]: unemployment[0:4]

[29]: country seasonality year_month unemployment unemployment_rate
0 at nsa 1993.01 171000 4.5
1 at nsa 1993.02 175000 4.6
2 at nsa 1993.03 166000 4.4
3 at nsa 1993.04 157000 4.1

Another graphical representation of a DataFrame is shown in the figure below.

Figure source:
Reference [2].

The first column with the indices in pandas DataFrames does not need to be a sequence of integers, but it can can also
contains strings or other numeric data (e.g., dates, years).

For instance, let’s create a DataFrame called bacteria to see how indexing with string indices works. We again pass
in a dictionary, with the keys corresponding to column names and the values to the data, and in addition we pass a list
of strings called index. (Compare to the simple_table above, which does not use index for creating the DataFrame,
and in that case, the indices were automatically set to integer numbers.)

[30]: bacteria = pd.DataFrame({'bacteria_counts' : [632, 1638, 569, 115],
'other_feature' : [438, 833, 234, 298]},
index=['Firmicutes', 'Proteobacteria', 'Actinobacteria',

→˓'Bacteroidetes'])
bacteria

[30]: bacteria_counts other_feature
Firmicutes 632 438
Proteobacteria 1638 833
Actinobacteria 569 234
Bacteroidetes 115 298

For selecting rows and/or columns in pandas, beside the use of square brackets, two other operators are used: .loc
and .iloc.

7.8. Lecture 8 - Data Manipulation with pandas 211



Fall 2023 Python Programming for Data Science, Release 0.1

The operator .loc works with string locations (string labels), and .iloc works with integer locations (integer labels).
These two operators can accept either a single label, a list of labels, or a slice of labels (e.g., 'a:f' or 2:5).

For instance, if we’re interested in the row Actinobacteria, we can use .loc and the index name. This returns the
column values for the specified row.

[31]: bacteria.loc['Actinobacteria']

[31]: bacteria_counts 569
other_feature 234
Name: Actinobacteria, dtype: int64

We could have also used “positional indexing” with square brackets [], even though the indices are strings. The
difference is that .loc returns a Series object because we selected a single label, while [2:3] returns a DataFrame
because we selected a range of positions.

[32]: bacteria[2:3]

[32]: bacteria_counts other_feature
Actinobacteria 569 234

Let’s return to the unemployment data to show how .iloc is used, since unemployment has integer indices. To select
specific rows, we can do the following.

[33]: unemployment.iloc[0:4]

[33]: country seasonality year_month unemployment unemployment_rate
0 at nsa 1993.01 171000 4.5
1 at nsa 1993.02 175000 4.6
2 at nsa 1993.03 166000 4.4
3 at nsa 1993.04 157000 4.1

[34]: unemployment.iloc[[1, 5, 6, 22]]

[34]: country seasonality year_month unemployment unemployment_rate
1 at nsa 1993.02 175000 4.6
5 at nsa 1993.06 134000 3.5
6 at nsa 1993.07 128000 3.4
22 at nsa 1994.11 148000 3.9

We can also select a range of rows and specify the step value.

[35]: unemployment.iloc[25:50:5]

[35]: country seasonality year_month unemployment unemployment_rate
25 at nsa 1995.02 174000 4.5
30 at nsa 1995.07 123000 3.3
35 at nsa 1995.12 175000 4.7
40 at nsa 1996.05 159000 4.3
45 at nsa 1996.10 146000 3.9
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Selecting a Specific Value

Both .loc and .iloc can be used to select a particular value if they are given two arguments. The first argument is the
row name (when using .loc) or the row index number (when using .iloc), while the second argument is the column
name or index number.

Using loc, we can select “Bacteroidetes” and “bacteria_counts” to get the count of Bacteroidetes, as in the next cell
below.

[36]: bacteria

[36]: bacteria_counts other_feature
Firmicutes 632 438
Proteobacteria 1638 833
Actinobacteria 569 234
Bacteroidetes 115 298

[37]: bacteria.loc['Bacteroidetes']['bacteria_counts']

[37]: 115

[38]: # This is the same as above
bacteria.iloc[3][0]

[38]: 115

[39]: # This the same as above
bacteria.iloc[3]['bacteria_counts']

[39]: 115

Or, for the unemployment data:

[40]: # The year_month in the first row
unemployment.iloc[0,2]

[40]: 1993.01

[41]: # This the same as above
unemployment.iloc[0][2]

[41]: 1993.01

Selecting Multiple Rows and Columns

Both .loc and .iloc can be used to select subsets of rows and columns at the same time if they are given lists as their
two arguments, or slices for .iloc.

[42]: unemployment.iloc[2:6,0:2]

[42]: country seasonality
2 at nsa
3 at nsa
4 at nsa
5 at nsa
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Using .iloc on the unemployment DataFrame, select the rows starting at row 2 and ending at row 5, and the 0th, 2nd,
and 3rd columns.

[43]: unemployment.iloc[2:6,[0,2,3]]

[43]: country year_month unemployment
2 at 1993.03 166000
3 at 1993.04 157000
4 at 1993.05 147000
5 at 1993.06 134000

The same selection can be achieved by using the .loc operator and listing the column names.

[44]: # The same as above
unemployment.loc[2:6,['country', 'year_month', 'unemployment']]

[44]: country year_month unemployment
2 at 1993.03 166000
3 at 1993.04 157000
4 at 1993.05 147000
5 at 1993.06 134000
6 at 1993.07 128000

We can also display values from a DataFrame that satisfy certain criteria using conditional expressions, such as <, >,
==, !=, etc.

One example is shown below where only the rows that have an unemployment rate greater than 15 are shown.

[45]: unemployment[unemployment['unemployment_rate'] > 15].head(10)

[45]: country seasonality year_month unemployment unemployment_rate
1717 bg nsa 2000.02 523000 15.4
1718 bg nsa 2000.03 547000 16.0
1719 bg nsa 2000.04 560000 16.3
1720 bg nsa 2000.05 561000 16.3
1721 bg nsa 2000.06 554000 16.2
1722 bg nsa 2000.07 558000 16.3
1723 bg nsa 2000.08 569000 16.7
1724 bg nsa 2000.09 574000 16.8
1725 bg nsa 2000.10 583000 17.1
1726 bg nsa 2000.11 597000 17.5

Differences between loc and iloc

To show the differences between loc and iloc let’s consider the following example.

[46]: df1 = pd.DataFrame({'x':[10, 20, 30, 40 ,50],
'y':[20, 30, 40, 50, 60],
'z':[30, 40, 50, 60, 70]},
index=[10, 11,12, 0, 1])

df1

[46]: x y z
10 10 20 30
11 20 30 40

(continues on next page)
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(continued from previous page)

12 30 40 50
0 40 50 60
1 50 60 70

Note in the following cells that iloc selects the row with index location 0, whereas loc selects the row with index
label 0.

[47]: # value at index location 0
df1.iloc[0]

[47]: x 10
y 20
z 30
Name: 10, dtype: int64

[48]: # value at index label 0
df1.loc[0]

[48]: x 40
y 50
z 60
Name: 0, dtype: int64

Also, there is a difference in the selected rows when using slicing operations with iloc and loc. One must be careful
when using these operators, and always check the output to ensure it is as expected.

[49]: # rows at index location between 0 and 1 (exclusive)
df1.iloc[0:1]

[49]: x y z
10 10 20 30

[50]: # rows at index labels between 0 and 1 (inclusive)
df1.loc[0:1]

[50]: x y z
0 40 50 60
1 50 60 70

7.8.4 8.4 Creating New Columns, Reordering

Since the year_month column is not shown correctly, let’s try to split it into two separate columns for years and months.

In the previous section we saw that the data type in this column is float64. We’ll first extract the year using the
.astype() method. This allows for type casting, i.e., using .astype(int) we will convert the floating point values
into integer numbers (by truncating the decimals).

The new column year will be added on the right of the DataFrame.

[51]: unemployment['year'] = unemployment['year_month'].astype(int)
unemployment.head()

[51]: country seasonality year_month unemployment unemployment_rate year
0 at nsa 1993.01 171000 4.5 1993

(continues on next page)

7.8. Lecture 8 - Data Manipulation with pandas 215



Fall 2023 Python Programming for Data Science, Release 0.1

(continued from previous page)

1 at nsa 1993.02 175000 4.6 1993
2 at nsa 1993.03 166000 4.4 1993
3 at nsa 1993.04 157000 4.1 1993
4 at nsa 1993.05 147000 3.9 1993

Next, let’s create a new column month. We will subtract the year value from year_month to get the decimal portion
of the value, and multiply the result by 100 and convert to int. Because of the truncating that occurs when casting to
int, we first need to round the values to the nearest whole number using round().

[52]: unemployment['month'] = ((unemployment['year_month'] - unemployment['year']) * 100).
→˓round(0).astype(int)
unemployment.head(12)

[52]: country seasonality year_month unemployment unemployment_rate year \
0 at nsa 1993.01 171000 4.5 1993
1 at nsa 1993.02 175000 4.6 1993
2 at nsa 1993.03 166000 4.4 1993
3 at nsa 1993.04 157000 4.1 1993
4 at nsa 1993.05 147000 3.9 1993
5 at nsa 1993.06 134000 3.5 1993
6 at nsa 1993.07 128000 3.4 1993
7 at nsa 1993.08 130000 3.4 1993
8 at nsa 1993.09 132000 3.5 1993
9 at nsa 1993.10 141000 3.7 1993
10 at nsa 1993.11 156000 4.1 1993
11 at nsa 1993.12 169000 4.4 1993

month
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12

Now, let’s try to reorder the newly created year and month columns in the DataFrame. For this, we will use the square
brackets notation again, passing in a list of column names in the order we would like to see them.

[53]: unemployment = unemployment[['country', 'seasonality',
'year_month', 'year', 'month',
'unemployment', 'unemployment_rate']]

unemployment.head(10)

[53]: country seasonality year_month year month unemployment \
0 at nsa 1993.01 1993 1 171000
1 at nsa 1993.02 1993 2 175000
2 at nsa 1993.03 1993 3 166000

(continues on next page)
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3 at nsa 1993.04 1993 4 157000
4 at nsa 1993.05 1993 5 147000
5 at nsa 1993.06 1993 6 134000
6 at nsa 1993.07 1993 7 128000
7 at nsa 1993.08 1993 8 130000
8 at nsa 1993.09 1993 9 132000
9 at nsa 1993.10 1993 10 141000

unemployment_rate
0 4.5
1 4.6
2 4.4
3 4.1
4 3.9
5 3.5
6 3.4
7 3.4
8 3.5
9 3.7

7.8.5 8.5 Merging

If we examine the unemployment DataFrame we can notice that we don’t exactly know what the values in the country
column refer to. We can fix that by getting the country names from the countriesDataFrame that we imported earlier.

We can see in the countries data that at stands for Austria. This DataFrame even provides the country names in three
different languages.

[54]: countries.head()

[54]: country google_country_code country_group name_en name_fr name_de \
0 at AT eu Austria Autriche Österreich
1 be BE eu Belgium Belgique Belgien
2 bg BG eu Bulgaria Bulgarie Bulgarien
3 hr HR non-eu Croatia Croatie Kroatien
4 cy CY eu Cyprus Chypre Zypern

latitude longitude
0 47.696554 13.345980
1 50.501045 4.476674
2 42.725674 25.482322
3 44.746643 15.340844
4 35.129141 33.428682

Because the data we need is stored in two separate files, we will first merge the two DataFrames. The country column
is shown in both DataFrames, so it is a good option for joining the data. However, we don’t need all columns in the
countries DataFrame, and therefore, we will create a new DataFrame. To select certain columns to retain, we can
use the bracket notation that we used earlier to reorder the columns.

[55]: country_names = countries[['country', 'country_group', 'name_en']]
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[56]: country_names.head(5)

[56]: country country_group name_en
0 at eu Austria
1 be eu Belgium
2 bg eu Bulgaria
3 hr non-eu Croatia
4 cy eu Cyprus

pandas include an easy-to-use merge function, which has the following syntax.

pd.merge(first_file, second_file, on=['column_name'])

[57]: unemployment = pd.merge(unemployment, country_names, on=['country'])
unemployment.head()

[57]: country seasonality year_month year month unemployment \
0 at nsa 1993.01 1993 1 171000
1 at nsa 1993.02 1993 2 175000
2 at nsa 1993.03 1993 3 166000
3 at nsa 1993.04 1993 4 157000
4 at nsa 1993.05 1993 5 147000

unemployment_rate country_group name_en
0 4.5 eu Austria
1 4.6 eu Austria
2 4.4 eu Austria
3 4.1 eu Austria
4 3.9 eu Austria

If we want to merge two files using multiple columns that exist in both files, we can pass a list of column names to the
on parameter.

For more information on merging, check the pandas documentation.

7.8.6 8.6 Calculating Unique and Missing Values

In the unemployment DataFrame, we might want to know what countries we have data for. To extract this information,
we can use the .unique() method. Note that the countries are listed in the right-most column name-en so we will
use it to find the unique elements in that column.

[58]: unemployment.head()

[58]: country seasonality year_month year month unemployment \
0 at nsa 1993.01 1993 1 171000
1 at nsa 1993.02 1993 2 175000
2 at nsa 1993.03 1993 3 166000
3 at nsa 1993.04 1993 4 157000
4 at nsa 1993.05 1993 5 147000

unemployment_rate country_group name_en
0 4.5 eu Austria
1 4.6 eu Austria
2 4.4 eu Austria

(continues on next page)
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3 4.1 eu Austria
4 3.9 eu Austria

[59]: unemployment['name_en'].unique()
## We can also
# unemployment.name_en.unique()

[59]: array(['Austria', 'Belgium', 'Bulgaria', 'Cyprus', 'Czech Republic',
'Germany (including former GDR from 1991)', 'Denmark', 'Estonia',
'Spain', 'Finland', 'France', 'Greece', 'Croatia', 'Hungary',
'Ireland', 'Italy', 'Lithuania', 'Luxembourg', 'Latvia', 'Malta',
'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania', 'Sweden',
'Slovenia', 'Slovakia', 'Turkey', 'United Kingdom'], dtype=object)

To get a count of the number of unique countries, we can use the .nunique() method.

[60]: unemployment['name_en'].nunique()

[60]: 30

Or, we can also use len() to get the number of items in the above array.

[61]: len(unemployment['name_en'].unique())

[61]: 30

If we are interested to know how many observations there are per country, pandas has a method called .
value_counts() that returns the counts for the unique values in a column.

[62]: unemployment['name_en'].value_counts()

[62]: France 1008
Sweden 1008
Portugal 1008
Netherlands 1008
Luxembourg 1008
Denmark 1008
Belgium 1008
Spain 1008
Ireland 1008
United Kingdom 1002
Italy 924
Finland 828
Norway 786
Austria 648
Hungary 576
Slovakia 576
Slovenia 576
Bulgaria 576
Malta 576
Poland 576
Germany (including former GDR from 1991) 504
Czech Republic 468
Latvia 459

(continues on next page)
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Lithuania 459
Greece 450
Romania 423
Cyprus 396
Estonia 387
Croatia 324
Turkey 210
Name: name_en, dtype: int64

By default, the output is sorted by values. If we would like it sorted by index (or, by country name in this case since
the countries were listed in alphabetical order), we can append the .sort_index() method.

[63]: unemployment['name_en'].value_counts().sort_index()

[63]: Austria 648
Belgium 1008
Bulgaria 576
Croatia 324
Cyprus 396
Czech Republic 468
Denmark 1008
Estonia 387
Finland 828
France 1008
Germany (including former GDR from 1991) 504
Greece 450
Hungary 576
Ireland 1008
Italy 924
Latvia 459
Lithuania 459
Luxembourg 1008
Malta 576
Netherlands 1008
Norway 786
Poland 576
Portugal 1008
Romania 423
Slovakia 576
Slovenia 576
Spain 1008
Sweden 1008
Turkey 210
United Kingdom 1002
Name: name_en, dtype: int64

As we noticed earlier, there are missing values in the unemployment_rate column. To find out how many unem-
ployment rate values are missing we will use the .isnull() method, which returns a corresponding boolean value
for each missing entry in the unemployment_rate column. As we know, in Python True is equivalent to 1 and False
is equivalent to 0. Thus, when we add the result with .sum(), we get a count for the total number of missing values.

[64]: unemployment['unemployment_rate'].isnull().sum()
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[64]: 945

GroupBy

If we would like to know how many missing values exist at the country level, we can take the main part of what we had
above and create a new column in the DataFrame. This is the last column, in which False means that the value is not
missing.

[65]: unemployment['unemployment_rate_null'] = unemployment['unemployment_rate'].isnull()
unemployment.head()

[65]: country seasonality year_month year month unemployment \
0 at nsa 1993.01 1993 1 171000
1 at nsa 1993.02 1993 2 175000
2 at nsa 1993.03 1993 3 166000
3 at nsa 1993.04 1993 4 157000
4 at nsa 1993.05 1993 5 147000

unemployment_rate country_group name_en unemployment_rate_null
0 4.5 eu Austria False
1 4.6 eu Austria False
2 4.4 eu Austria False
3 4.1 eu Austria False
4 3.9 eu Austria False

To count the number of missing values for each country, we can use the .groupby() method. It groups the
data by the country name_en column included in the parentheses, and the .sum() operation is performed over the
unemployment_rate_null column.

[66]: unemployment.groupby('name_en')['unemployment_rate_null'].sum()

[66]: name_en
Austria 0
Belgium 0
Bulgaria 180
Croatia 216
Cyprus 0
Czech Republic 0
Denmark 0
Estonia 0
Finland 0
France 0
Germany (including former GDR from 1991) 0
Greece 0
Hungary 36
Ireland 0
Italy 0
Latvia 0
Lithuania 0
Luxembourg 0
Malta 180
Netherlands 0
Norway 0

(continues on next page)
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Poland 72
Portugal 0
Romania 0
Slovakia 108
Slovenia 36
Spain 117
Sweden 0
Turkey 0
United Kingdom 0
Name: unemployment_rate_null, dtype: int64

7.8.7 8.7 Exporting A DataFrame to csv

If we wanted to save the last DataFrame as a .csv file, we can use the .to_csv() method.

[67]: unemployment.to_csv('data/unemployment_missing.csv')

The file will be saved in the data directory.

By default, this method writes the indices in the column 0 (i.e., row labels). We probably don’t want a column 0 with
indices to be added, and we can set index to False. We can also specify the type of delimiter that we want to use,
such as commas (,), pipes (|), semicolons (;), tabs (\t), etc.

[68]: unemployment.to_csv('data/unemployment_missing.csv', index=False, sep=',')

Now that we have the missing values saved, we can drop the last column unemployment_rate_null that we added
to unemployment, as shown in the next cell below.

[69]: unemployment.head()

[69]: country seasonality year_month year month unemployment \
0 at nsa 1993.01 1993 1 171000
1 at nsa 1993.02 1993 2 175000
2 at nsa 1993.03 1993 3 166000
3 at nsa 1993.04 1993 4 157000
4 at nsa 1993.05 1993 5 147000

unemployment_rate country_group name_en unemployment_rate_null
0 4.5 eu Austria False
1 4.6 eu Austria False
2 4.4 eu Austria False
3 4.1 eu Austria False
4 3.9 eu Austria False

[70]: unemployment.drop('unemployment_rate_null', axis=1, inplace=True)
unemployment.head()

[70]: country seasonality year_month year month unemployment \
0 at nsa 1993.01 1993 1 171000
1 at nsa 1993.02 1993 2 175000
2 at nsa 1993.03 1993 3 166000
3 at nsa 1993.04 1993 4 157000

(continues on next page)
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4 at nsa 1993.05 1993 5 147000

unemployment_rate country_group name_en
0 4.5 eu Austria
1 4.6 eu Austria
2 4.4 eu Austria
3 4.1 eu Austria
4 3.9 eu Austria

It is important to specify the axis parameter in the above code, where axis=1 refers to columns (axis=0 refers
to rows). Note again that the parameter inplace=True modifies the actual DataFrame rather than returning a new
DataFrame.

7.8.8 8.8 Dealing With Missing Values: Boolean Indexing

There are two main options for dealing with missing values:

• Fill the missing values with some other values.

• Remove the observations with missing values.

Here we will adopt the second approach and exclude missing values from our primary analyses. Instead of just getting
rid of that data, it might make sense to store it in a separate DataFrame. This way, we could answer questions such as,
“do missing values occur during certain months (or years) more frequently?”

To do this, we will use boolean indexing for filtering data.

Recall that unemployment['unemployment_rate'].isnull() produces an array of Boolean values. We used this
previously when counting the number of missing values, and it is shown in the next cell.

[71]: unemployment['unemployment_rate'].isnull()[:10]

[71]: 0 False
1 False
2 False
3 False
4 False
5 False
6 False
7 False
8 False
9 False
Name: unemployment_rate, dtype: bool

To create unemployment_rate_missing, we will index unemployment with the Boolean array above. This returns
only the rows where the value in the array is True.

[72]: unemployment_rate_missing = unemployment[unemployment['unemployment_rate'].isnull()]
unemployment_rate_missing.head()

[72]: country seasonality year_month year month unemployment \
1656 bg nsa 1995.01 1995 1 391000
1657 bg nsa 1995.02 1995 2 387000
1658 bg nsa 1995.03 1995 3 378000
1659 bg nsa 1995.04 1995 4 365000

(continues on next page)
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1660 bg nsa 1995.05 1995 5 346000

unemployment_rate country_group name_en
1656 NaN eu Bulgaria
1657 NaN eu Bulgaria
1658 NaN eu Bulgaria
1659 NaN eu Bulgaria
1660 NaN eu Bulgaria

It is also possible to specify multiple conditions using the & operator, but each condition needs to be inside of paren-
theses.

Now, to remove the missing data in unemployment, we can use the .dropna() method. This method drops all obser-
vations for which unemployment_rate == NaN.

[73]: unemployment.dropna(subset=['unemployment_rate'], inplace=True)
unemployment.head()

[73]: country seasonality year_month year month unemployment \
0 at nsa 1993.01 1993 1 171000
1 at nsa 1993.02 1993 2 175000
2 at nsa 1993.03 1993 3 166000
3 at nsa 1993.04 1993 4 157000
4 at nsa 1993.05 1993 5 147000

unemployment_rate country_group name_en
0 4.5 eu Austria
1 4.6 eu Austria
2 4.4 eu Austria
3 4.1 eu Austria
4 3.9 eu Austria

[74]: # Check the shape of the modified DataFrame
unemployment.shape

[74]: (19851, 9)

Sorting Values

If we want to know what the highest unemployment rates were, we can use the .sort_values() method to sort the
data.

This cell sorted the data in descending order, and printed the first 10 rows.

[75]: unemployment.sort_values('unemployment_rate', ascending=False)[:10]

[75]: country seasonality year_month year month unemployment \
15526 pl nsa 2004.02 2004 2 3531000
15525 pl nsa 2004.01 2004 1 3520000
15514 pl nsa 2003.02 2003 2 3460000
5663 es sa 2010.09 2010 9 4773000
15527 pl nsa 2004.03 2004 3 3475000
5999 es trend 2010.09 2010 9 4769000

(continues on next page)
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6000 es trend 2010.10 2010 10 4760000
15513 pl nsa 2003.01 2003 1 3466000
5664 es sa 2010.10 2010 10 4758000
5998 es trend 2010.08 2010 8 4742000

unemployment_rate country_group name_en
15526 20.9 eu Poland
15525 20.7 eu Poland
15514 20.7 eu Poland
5663 20.6 eu Spain
15527 20.6 eu Poland
5999 20.6 eu Spain
6000 20.6 eu Spain
15513 20.6 eu Poland
5664 20.6 eu Spain
5998 20.5 eu Spain

Several additional functionalities of pandas will be described in the next lectures.

7.8.9 References

1. Introduction to Pandas, Python Data Wrangling by D-Lab at UC Berkley, available at: https://github.com/
dlab-berkeley/introduction-to-pandas.

2. Pandas documentation, available at https://pandas.pydata.org/pandas-docs/stable/.
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7.9.1 9.1 Introduction to Matplotlib

Matplotlib is a plotting library for Python created by John D. Hunter in 2003. Matplotlib is among the most widely
used plotting libraries and is often the preferred choice for many data scientists and machine learning practitioners.
The Matplotlib gallery on the official website at https://matplotlib.org/gallery/index.html contains code examples for
creating various kinds of plots.

Matplotlib has two general interfaces for plotting: a state-based approach that is similar to Matlab’s way of plotting,
and a more Pythonic object-oriented approach. We will start with discussing the state-based approach, and continue
afterward with the object-oriented approach.

The main plotting functions of Matplotlib are contained in the pyplot module, which is almost always imported as
plt.

[1]: import matplotlib.pyplot as plt

7.9.2 9.2 The State-based Approach

As we mentioned, the state-based approach was developed based on the way plotting is done in Matlab. I.e., we call
different functions that each take care of an aspect of the plot.

Let’s create a few plots to show how the state-based approach works.

[2]: y = [2, 4, 1, 6, 7]

plt.plot(y, 'o') # plot the data
plt.show() # this line visualizes the plot
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As you can see, the state-based approach includes a function call to plt.plot and afterward we call plt.show to
show the plot in the notebook (or if we run this code from a script, the plot will show in an external image viewer ).
Note that technically the plt.show call is not necessary to render the plot in Jupyter notebooks, but it is recommended
to do it anyway as it is good practice.

In the above plot we provided only the list y, and Matplotlib plotted each value using the indices in the list for the
x-axis. I.e., the value 4 has coordinate 1 on the x-axis, and value 6 has coordinate 3 on the x-axis. The string 'o' in
plt.plot indicates that we didn’t want to plot a line, but we wanted to plot the values with circle markers.

Also, when working with Jupyter notebooks, each line of code that is part of the same plot should be defined in the
same cell. Otherwise, the elements of the plot won’t be included in the same figure.

If we pass two arguments to plt.plot, then the first argument will represent the positions on the x-axis, and the second
argument will represent the positions on the y-axis. This is shown in the next cell.

[3]: x = [3, 4, 5, 6, 7, 8, 9]
y = [1, 2, 3, 4, 5, 6, 7]

plt.plot(x, y) # plot the data
plt.xlabel('x', fontsize=12) # set the x-axis label
plt.ylabel('y', fontsize=12) # set the y-axis label
plt.show() # this line visualizes the plot
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Axis Labels

When graphing data, it is always a good idea to provide axis labels. In the above graph, we used plt.xlabel and
plt.ylabel to provide the corresponding labels for the x-axis and y-axis. And, we can also control the size of axes
labels by assigning a value to the keyword fontsize.

Controlling Line Properties

The plt.plot function is the most basic function to create any plot of paired data points (x, y). By default, it creates
a line plot (as shown above), but there are many optional parameters in plt.plot allowing to create many different
variations. For example, instead of a line, we can plot the data as separate red markers by specifying the marker format
in the third argument 'o' to indicate points/circles as markers, and the color by setting the argument c for color to
'red'.

[4]: plt.plot(x, y, 'o', c='red')
plt.show()

## This above plt.plot function is equivalent to:
# plt.plot(x, y, marker='o', color='red', linestyle='')
## And is also equivalent to:
# plt.plot(x, y, 'ro')

In the next cell, the third argument is related to the line format and may be used to specify three things at once: whether
we want markers (and which type of marker), whether we want a line (and which type of line), and which color the
markers/line should have. So, to create a blue line, you may specify '-b'. To create a yellow ('y') dashes-dots line
('-.') with star markers ('*'), we can use '*-.y'.
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[5]: plt.plot(x, y, '*-.y')
plt.show()

Matplotlib also allows defining colors by using the color keyword argument, where several basic colors can be defined
with their names (e.g., “red” below), or many colors can be definted with their RGB hex codes.

[6]: import numpy as np
x = np.linspace(0, 5, 10)

plt.plot(x, x+1, color="red")
plt.plot(x, x+2, color="#1155dd") # RGB hex code for a bluish color
plt.plot(x, x+3, color="#15cc55") # RGB hex code for a greenish color
plt.show()
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The supported color abbreviations with the single letter codes include:

character color
b blue
g green
r red
c cyan
m magenta
y yellow
k black
w white

The formats for line styles include the following:

character description
- solid line style
– dashed line style
-. dash-dot line style
: dotted line style

The following symbols can be used to specify markers:
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character description
. point marker
, pixel marker
o circle marker
v triangle_down marker
^ triangle_up marker
< triangle_left marker
> triangle_right marker
1 tri_down marker
2 tri_up marker
3 tri_left marker
4 tri_right marker
s square marker
p pentagon marker
* star marker
h hexagon1 marker
H hexagon2 marker
+ plus marker
x x marker
D diamond marker
d thin_diamond marker
‘ vline marker
**_** hline marker

Line and Marker Styles

We can also use other keywords to enter various other information in plt.plot. To change the line width, we can
use the linewidth or lw keyword argument. The line style can be selected using the linestyle or ls keyword
arguments. Similarly, the marker type and marker size can be selected using the marker and markersize keyword
arguments.

[7]: plt.figure(figsize=(12,6))

plt.plot(x, x+1, color="blue", linewidth=0.5)
plt.plot(x, x+2, color="blue", linewidth=1.5)
plt.plot(x, x+3, color="blue", linewidth=2.0)
plt.plot(x, x+4, color="blue", linewidth=4.0)

# possible linestyle options ‘-‘, ‘--’, ‘-.’, ‘:’
plt.plot(x, x+5, color="red", lw=2, linestyle='-')
plt.plot(x, x+6, color="red", lw=2, ls='-.')
plt.plot(x, x+7, color="red", lw=2, ls=':')

# possible marker symbols: marker = '+', 'o', '*', 's', ',', '.', '1', '2', '3', '4', ...
plt.plot(x, x+9, color="green", ls='', marker='+')
plt.plot(x, x+10, color="green", ls='', marker='o')
plt.plot(x, x+11, color="green", ls='', marker='s')
plt.plot(x, x+12, color="green", ls='', marker='1')

# marker size and color
plt.plot(x, x+13, color="purple", ls='', marker='o', markersize=2)

(continues on next page)
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(continued from previous page)

plt.plot(x, x+14, color="purple", ls='', marker='o', markersize=4)
plt.plot(x, x+15, color="purple", ls='', marker='o', markersize=8, markerfacecolor="red")
plt.plot(x, x+16, color="purple", ls='', marker='s', markersize=8,

markerfacecolor="yellow", markeredgewidth=2, markeredgecolor="blue")
plt.show()

Multiple Lines in a Plot

We can plot multiple lines within a single plot, by calling plt.plot (or any other plotting function) multiple times.
Below, we used two plt.plot functions to plot the squared values in the same figure.

Legend

Importantly, we can include a legend showing what each line represents using plt.legend. For the legend we pass
a list or tuple of legend strings for the previously defined lines or curves. For the legend to be displayed correctly,
the order of the labels ['y', 'y squared'] needs to match the order of the plotting calls. We can also specify the
preferred location of the legend with the keyword loc.

[8]: plt.plot(x, x, '*b') # only plot markers (*) in blue
plt.plot(x, x**2, '^--y') # plot both markers (^) and a dashed line (--) in yellow

# Note that the plt.legend function call should come *after* the plotting calls
# and you should give it a *list* with strings
plt.legend(['y', 'y squared'], loc='upper left')
plt.show()
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Another method for adding a legend is to use the label='label_text' keyword argument when plots are added to
the figure, and then use the legend method without arguments, as shown in the code below. The advantage of this
method is that if lines/curves are added or removed from the figure, the legend is automatically updated accordingly.

One more thing to notice in the plot below is that when we plot multiple items in the same figure, if we don’t specify the
format and color, Matplotlib will automatically choose a different color for the different items (first one is blue, second
one is orange, third one is green, etc.).

[9]: plt.plot(x, x, label='y')
plt.plot(x, x**2, label='y_square')
plt.plot(x, x**3, label='y_cube')
plt.legend()
plt.show()
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Anatomy of a Figure

A general anatomy of a figure is shown below depicting the different items and properties of a figure.
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Figure source: Refer-
ence [3].

Figure Title, Ticks, Tick Labels

Matplotlib provides various functions to modify figures, and for instance, if we wish we can add a title with plt.title
or change the default ticks and tick labels using plt.xticks (for the x-axis ticks/tick labels) and plt.yticks (for
the y-axis ticks/tick labels). An example follows below, which shows how we can set custom tick labels for each tick
position.

[10]: plt.title("Plot with modified x-axis ticks and tick labels!", fontsize=12)
plt.plot(x, x**2)
plt.xticks([0, 2, 4, 6], ['0th', '2nd', '4th', '6th']) # a list of x-axis positions,␣
→˓followed by a list of x-tick labels
plt.grid(True)
plt.show()
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Range

Also, we can control the range of the axes by the functions plt.xlim and plt.ylim.

[11]: plt.plot(x, x**2)
plt.xlim(-1, 8)
plt.ylim(-1, 28)
plt.show()
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Similarly, we can control the range with the plt.axis() function which takes a list of arguments [xmin, xmax,
ymin, ymax].

[12]: plt.plot(x, x**2)
plt.axis([-1, 8, -1, 28])
plt.show()
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7.9.3 9.3 Figure Size, Aspect Ratio, and DPI

Matplotlib allows to specify the aspect ratio, DPI (dots-per-inch resolution), and figure size by calling the plt.figure
function, and using the figsize and dpi keyword arguments. figsize is a tuple of the width and height of the figure
in inches, and dpi is the dots-per-inch (pixel per inch) resolution. The larger the DPI, the larger the resolution of the
figure.

If we don’t include any arguments in plt.figure, Matplotlib creates a new figure with default size of 6.4 x 4.8 inches,
and a default DPI of 100.

The following example is used to create an 8x4 inches figure (width x height) with 100 DPI, that is, the figure is 800x400
pixels.

[13]: plt.figure(figsize=(8,4), dpi=100)
plt.plot(x, x)
plt.plot(x, x**2)
plt.plot(x, x**3)
plt.legend(['y', 'y square', 'y_cube'])
plt.show()
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Similarly, the following figure is 2x6 inches (width x height) with 100 DPI, i.e., it is 200x600 pixels.

[14]: plt.figure(figsize=(2,6), dpi=100)
plt.plot(x, x)
plt.plot(x, x**2)
plt.plot(x, x**3)
plt.legend(['y', 'y square', 'y_cube'])
plt.show()
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7.9.4 9.4 Saving Figures

To save a figure to a file we can use the plt.savefig function with the name of the figure as argument. By using the
.png file suffix in the name "figure_1.png" below, we chose to save the figure in the PNG file format.

[15]: plt.figure(figsize=(4,4))
plt.plot(x, x)
plt.plot(x, x**2)
plt.plot(x, x**3)
plt.legend(['y', 'y square', 'y_cube'])
# plt.show() - this line is not needed when saving a figure
plt.savefig("figure_1.png")
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We can also optionally specify the DPI of the figure in plt.savefig(), as well as choose another output format (e.g.,
JPG).

[16]: plt.figure(figsize=(4,4))
plt.plot(x, x)
plt.plot(x, x**2)
plt.plot(x, x**3)
plt.legend(['y', 'y square', 'y_cube'])
plt.savefig("figure_2.jpg", dpi=200)
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Matplotlib can generate high-quality figures in various formats, including PNG, JPG, EPS, SVG, PGF, and PDF. The
file format can be conveniently specified via the file suffix (.eps, .svg, .jpg, .png, .pdf, .tiff). Using a vector graphics
format (.eps, .svg, .pdf) is often recommended, because it usually results in smaller file sizes than bitmap graphics (.jpg,
.png, .bmp, .tiff) and does not have a limited resolution.

[17]: plt.figure(figsize=(4,4))
plt.plot(x, x)
plt.plot(x, x**2)
plt.plot(x, x**3)
plt.legend(['y', 'y square', 'y_cube'])
plt.savefig("figure_3.pdf", dpi=200)
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7.9.5 9.5 Other Plotting Functions

Scatter Plots

There are many different plotting functions in Matplotlib besides plt.plot. Scatterplots can be created using plt.
scatter.

[18]: x2 = np.linspace(0, 10, 100)
plt.scatter(x2, np.sin(x2)) # This is equivalent to plt.plot(x, y, 'o') !
plt.title("Scatterplot", fontsize=12)
plt.show()
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[19]: plt.scatter(x2, np.sin(x2), color='green', marker='+')
plt.show()
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Bar Plots

Bar graphs are created using plt.bar. We pass in a list of values or strings for the x-axis, and a list of heights for the
bars on the y-axis. We can optionally set a color for the bars (and if we don’t, the default color is blue).

[20]: # First argument determines the location of the bars on the x-axis
# and the second argument determines the height of the bars
bar_labels = ['bar 1', 'bar 2', 'bar 3']
means = [5, 8, 10]
plt.bar(bar_labels, means)
plt.title("Bar Plot", fontsize=12)
plt.show()
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We can also add error bars to the bar plot using the yerr (y-error) keyword in plt.bar.

[21]: bar_labels = [1, 2, 3]
means = [5, 8, 10]
variances = [1, 2, 4]
plt.bar(bar_labels, means, yerr=variances, color='gold')
plt.title("Bar Plot", fontsize=12)
plt.show()
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And, we can create horizontal bar plots using plt.barh. In this case, the first argument is a list of positions on the
y-axis, and the second argument is a list of values of the bars along the x-axis.

[22]: labels = ['Electric', 'Solar', 'Diesel', 'Unleaded']
values = [2, 1, 4, 6]
plt.barh(labels, values, color='cyan')
plt.show()
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Histograms

The function plt.hist is used for this purpose.

[23]: # Let's generate some random data from normal distribution
random_norm = np.random.randn(1000)

plt.title("Histogram", fontsize=12)
plt.hist(random_norm)
plt.xlabel("Value", fontsize=10)
plt.ylabel("Frequency", fontsize=10)
plt.show()
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Histograms of 2 normal distributions with different mean and variance values are shown below. Note that the alpha
keyword controls the transparency level of the histograms, where 0.3 corresponds to 30% transparency. The bins
keyword controls the number of bins to divide the values in the distributions.

[24]: # Mean 0 and variance 20
random_norm1 = 0 + 20*np.random.randn(1000)
# Mean 15 and variance 10
random_norm2 = 15 + 10*np.random.randn(1000)

# fixed bin size
bins = np.arange(-100, 100, 5)

plt.hist(random_norm1, bins=bins, facecolor='c', alpha=0.5)
plt.hist(random_norm2, bins=bins, facecolor='r', alpha=0.3)
plt.show()
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Boxplots

The function plt.boxplot can be used to plot the distribution of data with a boxplot, showing the median of the data
(the vertical line in the middle), the interquartile ranges (i.e., the ends of the boxes represent 25 and 75 percentiles),
and the minimum and maximum values of the data (that is, the far end of the lines extending from the boxes, referred
to as “whiskers”). The values outside of the whiskers are outliers in the data.

Boxplots for the two random distributions from the previous example are shown below.

[25]: plt.boxplot([random_norm1, random_norm2])
plt.show()
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7.9.6 9.6 Multiple Plots in Figures

Matplotlib allows creating several plots in the same figure. This allows working with multiple datasets at once. There
are several different ways to do this. The simplest way is to create a new figure to add the second plt.plot function.

Here we created two line plots. When we called plt.figure(2), it created a top-level container for the plt.plot
function that follows after it. Thus, the first plot is added to figure one (which is created automatically when plt.plot
is called), and the second plot is added to figure 2. When we call show() at the end, Matplotlib will open two windows
with each graph shown separately.

[26]: numbers1 = [2, 4, 1, 6]
numbers2 = [5, 1, 10, 3]

plt.plot(numbers1, '*b')

second_plot = plt.figure(2)
plt.plot(numbers2, 'or')
plt.show()
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Matplotlib also supports adding two or more plots to a single figure, by using the function subplot. The arguments
in subplot define the number of rows, the number of columns, and the number of each subplot.

[27]: plt.subplot(1,2,1)
plt.plot(x, x**2, 'r--')
plt.subplot(1,2,2)
plt.plot(x, x**3, 'g*-');

In the following figure, the right plots use a logarithmic scale with the function plt.yscale("log"). One more thing
to note is that the arguments in plt.subplots do not need to be separated by commas.

[28]: plt.subplot(221)
plt.plot(x, x**2)
plt.title("Normal scale (x^2)")

plt.subplot(222)
plt.plot(x, x**2)
plt.yscale("log")
plt.title("Logarithmic scale (x^2)")

plt.subplot(223)
plt.plot(x, np.exp(x))
plt.title("Normal scale (exp(x))")

plt.subplot(224)
plt.plot(x, np.exp(x))
plt.yscale("log")

(continues on next page)
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(continued from previous page)

plt.title("Logarithmic scale (exp(x))")

plt.tight_layout()

7.9.7 9.7 The Object-oriented Approach

The state-based plotting approach in Matplotlib is easy to use and pretty straightforward, however for creating more
complex visualizations, the alternative object-oriented approach provides advantages.

The main idea of the object-oriented approach in Matplotlib is to create objects to which we can apply methods. In
this approach, each Matplotlib plot consists of a Figure object and one or more Axes objects. Essentially, the Figure
object represents the entire canvas that defines the figure. The Axes objects contain the actual visualizations that we
want to include in the Figure. This is shown below. However, note that an Axes object is different than the axes (x-axis
and y-axis) of a plot. And, there may be one or multiple Axes objects within a given Figure (e.g., two line plots next to
each other).

The real advantage of this approach becomes apparent when more than one figure is created, or when a figure contains
more than one subplot.
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Figure source: Reference [3].

To use the object-oriented approach, we create a new Figure object that defines the canvas to draw on by using plt.
figure(). In the next cell, we passed the newly created Figure instance to the fig name. As we explained before,
plt.figure can take optional arguments like figsize (width and height in inches) and dpi.

Next, from the Figure class instance figwe create a new Axes instance axes using the add_axesmethod. In the object-
oriented approach, plotting is done through the methods of the newly created axes object, instead of the function plot
(or scatter, bar) from the pyplot module. And, even in the object-oriented approach we need the function plt.show
to render the figure.

[29]: fig = plt.figure()

axes = fig.add_axes([0, 0, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

axes.plot(x, x**2, 'r')
axes.set_xlabel('x')
axes.set_ylabel('y')
axes.set_title('title')
plt.show()
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Basically all functions from the state-based approach are available as methods in the object-oriented approach. Also,
some pyplot functions are prefixed with set_ in the object-oriented interface. For instance, plt.title or plt.xlabel
functions used with the state-based approach, in the object-oriented approach are replaced with axes.set_title or
axes.set_xlabel.

The advantage of the object-oriented approach is that it enables having full control of where the plot axes are placed,
and we can easily add more than one axis to the figure.

[30]: fig = plt.figure()

axes1 = fig.add_axes([0, 0, 0.8, 0.8]) # main axes
axes2 = fig.add_axes([0.1, 0.4, 0.4, 0.3]) # inset axes

# main figure
axes1.plot(x, x**2, 'r')
axes1.set_xlabel('x')
axes1.set_ylabel('y')
axes1.set_title('Main Figure Title', fontsize=12)

# insert
axes2.plot(x**2, x, 'g')
axes2.set_xlabel('y')
axes2.set_ylabel('x')

(continues on next page)
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(continued from previous page)

axes2.set_title('Insert Figure Title', fontsize=10)

fig.savefig("figure_4.jpg", dpi=200)

In the above example, we saved the figure using the method fig.savefig, instead of plt.savefig that we used in
the state-based approach.

Instead of creating the Figure and Axes objects separately, we can use the function plt.subplots to create them both
at the same time, as in the next example. As the name suggests, this function also allows to create multiple subplots
where each subplot corresponds to one Axes object). The plt.subplots function accepts as arguments the number
of rows and columns nrows and ncols, and optionally the figure size.

[31]: fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(10, 3))
plt.show()
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Let’s check out the type of the variable axes in the above code.

[32]: type(axes)

[32]: numpy.ndarray

When we create a figure with more than one Axes object, the function plt.subplots returns axes as a numpy ndarray.
To access the individual Axes objects from the numpy array, we can index them axes[0], axes[1], as in the next cell.

[33]: fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(10, 3))

axes[0].plot(x, x, 'r')
axes[0].set_xlabel('x')
axes[0].set_ylabel('y')
axes[0].set_title('Subfigure 1.1')

axes[1].plot(x, x**2, 'g')
axes[1].set_xlabel('x')
axes[1].set_ylabel('y')
axes[1].set_title('Subfigure 1.2')

axes[2].plot(x, x**3, 'b')
axes[2].set_xlabel('x')
axes[2].set_ylabel('y')
axes[2].set_title('Subfigure 1.3')

plt.show()
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Note also that the above figure has overlapping figures and labels for the y-axis. To deal with that, we can use fig.
tight_layout method, which automatically adjusts the positions of the axes on the figure canvas so that there is no
overlapping content.

[34]: fig, axes = plt.subplots(nrows=1, ncols=2)

for ax in axes:
ax.plot(x, x**2, 'r')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('title')

fig.tight_layout()
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Another way to add sub-figures in Matplotlib is by using the subplot2grid function, which allows to specify the
length of the span of the subplots across columns or rows.

[35]: fig = plt.figure()
ax1 = plt.subplot2grid((3,3), (0,0), colspan=3)
ax2 = plt.subplot2grid((3,3), (1,0), colspan=2)
ax3 = plt.subplot2grid((3,3), (1,2), rowspan=2)
ax4 = plt.subplot2grid((3,3), (2,0))
ax5 = plt.subplot2grid((3,3), (2,1))
fig.tight_layout()
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Annotating text in Matplotlib figures can be done using the text function. It supports LaTeX formatting just like axis
label texts and titles. Also, the spines function provides control of the appearance of the borders in the figure.

[36]: fig, ax = plt.subplots()

ax.spines['right'].set_color('blue')
ax.spines['top'].set_color('red')
ax.spines['left'].set_color('green')

ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('right')

ax.plot(x, x**2, x, x**3)

ax.text(4, 25, r"$y=x^2$", fontsize=12, color="blue")
ax.text(3.6, 80, r"$y=x^3$", fontsize=12, color="green")

plt.show()
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And, here is one more example where sine wave plots are created with different frequencies and amplitudes.

[37]: def create_sine_wave(timepoints, frequency=1, amplitude=1):
""" Creates a sine wave with a given frequency and amplitude for a given set of␣

→˓timepoints.

Parameters
----------
timepoints : list

A list with timepoints (assumed to be in seconds)
frequency : int/float

Desired frequency (in Hz.)
amplitude : int/float

Desired amplitude (arbitrary units)

Returns
-------
sine : list

A list with floats representing the sine wave
"""
sine = [amplitude * math.sin(2 * math.pi * frequency * t) for t in timepoints]
return sine

import math
timepoints = [i / 100 for i in range(500)]

(continues on next page)
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(continued from previous page)

# in the next line, sharex=True and sharey=True are used to force the same range across␣
→˓subplots
fig, axes = plt.subplots(ncols=3, nrows=3, figsize=(10, 10), sharex=True, sharey=True)
amps = [1, 2, 4]
freqs = [1, 3, 5]
for i in range(len(amps)):

for ii in range(len(freqs)):
sine = create_sine_wave(timepoints, frequency=freqs[ii], amplitude=amps[i])
axes[i, ii].plot(timepoints, sine)
axes[i, ii].set_title(f"Freq = {freqs[ii]}, amp = {amps[i]}")
axes[i, ii].set_xlim(0, max(timepoints))
if ii == 0:

axes[i, ii].set_ylabel("Activity", fontsize=12)

if i == 2:
axes[i, ii].set_xlabel("Time", fontsize=12)

fig.tight_layout()
plt.show()

7.9. Lecture 9 - Data Visualization with Matplotlib 263



Fall 2023 Python Programming for Data Science, Release 0.1

7.9.8 Appendix

The material in the Appendix is not required for quizzes and assignments.
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Formatting Text in Matplotlib with LaTeX

Matplotlib has great support for LaTeX, by using dollar signs to encapsulate LaTeX in any text, such as legend, title,
label, etc. (for example, "$y=x^3$").

However, we can run into a slight problem with LaTeX code and Python text strings. In LaTeX, we frequently use the
backslash in commands, for example \alpha to produce the symbol 𝛼. But the backslash already has a meaning in
Python strings (the escape code character). To avoid problems in Python with Latex code, we need to use “raw” text
strings that are prepended with an ‘r’, like r"\alpha" instead of "\alpha".

[38]: fig, ax = plt.subplots()

ax.plot(x, x**2, label=r"$y = \alpha^2$")
ax.plot(x, x**3, label=r"$y = \alpha^3$")
ax.legend(loc='upper left')
ax.set_xlabel(r'$\alpha$', fontsize=18)
ax.set_ylabel(r'$y$', fontsize=18)
ax.set_title('Title of Appendix Figure');

We can also change the global font size and font family, which applies to all text elements in a figure (tick labels, axis
labels and titles, legends, etc.).

[39]: import matplotlib

(continues on next page)
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(continued from previous page)

# Update the matplotlib configuration parameters:
matplotlib.rcParams.update({'font.size': 18, 'font.family': 'serif'})

[40]: fig, ax = plt.subplots()

ax.plot(x, x**2, label=r"$y = \alpha^2$")
ax.plot(x, x**3, label=r"$y = \alpha^3$")
ax.legend(loc=2) # upper left corner
ax.set_xlabel(r'$\alpha$')
ax.set_ylabel(r'$y$')
ax.set_title('Title of Appendix Figure');

And, we can restore the font and font size back to the defaults.

[41]: # restore
matplotlib.rcParams.update({'font.size': 12, 'font.family': 'sans'})
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Colormap and Contour Figures

Colormaps and contour figures are useful for plotting functions of two variables. In most of these functions we will
use a colormap to encode one dimension of the data. There are a number of predefined colormaps, and it is relatively
straightforward to define custom colormaps.

The following cell defines a two-dimensional function, and afterward, plotting the colormap is illustrated with: pcolor,
imshow, and contour. The function fig.colorbar is used to add a colorbar.

[42]: # Create a two dimensional function
phi_m = np.linspace(0, 2*np.pi, 100)
phi_p = np.linspace(0, 2*np.pi, 100)

alpha = 0.7
phi_ext = 2 * np.pi * 0.5

def flux_qubit_potential(phi_m, phi_p):
return 2 + alpha - 2 * np.cos(phi_p) * np.cos(phi_m) - alpha * np.cos(phi_ext -␣

→˓2*phi_p)

X,Y = np.meshgrid(phi_p, phi_m)
Z = flux_qubit_potential(X, Y).T

pcolor

[43]: fig = plt.figure()
ax = fig.add_axes([0, 0, 0.8, 0.8])

p = ax.pcolor(X/(2*np.pi), Y/(2*np.pi), Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(),␣
→˓vmax=abs(Z).max())
cb = fig.colorbar(p, ax=ax)
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imshow

[44]: fig = plt.figure()
ax = fig.add_axes([0, 0, 0.8, 0.8])

im = ax.imshow(Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(),␣
→˓extent=[0, 1, 0, 1])
im.set_interpolation('bilinear')

cb = fig.colorbar(im, ax=ax)
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contour

[45]: fig = plt.figure()
ax = fig.add_axes([0, 0, 0.8, 0.8])

cnt = ax.contour(Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(),␣
→˓extent=[0, 1, 0, 1])
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3D Figures

To use 3D graphics in Matplotlib, we first need to create an instance of the Axes3D class. 3D axes can be added to a
matplotlib figure in exactly the same way as 2D axes. Or, they can be added by passing a projection='3d' keyword
argument to the add_axes or add_subplot methods.

[46]: from mpl_toolkits.mplot3d.axes3d import Axes3D

Surface plots

[47]: fig = plt.figure(figsize=(14,6))

# `ax` is a 3D-aware axis instance because of the projection='3d' keyword argument to add_
→˓subplot
ax = fig.add_subplot(1, 2, 1, projection='3d')
p = ax.plot_surface(X, Y, Z, rstride=4, cstride=4, linewidth=0)

# surface_plot with color grading and color bar
ax = fig.add_subplot(1, 2, 2, projection='3d')
p = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=matplotlib.cm.coolwarm,␣
→˓linewidth=0, antialiased=False)
cb = fig.colorbar(p, shrink=0.5)
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Wire-frame plot

[48]: fig = plt.figure(figsize=(8,6))

ax = fig.add_subplot(1, 1, 1, projection='3d')

p = ax.plot_wireframe(X, Y, Z, rstride=4, cstride=4)
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Contour plots with projections

[49]: fig = plt.figure(figsize=(8,6))

ax = fig.add_subplot(1,1,1, projection='3d')

ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
cset = ax.contour(X, Y, Z, zdir='z', offset=-np.pi, cmap=matplotlib.cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-np.pi, cmap=matplotlib.cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=3*np.pi, cmap=matplotlib.cm.coolwarm)

ax.set_xlim3d(-np.pi, 2*np.pi);
ax.set_ylim3d(0, 3*np.pi);
ax.set_zlim3d(-np.pi, 2*np.pi);
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Change the view angle

We can change the perspective of a 3D plot using the view_init method, which takes two arguments: elevation
and azimuth angle (in degrees).

[50]: fig = plt.figure(figsize=(12,6))

ax = fig.add_subplot(1,2,1, projection='3d')
ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
ax.view_init(30, 45)

ax = fig.add_subplot(1,2,2, projection='3d')
ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
ax.view_init(70, 30)

fig.tight_layout()
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7.10.1 10.1 Introduction to SQL

SQL (Structured Query Language) is a programming language designed for managing data in Relational Data Base
Management Systems (RDBMS), or for stream processing in Relational Data Stream Management Systems (RDSMS).
A relational database is a database that stores related information across multiple tables, and allows to query informa-
tion in more than one table at the same time. Within a table, the data is organized in a tabular format with rows and
columns.

SQL was initially developed in 1970, and since then different companies and vendors implemented SQL in their prod-
ucts with some variations. To bring greater conformity in the variants of SQL, the American National Standards
Institute (ANSI) published the first SQL standard in 1986. The standard has been updated every few years since then.

Today, there are several variants of SQL for database management systems available, some of which were developed
by companies such as IBM and Oracle, as well as there are variants developed by communities, such as MySQL,
PostgreSQL, MariaDB, etc. Although these variants of SQL have certain differences, they are based on the basic SQL
syntax, and are quite similar.

The main advantages of SQL include standardized syntax (since all relational database systems have an SQL query
interpreter built-in), and is easy-to-understand due to using English-like commands and functions.

Relational Databases

Relational databases store information in multiple tables, which allows to work with more complex data, and have
flexibility in the way the data is organized. An example is shown in the next figure, where a database is shown that is
used for managing the HR data of a small business.

This database has seven tables:

• Jobs table stores data related to job title and salary range.

• Employees table stores the data of employees.

• Dependents table stores the employee’s dependents.

• Departments table stores department data.

• Regions table stores the data of regions such as Asia, Europe, America, Middle East, and Africa.
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• Countries table stores the data of countries where the company is doing business.

• Locations table stores the location of the departments of the company.

Each table contains many records with rows and columns (similar to an Excel spreadsheet), and the records have rela-
tionships across the tables. Using multiple tables in a relational database allows us to avoid duplication of information,
in comparison to using a single table to store all information. Also, it provides flexibility in how we work with the data.
To establish relationships between the records in different tables we need to use an ID or identifier for each employee.
The identifier for each employee, or in general for each record (row) in a relational database, is referred to as primary
key. For instance, each employee can be assigned an ID value (such as employee 162), and each table would have an
ID column (primary key column) to establish the relationship with the other tables in the database.

Figure source: Reference [1].

SQL for Data Science

SQL is a very important tool for data scientists, data analysts, developers, and database administrators. In particular,
as many companies become data-driven, SQL becomes an essential tool for handling data stored in databases and
performing various data analytics operations, such as calculating data statistics, updating records, removing duplicate
columns, calculating correlations between records, and similar.
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SQL versus Pandas

SQL has similarities with the Pandas library, as it offers similar functionality to Pandas, which includes data manipu-
lation over rows and columns, data merging, grouping, dealing with missing values, and similar. However, Pandas is
not a relational database management library, but it is a data frame library.

Still, Pandas offers additional functions and flexibility for handling and manipulating tabular data, and many users
download databases to their local machine, and afterward use Pandas for data processing, rather than using SQL to
process the data on the server.

The benefits of using SQL over Pandas can depend on the task. Several considerations include:

• In the case of a large database of information (e.g., GigaBytes of data), downloading the database to the local
machine to be processed by Pandas may be slow or infeasible. Pandas is more suitable for processing small to
medium size databases in Python.

• Even if the user can download the data on the local machine for processing with Pandas, it may be required to
apply some level of preprocessing or organizing the data on the server using SQL.

• Some tasks can require that the data processing is done in the existing database. Also, when the tasks require
fast data retrieval and processing, SQL can be more efficient than Pandas.

SQLite

In this lecture, we will use SQLite which implements a self-contained, serverless SQL database engine. SQLite is
lightweight in terms of setup and required recourses. Unlike most other SQL variants, SQLite does not have a separate
server process, and it reads and writes directly to disk files. That is, it does not use the client/server model. Because
it has no server managing access to it, SQLite is not suitable in multiuser environments where multiple people can
simultaneously edit files.

7.10.2 10.2 Using SQLite with Python

To demonstrate the use of SQLite with Python, in this lecture we will use magic commands in Jupyter Notebook. Magic
commands are special commands which are not valid Python code, but perform certain actions in a Jupyter Notebook.
They begin with the % symbol.

The library ipython-sql offers the magic functions %sql and %%sql, which allow to connect to a database and use
standard SQL commands in Jupyter Notebooks. To run ipython-sql on your computer, it needs to be installed (e.g.,
by pip install ipython-sql). If we run the notebooks on Google Colab, ipython-sql comes preinstalled.

To load the ipython-sql library we will use %load_ext sql as in the next code. %load_ext is a magic command
that loads an external package that can add new magic commands.

[1]: %load_ext sql

The magic command %sql is used to execute an SQL query that is contained in a single statement in a Jupyter notebook
cell, and %%sql allows to execute an SQL query that is contained in multiple SQL statements in a single cell.
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7.10.3 10.3 Create a New Table

To create a new table we will use the SQL command CREATE TABLE, as shown in the next cell. If the table already
exists in the database, an error message will show up.

In order to establish a connection to the newly created table, we used %%sql sqlite:// in the cell below. If we wanted
to create a new table in an existing database to which we have already established a connection, we could have used
only the magic command %%sql.

SQL has many commands or keywords that have special meaning, such as SELECT, INSERT, DELETE, and these
keywords cannot be used as names of tables, columns, or other objects.

To make SQL language more readable, it is a convention to write the SQL commands with uppercase letters, and the
other variables and identifiers with lowercase letters. However, this is not required, as the SQL commands are not
case-sensitive.

Let’s create a table called cars which has 3 columns: id, name, and price. In the cell below, we specify that the
values of id and price columns are integers, denoted by the INTEGER keyword. The names in the name column have
a character string type (VARCHAR, i.e., variable-length character string) and should have at most 50 characters. We also
specified with NOT NULL that the values should not be missing in the id and name columns, i.e., when we insert data
into the table we have to specify the values for the NON NULL columns.

Each table can have only one PRIMARY KEY column that uniquely identifies each row in the table, and prevents from
inserting duplicate rows in the table. For the table below we set PRIMARY KEY to the id column. It is not required to
define a primary key, however, it is a good practice to do it for every table.

[2]: %%sql sqlite://
CREATE TABLE cars(

id INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(50) NOT NULL,
price INTEGER);

Done.

[2]: []

The table that we just created is empty, and to add data to the table we will use the INSERT statement. In each row we
provide values for id, name, and price.

When using multiple statements in SQL, the statements in each line need to be separated with a semicolon ;. The last
statement in a cell does not have to be followed by a semicolon.

Inline comments can be inserted by using two consecutive hyphens -- that comment the rest of the line, as shown in
the second line of the next cell.

And also, comments that span multiple lines can be inserted by using the multiline C-style notation /* comment */
as in the last lines in the cell.

Note also that we used just the magic command %%sql in this cell, and we didn’t need to write %%sql sqlite:// as
in the above cell. The reason is that in the above cell we used %%sql sqlite:// to establish a connection to the newly
created table. Once a connection is established, we can use only %sql or %%sql to work with the table.

[3]: %%sql
INSERT INTO cars VALUES(1,'Audi',52642); --Two consecutive hyphens (--) comment the rest␣
→˓of the line
INSERT INTO cars VALUES(2,'Mercedes',57127);
INSERT INTO cars VALUES(3,'Skoda',9000);
INSERT INTO cars VALUES(4,'Volvo',29000);
INSERT INTO cars VALUES(5,'Bentley',350000);

(continues on next page)
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(continued from previous page)

INSERT INTO cars VALUES(6,'Citroen',21000);
INSERT INTO cars VALUES(7,'Hummer',41400);
INSERT INTO cars VALUES(8,'Volkswagen',21600);
/* A comment that spans
more than one line */

* sqlite://
1 rows affected.
1 rows affected.
1 rows affected.
1 rows affected.
1 rows affected.
1 rows affected.
1 rows affected.
1 rows affected.
Done.

[3]: []

We can display the table with the following code. Notice again that we used a single % in the magic command %sql,
since we have only one line of code.

[4]: %sql SELECT * from cars

* sqlite://
Done.

[4]: [(1, 'Audi', 52642),
(2, 'Mercedes', 57127),
(3, 'Skoda', 9000),
(4, 'Volvo', 29000),
(5, 'Bentley', 350000),
(6, 'Citroen', 21000),
(7, 'Hummer', 41400),
(8, 'Volkswagen', 21600)]

Another Example of Creating a Table

In the next simple example, we will create another table called writer, with columns FirstName, LastName, and
Year.

[5]: %%sql sqlite://
CREATE TABLE writer(

FirstName VARCHAR(50) NOT NULL,
LastName VARCHAR(50) NOT NULL,
Year INTEGER NOT NULL PRIMARY KEY);

Done.

[5]: []

[6]: %%sql
INSERT INTO writer VALUES ('William', 'Shakespeare', 1616);

(continues on next page)
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(continued from previous page)

INSERT INTO writer VALUES ('Lin', 'Han', 1996);
INSERT INTO writer VALUES ('Peter', 'Brecht', 1978);

* sqlite://
1 rows affected.
1 rows affected.
1 rows affected.

[6]: []

[7]: %sql SELECT * from writer

* sqlite://
Done.

[7]: [('William', 'Shakespeare', 1616),
('Peter', 'Brecht', 1978),
('Lin', 'Han', 1996)]

7.10.4 10.4 Database Example

As an example of a database, let’s create a database that was shown in the above section, related to managing the HR
data of a small business.

The cells below first create the tables (recall that the database has 7 tables), and afterward the information for each table
is inserted.

[8]: %%sql sqlite://

CREATE TABLE regions (
region_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
region_name TEXT NOT NULL);

CREATE TABLE countries (
country_id TEXT NOT NULL,
country_name TEXT NOT NULL,
region_id INTEGER NOT NULL,
PRIMARY KEY (country_id ASC),
FOREIGN KEY (region_id) REFERENCES regions (region_id) ON DELETE CASCADE ON UPDATE␣

→˓CASCADE);

CREATE TABLE locations (
location_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
street_address TEXT,
postal_code TEXT,
city text NOT NULL,
state_province TEXT,
country_id INTEGER NOT NULL,
FOREIGN KEY (country_id) REFERENCES countries (country_id) ON DELETE CASCADE ON␣

→˓UPDATE CASCADE);

CREATE TABLE departments (
department_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,

(continues on next page)
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(continued from previous page)

department_name TEXT NOT NULL,
location_id INTEGER NOT NULL,
FOREIGN KEY (location_id) REFERENCES locations (location_id) ON DELETE CASCADE ON␣

→˓UPDATE CASCADE);

CREATE TABLE jobs (
job_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
job_title TEXT NOT NULL,
min_salary DOUBLE NOT NULL,
max_salary DOUBLE NOT NULL);

CREATE TABLE employees (
employee_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
first_name TEXT,
last_name TEXT NOT NULL,
email TEXT NOT NULL,
phone_number TEXT,
hire_date TEXT NOT NULL,
job_id INTEGER NOT NULL,
salary DOUBLE NOT NULL,
manager_id INTEGER,
department_id INTEGER NOT NULL,
FOREIGN KEY (job_id) REFERENCES jobs (job_id) ON DELETE CASCADE ON UPDATE CASCADE,
FOREIGN KEY (department_id) REFERENCES departments (department_id) ON DELETE CASCADE␣

→˓ON UPDATE CASCADE,
FOREIGN KEY (manager_id) REFERENCES employees (employee_id) ON DELETE CASCADE ON␣

→˓UPDATE CASCADE);

CREATE TABLE dependents (
dependent_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
first_name TEXT NOT NULL,
last_name TEXT NOT NULL,
relationship TEXT NOT NULL,
employee_id INTEGER NOT NULL,
FOREIGN KEY (employee_id) REFERENCES employees (employee_id) ON DELETE CASCADE ON␣

→˓UPDATE CASCADE);

Done.
Done.
Done.
Done.
Done.
Done.
Done.

[8]: []

[ ]: %%sql

/*Data for the table regions */
INSERT INTO regions(region_id,region_name) VALUES (1,'Europe');
INSERT INTO regions(region_id,region_name) VALUES (2,'Americas');
INSERT INTO regions(region_id,region_name) VALUES (3,'Asia');

(continues on next page)
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(continued from previous page)

INSERT INTO regions(region_id,region_name) VALUES (4,'Middle East and Africa');

/*Data for the table countries */
INSERT INTO countries(country_id,country_name,region_id) VALUES ('AR','Argentina',2);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('AU','Australia',3);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('BE','Belgium',1);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('BR','Brazil',2);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('CA','Canada',2);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('CH','Switzerland',1);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('CN','China',3);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('DE','Germany',1);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('DK','Denmark',1);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('EG','Egypt',4);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('FR','France',1);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('HK','HongKong',3);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('IL','Israel',4);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('IN','India',3);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('IT','Italy',1);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('JP','Japan',3);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('KW','Kuwait',4);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('MX','Mexico',2);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('NG','Nigeria',4);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('NL','Netherlands',1);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('SG','Singapore',3);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('UK','United Kingdom',
→˓1);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('US','United States of␣
→˓America',2);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('ZM','Zambia',4);
INSERT INTO countries(country_id,country_name,region_id) VALUES ('ZW','Zimbabwe',4);

/*Data for the table locations */
INSERT INTO locations(location_id,street_address,postal_code,city,state_province,country_
→˓id) VALUES (1400,'2014 Jabberwocky Rd','26192','Southlake','Texas','US');
INSERT INTO locations(location_id,street_address,postal_code,city,state_province,country_
→˓id) VALUES (1500,'2011 Interiors Blvd','99236','South San Francisco','California','US
→˓');
INSERT INTO locations(location_id,street_address,postal_code,city,state_province,country_
→˓id) VALUES (1700,'2004 Charade Rd','98199','Seattle','Washington','US');
INSERT INTO locations(location_id,street_address,postal_code,city,state_province,country_
→˓id) VALUES (1800,'147 Spadina Ave','M5V 2L7','Toronto','Ontario','CA');
INSERT INTO locations(location_id,street_address,postal_code,city,state_province,country_
→˓id) VALUES (2400,'8204 Arthur St',NULL,'London',NULL,'UK');
INSERT INTO locations(location_id,street_address,postal_code,city,state_province,country_
→˓id) VALUES (2500,'Magdalen Centre, The Oxford Science Park','OX9 9ZB','Oxford','Oxford
→˓','UK');
INSERT INTO locations(location_id,street_address,postal_code,city,state_province,country_
→˓id) VALUES (2700,'Schwanthalerstr. 7031','80925','Munich','Bavaria','DE');

/*Data for the table jobs */
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (1,'Public Accountant',
→˓4200.00,9000.00);

(continues on next page)

282 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

(continued from previous page)

INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (2,'Accounting Manager',
→˓8200.00,16000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (3,'Administration␣
→˓Assistant',3000.00,6000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (4,'President',20000.00,
→˓40000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (5,'Administration Vice␣
→˓President',15000.00,30000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (6,'Accountant',4200.00,
→˓9000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (7,'Finance Manager',
→˓8200.00,16000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (8,'Human Resources␣
→˓Representative',4000.00,9000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (9,'Programmer',4000.00,
→˓10000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (10,'Marketing Manager',
→˓9000.00,15000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (11,'Marketing␣
→˓Representative',4000.00,9000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (12,'Public Relations␣
→˓Representative',4500.00,10500.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (13,'Purchasing Clerk',
→˓2500.00,5500.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (14,'Purchasing Manager',
→˓8000.00,15000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (15,'Sales Manager',
→˓10000.00,20000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (16,'Sales Representative
→˓',6000.00,12000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (17,'Shipping Clerk',
→˓2500.00,5500.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (18,'Stock Clerk',2000.
→˓00,5000.00);
INSERT INTO jobs(job_id,job_title,min_salary,max_salary) VALUES (19,'Stock Manager',5500.
→˓00,8500.00);

/*Data for the table departments */
INSERT INTO departments(department_id,department_name,location_id) VALUES (1,
→˓'Administration',1700);
INSERT INTO departments(department_id,department_name,location_id) VALUES (2,'Marketing',
→˓1800);
INSERT INTO departments(department_id,department_name,location_id) VALUES (3,'Purchasing
→˓',1700);
INSERT INTO departments(department_id,department_name,location_id) VALUES (4,'Human␣
→˓Resources',2400);
INSERT INTO departments(department_id,department_name,location_id) VALUES (5,'Shipping',
→˓1500);
INSERT INTO departments(department_id,department_name,location_id) VALUES (6,'IT',1400);
INSERT INTO departments(department_id,department_name,location_id) VALUES (7,'Public␣
→˓Relations',2700);
INSERT INTO departments(department_id,department_name,location_id) VALUES (8,'Sales',
→˓2500); (continues on next page)

7.10. Lecture 10 - Databases and SQL 283



Fall 2023 Python Programming for Data Science, Release 0.1

(continued from previous page)

INSERT INTO departments(department_id,department_name,location_id) VALUES (9,'Executive',
→˓1700);
INSERT INTO departments(department_id,department_name,location_id) VALUES (10,'Finance',
→˓1700);
INSERT INTO departments(department_id,department_name,location_id) VALUES (11,'Accounting
→˓',1700);

/*Data for the table employees */
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (100,'Steven','King','steven.
→˓king@sqltutorial.org','515.123.4567','1987-06-17',4,24000.00,NULL,9);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (101,'Neena','Kochhar','neena.
→˓kochhar@sqltutorial.org','515.123.4568','1989-09-21',5,17000.00,100,9);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (102,'Lex','De Haan','lex.de␣
→˓haan@sqltutorial.org','515.123.4569','1993-01-13',5,17000.00,100,9);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (103,'Alexander','Hunold','alexander.
→˓hunold@sqltutorial.org','590.423.4567','1990-01-03',9,9000.00,102,6);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (104,'Bruce','Ernst','bruce.
→˓ernst@sqltutorial.org','590.423.4568','1991-05-21',9,6000.00,103,6);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (105,'David','Austin','david.
→˓austin@sqltutorial.org','590.423.4569','1997-06-25',9,4800.00,103,6);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (106,'Valli','Pataballa','valli.
→˓pataballa@sqltutorial.org','590.423.4560','1998-02-05',9,4800.00,103,6);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (107,'Diana','Lorentz','diana.
→˓lorentz@sqltutorial.org','590.423.5567','1999-02-07',9,4200.00,103,6);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (108,'Nancy','Greenberg','nancy.
→˓greenberg@sqltutorial.org','515.124.4569','1994-08-17',7,12000.00,101,10);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (109,'Daniel','Faviet','daniel.
→˓faviet@sqltutorial.org','515.124.4169','1994-08-16',6,9000.00,108,10);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (110,'John','Chen','john.chen@sqltutorial.
→˓org','515.124.4269','1997-09-28',6,8200.00,108,10);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (111,'Ismael','Sciarra','ismael.
→˓sciarra@sqltutorial.org','515.124.4369','1997-09-30',6,7700.00,108,10);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (112,'Jose Manuel','Urman','jose manuel.
→˓urman@sqltutorial.org','515.124.4469','1998-03-07',6,7800.00,108,10);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (113,'Luis','Popp','luis.popp@sqltutorial.
→˓org','515.124.4567','1999-12-07',6,6900.00,108,10);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (114,'Den','Raphaely','den.
→˓raphaely@sqltutorial.org','515.127.4561','1994-12-07',14,11000.00,100,3);(continues on next page)
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INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (115,'Alexander','Khoo','alexander.
→˓khoo@sqltutorial.org','515.127.4562','1995-05-18',13,3100.00,114,3);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (116,'Shelli','Baida','shelli.
→˓baida@sqltutorial.org','515.127.4563','1997-12-24',13,2900.00,114,3);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (117,'Sigal','Tobias','sigal.
→˓tobias@sqltutorial.org','515.127.4564','1997-07-24',13,2800.00,114,3);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (118,'Guy','Himuro','guy.himuro@sqltutorial.
→˓org','515.127.4565','1998-11-15',13,2600.00,114,3);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (119,'Karen','Colmenares','karen.
→˓colmenares@sqltutorial.org','515.127.4566','1999-08-10',13,2500.00,114,3);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (120,'Matthew','Weiss','matthew.
→˓weiss@sqltutorial.org','650.123.1234','1996-07-18',19,8000.00,100,5);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (121,'Adam','Fripp','adam.fripp@sqltutorial.
→˓org','650.123.2234','1997-04-10',19,8200.00,100,5);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (122,'Payam','Kaufling','payam.
→˓kaufling@sqltutorial.org','650.123.3234','1995-05-01',19,7900.00,100,5);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (123,'Shanta','Vollman','shanta.
→˓vollman@sqltutorial.org','650.123.4234','1997-10-10',19,6500.00,100,5);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (126,'Irene','Mikkilineni','irene.
→˓mikkilineni@sqltutorial.org','650.124.1224','1998-09-28',18,2700.00,120,5);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (145,'John','Russell','john.
→˓russell@sqltutorial.org',NULL,'1996-10-01',15,14000.00,100,8);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (146,'Karen','Partners','karen.
→˓partners@sqltutorial.org',NULL,'1997-01-05',15,13500.00,100,8);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (176,'Jonathon','Taylor','jonathon.
→˓taylor@sqltutorial.org',NULL,'1998-03-24',16,8600.00,100,8);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (177,'Jack','Livingston','jack.
→˓livingston@sqltutorial.org',NULL,'1998-04-23',16,8400.00,100,8);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (178,'Kimberely','Grant','kimberely.
→˓grant@sqltutorial.org',NULL,'1999-05-24',16,7000.00,100,8);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (179,'Charles','Johnson','charles.
→˓johnson@sqltutorial.org',NULL,'2000-01-04',16,6200.00,100,8);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (192,'Sarah','Bell','sarah.bell@sqltutorial.
→˓org','650.501.1876','1996-02-04',17,4000.00,123,5);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (193,'Britney','Everett','britney.
→˓everett@sqltutorial.org','650.501.2876','1997-03-03',17,3900.00,123,5);

(continues on next page)
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INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (200,'Jennifer','Whalen','jennifer.
→˓whalen@sqltutorial.org','515.123.4444','1987-09-17',3,4400.00,101,1);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (201,'Michael','Hartstein','michael.
→˓hartstein@sqltutorial.org','515.123.5555','1996-02-17',10,13000.00,100,2);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (202,'Pat','Fay','pat.fay@sqltutorial.org',
→˓'603.123.6666','1997-08-17',11,6000.00,201,2);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (203,'Susan','Mavris','susan.
→˓mavris@sqltutorial.org','515.123.7777','1994-06-07',8,6500.00,101,4);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (204,'Hermann','Baer','hermann.
→˓baer@sqltutorial.org','515.123.8888','1994-06-07',12,10000.00,101,7);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (205,'Shelley','Higgins','shelley.
→˓higgins@sqltutorial.org','515.123.8080','1994-06-07',2,12000.00,101,11);
INSERT INTO employees(employee_id,first_name,last_name,email,phone_number,hire_date,job_
→˓id,salary,manager_id,department_id) VALUES (206,'William','Gietz','william.
→˓gietz@sqltutorial.org','515.123.8181','1994-06-07',1,8300.00,205,11);

/*Data for the table dependents */
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (1,'Penelope','Gietz','Child',206);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (2,'Nick','Higgins','Child',205);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (3,'Ed','Whalen','Child',200);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (4,'Jennifer','King','Child',100);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (5,'Johnny','Kochhar','Child',101);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (6,'Bette','De Haan','Child',102);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (7,'Grace','Faviet','Child',109);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (8,'Matthew','Chen','Child',110);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (9,'Joe','Sciarra','Child',111);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (10,'Christian','Urman','Child',112);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (11,'Zero','Popp','Child',113);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (12,'Karl','Greenberg','Child',108);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (13,'Uma','Mavris','Child',203);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (14,'Vivien','Hunold','Child',103);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (15,'Cuba','Ernst','Child',104); (continues on next page)
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INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (16,'Fred','Austin','Child',105);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (17,'Helen','Pataballa','Child',106);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (18,'Dan','Lorentz','Child',107);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (19,'Bob','Hartstein','Child',201);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (20,'Lucille','Fay','Child',202);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (21,'Kirsten','Baer','Child',204);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (22,'Elvis','Khoo','Child',115);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (23,'Sandra','Baida','Child',116);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (24,'Cameron','Tobias','Child',117);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (25,'Kevin','Himuro','Child',118);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (26,'Rip','Colmenares','Child',119);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (27,'Julia','Raphaely','Child',114);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (28,'Woody','Russell','Child',145);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (29,'Alec','Partners','Child',146);
INSERT INTO dependents(dependent_id,first_name,last_name,relationship,employee_id)␣
→˓VALUES (30,'Sandra','Taylor','Child',176);

7.10.5 10.5 Querying Databases with SELECT

The most common SQL task is to retrieve data from one or more tables. The data is returned in the form of a result
table, called result set. This is accomplished with the SELECT statement, which has the following general syntax.

SELECT
column1, column2, columnN

FROM
table_name

To run the code in this Jupyter Notebook, we will just insert the magic commands %sql or %%sql in front of each SQL
code.

For example, in the next cell we retrieved the columns employee_id, first_name, last_name, hire_date from
the employees table. When the statement is evaluated, the database system first evaluates the FROM clause and the
SELECT clause afterward. I.e., from the table named employees select the listed columns.

[10]: %%sql
SELECT

employee_id, first_name, last_name, hire_date
(continues on next page)
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FROM
employees

* sqlite://
Done.

[10]: [(100, 'Steven', 'King', '1987-06-17'),
(101, 'Neena', 'Kochhar', '1989-09-21'),
(102, 'Lex', 'De Haan', '1993-01-13'),
(103, 'Alexander', 'Hunold', '1990-01-03'),
(104, 'Bruce', 'Ernst', '1991-05-21'),
(105, 'David', 'Austin', '1997-06-25'),
(106, 'Valli', 'Pataballa', '1998-02-05'),
(107, 'Diana', 'Lorentz', '1999-02-07'),
(108, 'Nancy', 'Greenberg', '1994-08-17'),
(109, 'Daniel', 'Faviet', '1994-08-16'),
(110, 'John', 'Chen', '1997-09-28'),
(111, 'Ismael', 'Sciarra', '1997-09-30'),
(112, 'Jose Manuel', 'Urman', '1998-03-07'),
(113, 'Luis', 'Popp', '1999-12-07'),
(114, 'Den', 'Raphaely', '1994-12-07'),
(115, 'Alexander', 'Khoo', '1995-05-18'),
(116, 'Shelli', 'Baida', '1997-12-24'),
(117, 'Sigal', 'Tobias', '1997-07-24'),
(118, 'Guy', 'Himuro', '1998-11-15'),
(119, 'Karen', 'Colmenares', '1999-08-10'),
(120, 'Matthew', 'Weiss', '1996-07-18'),
(121, 'Adam', 'Fripp', '1997-04-10'),
(122, 'Payam', 'Kaufling', '1995-05-01'),
(123, 'Shanta', 'Vollman', '1997-10-10'),
(126, 'Irene', 'Mikkilineni', '1998-09-28'),
(145, 'John', 'Russell', '1996-10-01'),
(146, 'Karen', 'Partners', '1997-01-05'),
(176, 'Jonathon', 'Taylor', '1998-03-24'),
(177, 'Jack', 'Livingston', '1998-04-23'),
(178, 'Kimberely', 'Grant', '1999-05-24'),
(179, 'Charles', 'Johnson', '2000-01-04'),
(192, 'Sarah', 'Bell', '1996-02-04'),
(193, 'Britney', 'Everett', '1997-03-03'),
(200, 'Jennifer', 'Whalen', '1987-09-17'),
(201, 'Michael', 'Hartstein', '1996-02-17'),
(202, 'Pat', 'Fay', '1997-08-17'),
(203, 'Susan', 'Mavris', '1994-06-07'),
(204, 'Hermann', 'Baer', '1994-06-07'),
(205, 'Shelley', 'Higgins', '1994-06-07'),
(206, 'William', 'Gietz', '1994-06-07')]

If we want to query all columns in a table we can use the asterisk operator * instead of the columns names.

[11]: %sql SELECT * FROM employees

* sqlite://
Done.
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[11]: [(100, 'Steven', 'King', 'steven.king@sqltutorial.org', '515.123.4567', '1987-06-17', 4,␣
→˓24000.0, None, 9),
(101, 'Neena', 'Kochhar', 'neena.kochhar@sqltutorial.org', '515.123.4568', '1989-09-21',
→˓ 5, 17000.0, 100, 9),
(102, 'Lex', 'De Haan', 'lex.de haan@sqltutorial.org', '515.123.4569', '1993-01-13', 5,␣
→˓17000.0, 100, 9),
(103, 'Alexander', 'Hunold', 'alexander.hunold@sqltutorial.org', '590.423.4567', '1990-
→˓01-03', 9, 9000.0, 102, 6),
(104, 'Bruce', 'Ernst', 'bruce.ernst@sqltutorial.org', '590.423.4568', '1991-05-21', 9,␣
→˓6000.0, 103, 6),
(105, 'David', 'Austin', 'david.austin@sqltutorial.org', '590.423.4569', '1997-06-25',␣
→˓9, 4800.0, 103, 6),
(106, 'Valli', 'Pataballa', 'valli.pataballa@sqltutorial.org', '590.423.4560', '1998-02-
→˓05', 9, 4800.0, 103, 6),
(107, 'Diana', 'Lorentz', 'diana.lorentz@sqltutorial.org', '590.423.5567', '1999-02-07',
→˓ 9, 4200.0, 103, 6),
(108, 'Nancy', 'Greenberg', 'nancy.greenberg@sqltutorial.org', '515.124.4569', '1994-08-
→˓17', 7, 12000.0, 101, 10),
(109, 'Daniel', 'Faviet', 'daniel.faviet@sqltutorial.org', '515.124.4169', '1994-08-16',
→˓ 6, 9000.0, 108, 10),
(110, 'John', 'Chen', 'john.chen@sqltutorial.org', '515.124.4269', '1997-09-28', 6,␣
→˓8200.0, 108, 10),
(111, 'Ismael', 'Sciarra', 'ismael.sciarra@sqltutorial.org', '515.124.4369', '1997-09-30
→˓', 6, 7700.0, 108, 10),
(112, 'Jose Manuel', 'Urman', 'jose manuel.urman@sqltutorial.org', '515.124.4469',
→˓'1998-03-07', 6, 7800.0, 108, 10),
(113, 'Luis', 'Popp', 'luis.popp@sqltutorial.org', '515.124.4567', '1999-12-07', 6,␣
→˓6900.0, 108, 10),
(114, 'Den', 'Raphaely', 'den.raphaely@sqltutorial.org', '515.127.4561', '1994-12-07',␣
→˓14, 11000.0, 100, 3),
(115, 'Alexander', 'Khoo', 'alexander.khoo@sqltutorial.org', '515.127.4562', '1995-05-18
→˓', 13, 3100.0, 114, 3),
(116, 'Shelli', 'Baida', 'shelli.baida@sqltutorial.org', '515.127.4563', '1997-12-24',␣
→˓13, 2900.0, 114, 3),
(117, 'Sigal', 'Tobias', 'sigal.tobias@sqltutorial.org', '515.127.4564', '1997-07-24',␣
→˓13, 2800.0, 114, 3),
(118, 'Guy', 'Himuro', 'guy.himuro@sqltutorial.org', '515.127.4565', '1998-11-15', 13,␣
→˓2600.0, 114, 3),
(119, 'Karen', 'Colmenares', 'karen.colmenares@sqltutorial.org', '515.127.4566', '1999-
→˓08-10', 13, 2500.0, 114, 3),
(120, 'Matthew', 'Weiss', 'matthew.weiss@sqltutorial.org', '650.123.1234', '1996-07-18',
→˓ 19, 8000.0, 100, 5),
(121, 'Adam', 'Fripp', 'adam.fripp@sqltutorial.org', '650.123.2234', '1997-04-10', 19,␣
→˓8200.0, 100, 5),
(122, 'Payam', 'Kaufling', 'payam.kaufling@sqltutorial.org', '650.123.3234', '1995-05-01
→˓', 19, 7900.0, 100, 5),
(123, 'Shanta', 'Vollman', 'shanta.vollman@sqltutorial.org', '650.123.4234', '1997-10-10
→˓', 19, 6500.0, 100, 5),
(126, 'Irene', 'Mikkilineni', 'irene.mikkilineni@sqltutorial.org', '650.124.1224',
→˓'1998-09-28', 18, 2700.0, 120, 5),
(145, 'John', 'Russell', 'john.russell@sqltutorial.org', None, '1996-10-01', 15, 14000.
→˓0, 100, 8),
(146, 'Karen', 'Partners', 'karen.partners@sqltutorial.org', None, '1997-01-05', 15,␣
→˓13500.0, 100, 8), (continues on next page)
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(176, 'Jonathon', 'Taylor', 'jonathon.taylor@sqltutorial.org', None, '1998-03-24', 16,␣
→˓8600.0, 100, 8),
(177, 'Jack', 'Livingston', 'jack.livingston@sqltutorial.org', None, '1998-04-23', 16,␣
→˓8400.0, 100, 8),
(178, 'Kimberely', 'Grant', 'kimberely.grant@sqltutorial.org', None, '1999-05-24', 16,␣
→˓7000.0, 100, 8),
(179, 'Charles', 'Johnson', 'charles.johnson@sqltutorial.org', None, '2000-01-04', 16,␣
→˓6200.0, 100, 8),
(192, 'Sarah', 'Bell', 'sarah.bell@sqltutorial.org', '650.501.1876', '1996-02-04', 17,␣
→˓4000.0, 123, 5),
(193, 'Britney', 'Everett', 'britney.everett@sqltutorial.org', '650.501.2876', '1997-03-
→˓03', 17, 3900.0, 123, 5),
(200, 'Jennifer', 'Whalen', 'jennifer.whalen@sqltutorial.org', '515.123.4444', '1987-09-
→˓17', 3, 4400.0, 101, 1),
(201, 'Michael', 'Hartstein', 'michael.hartstein@sqltutorial.org', '515.123.5555',
→˓'1996-02-17', 10, 13000.0, 100, 2),
(202, 'Pat', 'Fay', 'pat.fay@sqltutorial.org', '603.123.6666', '1997-08-17', 11, 6000.0,
→˓ 201, 2),
(203, 'Susan', 'Mavris', 'susan.mavris@sqltutorial.org', '515.123.7777', '1994-06-07',␣
→˓8, 6500.0, 101, 4),
(204, 'Hermann', 'Baer', 'hermann.baer@sqltutorial.org', '515.123.8888', '1994-06-07',␣
→˓12, 10000.0, 101, 7),
(205, 'Shelley', 'Higgins', 'shelley.higgins@sqltutorial.org', '515.123.8080', '1994-06-
→˓07', 2, 12000.0, 101, 11),
(206, 'William', 'Gietz', 'william.gietz@sqltutorial.org', '515.123.8181', '1994-06-07',
→˓ 1, 8300.0, 205, 11)]

List Tables in a Database

We can also use the SELECT statement to display a list of all tables in the current database. Every SQLite database
has an sqlite_master table that defines the schema for the database. The following statement uses sqlite_master
with the type field set to ‘table’ to return the names of all tables in the current database.

[12]: %sql SELECT name FROM sqlite_master WHERE type='table'

* sqlite://
Done.

[12]: [('cars',),
('writer',),
('regions',),
('sqlite_sequence',),
('countries',),
('locations',),
('departments',),
('jobs',),
('employees',),
('dependents',)]

Here is the entire sqlite_master table for the current database. It stores metadata about the tables and other objects
(e.g., indexes and views) in an SQLite database. It contains the columns type, name, tbl_name, rootpage (the root
page of the object withing the SQL database file), and sql (the SQL CREATE statement that was used to create the
database).
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The sqlite_master table is automatically created and maintained by SQLite, and it is typically queried to inspect the
schema of a database or retrieve information about its tables and other objects.

[13]: %sql SELECT * FROM sqlite_master

* sqlite://
Done.

[13]: [('table', 'cars', 'cars', 2, 'CREATE TABLE cars(\n id INTEGER NOT NULL PRIMARY KEY,\
→˓n name VARCHAR(50) NOT NULL, \n price INTEGER)'),
('table', 'writer', 'writer', 3, 'CREATE TABLE writer(\n FirstName VARCHAR(50) NOT␣
→˓NULL,\n LastName VARCHAR(50) NOT NULL, \n Year INTEGER NOT NULL PRIMARY KEY)'),
('table', 'regions', 'regions', 4, 'CREATE TABLE regions (\n region_id INTEGER␣
→˓PRIMARY KEY AUTOINCREMENT NOT NULL,\n region_name TEXT NOT NULL)'),
('table', 'sqlite_sequence', 'sqlite_sequence', 5, 'CREATE TABLE sqlite_sequence(name,
→˓seq)'),
('table', 'countries', 'countries', 6, 'CREATE TABLE countries (\n country_id TEXT␣
→˓NOT NULL,\n country_name TEXT NOT NULL,\n region_id INTEGER NOT NULL,\n ␣
→˓PRIMARY KEY (country_id ASC),\n FOREIGN KEY (region_id) REFERENCES regions (region_
→˓id) ON DELETE CASCADE ON UPDATE CASCADE)'),
('index', 'sqlite_autoindex_countries_1', 'countries', 7, None),
('table', 'locations', 'locations', 8, 'CREATE TABLE locations (\n location_id␣
→˓INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,\n street_address TEXT,\n postal_code␣
→˓TEXT,\n city text ... (22 characters truncated) ... province TEXT,\n country_id␣
→˓INTEGER NOT NULL,\n FOREIGN KEY (country_id) REFERENCES countries (country_id) ON␣
→˓DELETE CASCADE ON UPDATE CASCADE)'),
('table', 'departments', 'departments', 9, 'CREATE TABLE departments (\n department_
→˓id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,\n department_name TEXT NOT NULL,\n ␣
→˓ location_id INTEGER NOT NULL,\n FOREIGN KEY (location_id) REFERENCES locations␣
→˓(location_id) ON DELETE CASCADE ON UPDATE CASCADE)'),
('table', 'jobs', 'jobs', 10, 'CREATE TABLE jobs (\n job_id INTEGER PRIMARY KEY␣
→˓AUTOINCREMENT NOT NULL,\n job_title TEXT NOT NULL,\n min_salary DOUBLE NOT NULL,\
→˓n max_salary DOUBLE NOT NULL)'),
('table', 'employees', 'employees', 11, 'CREATE TABLE employees (\n employee_id␣
→˓INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,\n first_name TEXT,\n last_name TEXT␣
→˓NOT NULL,\n email ... (339 characters truncated) ... rtment_id) ON DELETE CASCADE␣
→˓ON UPDATE CASCADE,\n FOREIGN KEY (manager_id) REFERENCES employees (employee_id) ON␣
→˓DELETE CASCADE ON UPDATE CASCADE)'),
('table', 'dependents', 'dependents', 12, 'CREATE TABLE dependents (\n dependent_id␣
→˓INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,\n first_name TEXT NOT NULL,\n last_
→˓name TEXT NOT NULL,\ ... (21 characters truncated) ... T NOT NULL,\n employee_id␣
→˓INTEGER NOT NULL,\n FOREIGN KEY (employee_id) REFERENCES employees (employee_id) ON␣
→˓DELETE CASCADE ON UPDATE CASCADE)')]

For instance, we can use the following code to retrieve the CREATE statement for the table cars.

[14]: %sql SELECT sql FROM sqlite_master WHERE type='table' AND name='cars';

* sqlite://
Done.

[14]: [('CREATE TABLE cars(\n id INTEGER NOT NULL PRIMARY KEY,\n name VARCHAR(50) NOT␣
→˓NULL, \n price INTEGER)',)]
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Perform Simple Calculations in SELECT Statements

We can use standard math operators such as +, *, /, % in SELECT statements to perform simple mathematical calcula-
tions. The following expression creates a new column salary * 1.05 from the salary column and adds 5% to the
salary of every employee.

[15]: %%sql
SELECT

employee_id, first_name, salary, salary*1.05
FROM

employees;

* sqlite://
Done.

[15]: [(100, 'Steven', 24000.0, 25200.0),
(101, 'Neena', 17000.0, 17850.0),
(102, 'Lex', 17000.0, 17850.0),
(103, 'Alexander', 9000.0, 9450.0),
(104, 'Bruce', 6000.0, 6300.0),
(105, 'David', 4800.0, 5040.0),
(106, 'Valli', 4800.0, 5040.0),
(107, 'Diana', 4200.0, 4410.0),
(108, 'Nancy', 12000.0, 12600.0),
(109, 'Daniel', 9000.0, 9450.0),
(110, 'John', 8200.0, 8610.0),
(111, 'Ismael', 7700.0, 8085.0),
(112, 'Jose Manuel', 7800.0, 8190.0),
(113, 'Luis', 6900.0, 7245.0),
(114, 'Den', 11000.0, 11550.0),
(115, 'Alexander', 3100.0, 3255.0),
(116, 'Shelli', 2900.0, 3045.0),
(117, 'Sigal', 2800.0, 2940.0),
(118, 'Guy', 2600.0, 2730.0),
(119, 'Karen', 2500.0, 2625.0),
(120, 'Matthew', 8000.0, 8400.0),
(121, 'Adam', 8200.0, 8610.0),
(122, 'Payam', 7900.0, 8295.0),
(123, 'Shanta', 6500.0, 6825.0),
(126, 'Irene', 2700.0, 2835.0),
(145, 'John', 14000.0, 14700.0),
(146, 'Karen', 13500.0, 14175.0),
(176, 'Jonathon', 8600.0, 9030.0),
(177, 'Jack', 8400.0, 8820.0),
(178, 'Kimberely', 7000.0, 7350.0),
(179, 'Charles', 6200.0, 6510.0),
(192, 'Sarah', 4000.0, 4200.0),
(193, 'Britney', 3900.0, 4095.0),
(200, 'Jennifer', 4400.0, 4620.0),
(201, 'Michael', 13000.0, 13650.0),
(202, 'Pat', 6000.0, 6300.0),
(203, 'Susan', 6500.0, 6825.0),
(204, 'Hermann', 10000.0, 10500.0),
(205, 'Shelley', 12000.0, 12600.0),
(206, 'William', 8300.0, 8715.0)]
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We can use AS new_salary to assign a different name for the newly created column.

[16]: %%sql
SELECT

employee_id, first_name, salary, salary*1.05 AS new_salary
FROM

employees;

* sqlite://
Done.

[16]: [(100, 'Steven', 24000.0, 25200.0),
(101, 'Neena', 17000.0, 17850.0),
(102, 'Lex', 17000.0, 17850.0),
(103, 'Alexander', 9000.0, 9450.0),
(104, 'Bruce', 6000.0, 6300.0),
(105, 'David', 4800.0, 5040.0),
(106, 'Valli', 4800.0, 5040.0),
(107, 'Diana', 4200.0, 4410.0),
(108, 'Nancy', 12000.0, 12600.0),
(109, 'Daniel', 9000.0, 9450.0),
(110, 'John', 8200.0, 8610.0),
(111, 'Ismael', 7700.0, 8085.0),
(112, 'Jose Manuel', 7800.0, 8190.0),
(113, 'Luis', 6900.0, 7245.0),
(114, 'Den', 11000.0, 11550.0),
(115, 'Alexander', 3100.0, 3255.0),
(116, 'Shelli', 2900.0, 3045.0),
(117, 'Sigal', 2800.0, 2940.0),
(118, 'Guy', 2600.0, 2730.0),
(119, 'Karen', 2500.0, 2625.0),
(120, 'Matthew', 8000.0, 8400.0),
(121, 'Adam', 8200.0, 8610.0),
(122, 'Payam', 7900.0, 8295.0),
(123, 'Shanta', 6500.0, 6825.0),
(126, 'Irene', 2700.0, 2835.0),
(145, 'John', 14000.0, 14700.0),
(146, 'Karen', 13500.0, 14175.0),
(176, 'Jonathon', 8600.0, 9030.0),
(177, 'Jack', 8400.0, 8820.0),
(178, 'Kimberely', 7000.0, 7350.0),
(179, 'Charles', 6200.0, 6510.0),
(192, 'Sarah', 4000.0, 4200.0),
(193, 'Britney', 3900.0, 4095.0),
(200, 'Jennifer', 4400.0, 4620.0),
(201, 'Michael', 13000.0, 13650.0),
(202, 'Pat', 6000.0, 6300.0),
(203, 'Susan', 6500.0, 6825.0),
(204, 'Hermann', 10000.0, 10500.0),
(205, 'Shelley', 12000.0, 12600.0),
(206, 'William', 8300.0, 8715.0)]
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7.10.6 10.6 Sorting Data with ORDER BY

The clause ORDER BY can be used within a SELECT statement to sort the returned rows.

The general syntax is:

SELECT
column1, column2, columnN

FROM
table_name

ORDER BY sort_expression [ASC | DESC];

The sort_expression specifies the sort criteria, whereas ASC or DESC indicates whether to sort the result set into
ascending (default) or descending order.

The following example uses the clause ORDER BY to sort employees by first names in alphabetical order.

[17]: %%sql
SELECT

employee_id, first_name, last_name, hire_date, salary
FROM

employees
ORDER BY first_name;

* sqlite://
Done.

[17]: [(121, 'Adam', 'Fripp', '1997-04-10', 8200.0),
(103, 'Alexander', 'Hunold', '1990-01-03', 9000.0),
(115, 'Alexander', 'Khoo', '1995-05-18', 3100.0),
(193, 'Britney', 'Everett', '1997-03-03', 3900.0),
(104, 'Bruce', 'Ernst', '1991-05-21', 6000.0),
(179, 'Charles', 'Johnson', '2000-01-04', 6200.0),
(109, 'Daniel', 'Faviet', '1994-08-16', 9000.0),
(105, 'David', 'Austin', '1997-06-25', 4800.0),
(114, 'Den', 'Raphaely', '1994-12-07', 11000.0),
(107, 'Diana', 'Lorentz', '1999-02-07', 4200.0),
(118, 'Guy', 'Himuro', '1998-11-15', 2600.0),
(204, 'Hermann', 'Baer', '1994-06-07', 10000.0),
(126, 'Irene', 'Mikkilineni', '1998-09-28', 2700.0),
(111, 'Ismael', 'Sciarra', '1997-09-30', 7700.0),
(177, 'Jack', 'Livingston', '1998-04-23', 8400.0),
(200, 'Jennifer', 'Whalen', '1987-09-17', 4400.0),
(110, 'John', 'Chen', '1997-09-28', 8200.0),
(145, 'John', 'Russell', '1996-10-01', 14000.0),
(176, 'Jonathon', 'Taylor', '1998-03-24', 8600.0),
(112, 'Jose Manuel', 'Urman', '1998-03-07', 7800.0),
(119, 'Karen', 'Colmenares', '1999-08-10', 2500.0),
(146, 'Karen', 'Partners', '1997-01-05', 13500.0),
(178, 'Kimberely', 'Grant', '1999-05-24', 7000.0),
(102, 'Lex', 'De Haan', '1993-01-13', 17000.0),
(113, 'Luis', 'Popp', '1999-12-07', 6900.0),
(120, 'Matthew', 'Weiss', '1996-07-18', 8000.0),
(201, 'Michael', 'Hartstein', '1996-02-17', 13000.0),
(108, 'Nancy', 'Greenberg', '1994-08-17', 12000.0),
(101, 'Neena', 'Kochhar', '1989-09-21', 17000.0),

(continues on next page)
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(202, 'Pat', 'Fay', '1997-08-17', 6000.0),
(122, 'Payam', 'Kaufling', '1995-05-01', 7900.0),
(192, 'Sarah', 'Bell', '1996-02-04', 4000.0),
(123, 'Shanta', 'Vollman', '1997-10-10', 6500.0),
(205, 'Shelley', 'Higgins', '1994-06-07', 12000.0),
(116, 'Shelli', 'Baida', '1997-12-24', 2900.0),
(117, 'Sigal', 'Tobias', '1997-07-24', 2800.0),
(100, 'Steven', 'King', '1987-06-17', 24000.0),
(203, 'Susan', 'Mavris', '1994-06-07', 6500.0),
(106, 'Valli', 'Pataballa', '1998-02-05', 4800.0),
(206, 'William', 'Gietz', '1994-06-07', 8300.0)]

The ORDER BY clause also allows using multiple expressions for sorting, separated by commas. In the following ex-
ample ORDER BY is used to sort the employees by their first name in ascending order, and the employees who have the
same first name are further sorted by their last name in descending order. E.g., check the sorting for the two employees
with the name Alexander.

[18]: %%sql
SELECT

employee_id, first_name, last_name, hire_date, salary
FROM

employees
ORDER BY first_name, last_name DESC;

* sqlite://
Done.

[18]: [(121, 'Adam', 'Fripp', '1997-04-10', 8200.0),
(115, 'Alexander', 'Khoo', '1995-05-18', 3100.0),
(103, 'Alexander', 'Hunold', '1990-01-03', 9000.0),
(193, 'Britney', 'Everett', '1997-03-03', 3900.0),
(104, 'Bruce', 'Ernst', '1991-05-21', 6000.0),
(179, 'Charles', 'Johnson', '2000-01-04', 6200.0),
(109, 'Daniel', 'Faviet', '1994-08-16', 9000.0),
(105, 'David', 'Austin', '1997-06-25', 4800.0),
(114, 'Den', 'Raphaely', '1994-12-07', 11000.0),
(107, 'Diana', 'Lorentz', '1999-02-07', 4200.0),
(118, 'Guy', 'Himuro', '1998-11-15', 2600.0),
(204, 'Hermann', 'Baer', '1994-06-07', 10000.0),
(126, 'Irene', 'Mikkilineni', '1998-09-28', 2700.0),
(111, 'Ismael', 'Sciarra', '1997-09-30', 7700.0),
(177, 'Jack', 'Livingston', '1998-04-23', 8400.0),
(200, 'Jennifer', 'Whalen', '1987-09-17', 4400.0),
(145, 'John', 'Russell', '1996-10-01', 14000.0),
(110, 'John', 'Chen', '1997-09-28', 8200.0),
(176, 'Jonathon', 'Taylor', '1998-03-24', 8600.0),
(112, 'Jose Manuel', 'Urman', '1998-03-07', 7800.0),
(146, 'Karen', 'Partners', '1997-01-05', 13500.0),
(119, 'Karen', 'Colmenares', '1999-08-10', 2500.0),
(178, 'Kimberely', 'Grant', '1999-05-24', 7000.0),
(102, 'Lex', 'De Haan', '1993-01-13', 17000.0),
(113, 'Luis', 'Popp', '1999-12-07', 6900.0),
(120, 'Matthew', 'Weiss', '1996-07-18', 8000.0),

(continues on next page)
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(201, 'Michael', 'Hartstein', '1996-02-17', 13000.0),
(108, 'Nancy', 'Greenberg', '1994-08-17', 12000.0),
(101, 'Neena', 'Kochhar', '1989-09-21', 17000.0),
(202, 'Pat', 'Fay', '1997-08-17', 6000.0),
(122, 'Payam', 'Kaufling', '1995-05-01', 7900.0),
(192, 'Sarah', 'Bell', '1996-02-04', 4000.0),
(123, 'Shanta', 'Vollman', '1997-10-10', 6500.0),
(205, 'Shelley', 'Higgins', '1994-06-07', 12000.0),
(116, 'Shelli', 'Baida', '1997-12-24', 2900.0),
(117, 'Sigal', 'Tobias', '1997-07-24', 2800.0),
(100, 'Steven', 'King', '1987-06-17', 24000.0),
(203, 'Susan', 'Mavris', '1994-06-07', 6500.0),
(106, 'Valli', 'Pataballa', '1998-02-05', 4800.0),
(206, 'William', 'Gietz', '1994-06-07', 8300.0)]

Similarly, we can use ORDER BY to sort columns with numerical data, or to sort by date as in the following cell.

[19]: %%sql
SELECT

employee_id, first_name, last_name, hire_date, salary
FROM

employees
ORDER BY hire_date;

* sqlite://
Done.

[19]: [(100, 'Steven', 'King', '1987-06-17', 24000.0),
(200, 'Jennifer', 'Whalen', '1987-09-17', 4400.0),
(101, 'Neena', 'Kochhar', '1989-09-21', 17000.0),
(103, 'Alexander', 'Hunold', '1990-01-03', 9000.0),
(104, 'Bruce', 'Ernst', '1991-05-21', 6000.0),
(102, 'Lex', 'De Haan', '1993-01-13', 17000.0),
(203, 'Susan', 'Mavris', '1994-06-07', 6500.0),
(204, 'Hermann', 'Baer', '1994-06-07', 10000.0),
(205, 'Shelley', 'Higgins', '1994-06-07', 12000.0),
(206, 'William', 'Gietz', '1994-06-07', 8300.0),
(109, 'Daniel', 'Faviet', '1994-08-16', 9000.0),
(108, 'Nancy', 'Greenberg', '1994-08-17', 12000.0),
(114, 'Den', 'Raphaely', '1994-12-07', 11000.0),
(122, 'Payam', 'Kaufling', '1995-05-01', 7900.0),
(115, 'Alexander', 'Khoo', '1995-05-18', 3100.0),
(192, 'Sarah', 'Bell', '1996-02-04', 4000.0),
(201, 'Michael', 'Hartstein', '1996-02-17', 13000.0),
(120, 'Matthew', 'Weiss', '1996-07-18', 8000.0),
(145, 'John', 'Russell', '1996-10-01', 14000.0),
(146, 'Karen', 'Partners', '1997-01-05', 13500.0),
(193, 'Britney', 'Everett', '1997-03-03', 3900.0),
(121, 'Adam', 'Fripp', '1997-04-10', 8200.0),
(105, 'David', 'Austin', '1997-06-25', 4800.0),
(117, 'Sigal', 'Tobias', '1997-07-24', 2800.0),
(202, 'Pat', 'Fay', '1997-08-17', 6000.0),
(110, 'John', 'Chen', '1997-09-28', 8200.0),
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(111, 'Ismael', 'Sciarra', '1997-09-30', 7700.0),
(123, 'Shanta', 'Vollman', '1997-10-10', 6500.0),
(116, 'Shelli', 'Baida', '1997-12-24', 2900.0),
(106, 'Valli', 'Pataballa', '1998-02-05', 4800.0),
(112, 'Jose Manuel', 'Urman', '1998-03-07', 7800.0),
(176, 'Jonathon', 'Taylor', '1998-03-24', 8600.0),
(177, 'Jack', 'Livingston', '1998-04-23', 8400.0),
(126, 'Irene', 'Mikkilineni', '1998-09-28', 2700.0),
(118, 'Guy', 'Himuro', '1998-11-15', 2600.0),
(107, 'Diana', 'Lorentz', '1999-02-07', 4200.0),
(178, 'Kimberely', 'Grant', '1999-05-24', 7000.0),
(119, 'Karen', 'Colmenares', '1999-08-10', 2500.0),
(113, 'Luis', 'Popp', '1999-12-07', 6900.0),
(179, 'Charles', 'Johnson', '2000-01-04', 6200.0)]

7.10.7 10.7 Filtering Data

LIMIT

LIMIT is used to constrain the number of rows returned by a query, similar to the functions head() and tail() in
Pandas.

[20]: %%sql
SELECT

employee_id, first_name, last_name, hire_date, salary
FROM

employees
ORDER BY first_name
LIMIT 5;

* sqlite://
Done.

[20]: [(121, 'Adam', 'Fripp', '1997-04-10', 8200.0),
(103, 'Alexander', 'Hunold', '1990-01-03', 9000.0),
(115, 'Alexander', 'Khoo', '1995-05-18', 3100.0),
(193, 'Britney', 'Everett', '1997-03-03', 3900.0),
(104, 'Bruce', 'Ernst', '1991-05-21', 6000.0)]

It is also possible to include an OFFSET clause, which will skip rows before retrieving the data. E.g., in the next cell,
the first 3 rows are skipped, and rows 4-8 are returned.

[21]: %%sql
SELECT

employee_id, first_name, last_name, hire_date, salary
FROM

employees
ORDER BY first_name
LIMIT 5
OFFSET 3;

* sqlite://
Done.
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[21]: [(193, 'Britney', 'Everett', '1997-03-03', 3900.0),
(104, 'Bruce', 'Ernst', '1991-05-21', 6000.0),
(179, 'Charles', 'Johnson', '2000-01-04', 6200.0),
(109, 'Daniel', 'Faviet', '1994-08-16', 9000.0),
(105, 'David', 'Austin', '1997-06-25', 4800.0)]

DISTINCT

The DISTINCT clause allows to remove duplicate rows from the result set.

E.g., the next cell shows the first 15 rows of the salary columns, where some rows have the same value. In the cell
afterward, DISTINCT is used to remove the rows with the same values for salary.

[22]: %%sql
SELECT

salary
FROM

employees
ORDER BY salary DESC
LIMIT 15;

* sqlite://
Done.

[22]: [(24000.0,),
(17000.0,),
(17000.0,),
(14000.0,),
(13500.0,),
(13000.0,),
(12000.0,),
(12000.0,),
(11000.0,),
(10000.0,),
(9000.0,),
(9000.0,),
(8600.0,),
(8400.0,),
(8300.0,)]

[23]: %%sql
SELECT DISTINCT

salary
FROM

employees
ORDER BY salary DESC
LIMIT 15;

* sqlite://
Done.

[23]: [(24000.0,),
(17000.0,),
(14000.0,),
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(13500.0,),
(13000.0,),
(12000.0,),
(11000.0,),
(10000.0,),
(9000.0,),
(8600.0,),
(8400.0,),
(8300.0,),
(8200.0,),
(8000.0,),
(7900.0,)]

WHERE

The WHERE clause filters data based on specified conditions. For instance, return only the employees that have a salary
greater than a certain value.

[24]: %%sql
SELECT DISTINCT

employee_id, first_name, last_name,salary
FROM

employees
WHERE salary > 9000
ORDER BY salary DESC;

* sqlite://
Done.

[24]: [(100, 'Steven', 'King', 24000.0),
(101, 'Neena', 'Kochhar', 17000.0),
(102, 'Lex', 'De Haan', 17000.0),
(145, 'John', 'Russell', 14000.0),
(146, 'Karen', 'Partners', 13500.0),
(201, 'Michael', 'Hartstein', 13000.0),
(108, 'Nancy', 'Greenberg', 12000.0),
(205, 'Shelley', 'Higgins', 12000.0),
(114, 'Den', 'Raphaely', 11000.0),
(204, 'Hermann', 'Baer', 10000.0)]

Or, return the employees who work in the department 5.

[25]: %%sql
SELECT DISTINCT

employee_id, first_name, last_name, salary, department_id
FROM

employees
WHERE department_id = 5
ORDER BY first_name;

* sqlite://
Done.

7.10. Lecture 10 - Databases and SQL 299



Fall 2023 Python Programming for Data Science, Release 0.1

[25]: [(121, 'Adam', 'Fripp', 8200.0, 5),
(193, 'Britney', 'Everett', 3900.0, 5),
(126, 'Irene', 'Mikkilineni', 2700.0, 5),
(120, 'Matthew', 'Weiss', 8000.0, 5),
(122, 'Payam', 'Kaufling', 7900.0, 5),
(192, 'Sarah', 'Bell', 4000.0, 5),
(123, 'Shanta', 'Vollman', 6500.0, 5)]

Comparison Operators

To specify a condition, we can use the standard comparison operators, such as >, <, >=, <=, =, and note that <> can be
used for ‘not equal to’.

[26]: %%sql
SELECT DISTINCT

employee_id, first_name, last_name, salary, department_id
FROM

employees
WHERE department_id <> 5
ORDER BY first_name;

* sqlite://
Done.

[26]: [(103, 'Alexander', 'Hunold', 9000.0, 6),
(115, 'Alexander', 'Khoo', 3100.0, 3),
(104, 'Bruce', 'Ernst', 6000.0, 6),
(179, 'Charles', 'Johnson', 6200.0, 8),
(109, 'Daniel', 'Faviet', 9000.0, 10),
(105, 'David', 'Austin', 4800.0, 6),
(114, 'Den', 'Raphaely', 11000.0, 3),
(107, 'Diana', 'Lorentz', 4200.0, 6),
(118, 'Guy', 'Himuro', 2600.0, 3),
(204, 'Hermann', 'Baer', 10000.0, 7),
(111, 'Ismael', 'Sciarra', 7700.0, 10),
(177, 'Jack', 'Livingston', 8400.0, 8),
(200, 'Jennifer', 'Whalen', 4400.0, 1),
(110, 'John', 'Chen', 8200.0, 10),
(145, 'John', 'Russell', 14000.0, 8),
(176, 'Jonathon', 'Taylor', 8600.0, 8),
(112, 'Jose Manuel', 'Urman', 7800.0, 10),
(119, 'Karen', 'Colmenares', 2500.0, 3),
(146, 'Karen', 'Partners', 13500.0, 8),
(178, 'Kimberely', 'Grant', 7000.0, 8),
(102, 'Lex', 'De Haan', 17000.0, 9),
(113, 'Luis', 'Popp', 6900.0, 10),
(201, 'Michael', 'Hartstein', 13000.0, 2),
(108, 'Nancy', 'Greenberg', 12000.0, 10),
(101, 'Neena', 'Kochhar', 17000.0, 9),
(202, 'Pat', 'Fay', 6000.0, 2),
(205, 'Shelley', 'Higgins', 12000.0, 11),
(116, 'Shelli', 'Baida', 2900.0, 3),
(117, 'Sigal', 'Tobias', 2800.0, 3),
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(100, 'Steven', 'King', 24000.0, 9),
(203, 'Susan', 'Mavris', 6500.0, 4),
(106, 'Valli', 'Pataballa', 4800.0, 6),
(206, 'William', 'Gietz', 8300.0, 11)]

Logical Operators

We can also use logical operators to combine multiple conditions in the WHERE clause of an SQL statement. The
following table contains the SQL logical operators.

Figure source: Reference [1].

[27]: %%sql
SELECT

first_name, last_name, salary
FROM

employees
WHERE salary > 5000 AND salary < 7000
ORDER BY salary;

* sqlite://
Done.
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[27]: [('Bruce', 'Ernst', 6000.0),
('Pat', 'Fay', 6000.0),
('Charles', 'Johnson', 6200.0),
('Shanta', 'Vollman', 6500.0),
('Susan', 'Mavris', 6500.0),
('Luis', 'Popp', 6900.0)]

[28]: %%sql
SELECT

first_name, last_name, salary
FROM

employees
WHERE salary BETWEEN 5000 AND 7000
ORDER BY salary;

* sqlite://
Done.

[28]: [('Bruce', 'Ernst', 6000.0),
('Pat', 'Fay', 6000.0),
('Charles', 'Johnson', 6200.0),
('Shanta', 'Vollman', 6500.0),
('Susan', 'Mavris', 6500.0),
('Luis', 'Popp', 6900.0),
('Kimberely', 'Grant', 7000.0)]

[29]: %%sql
SELECT

first_name, last_name, salary
FROM

employees
WHERE salary = 6000 OR salary = 7000
ORDER BY salary;

* sqlite://
Done.

[29]: [('Bruce', 'Ernst', 6000.0),
('Pat', 'Fay', 6000.0),
('Kimberely', 'Grant', 7000.0)]

Select employees with first names that start with jo.

[30]: %%sql
SELECT

employee_id, first_name, last_name
FROM

employees
WHERE first_name LIKE 'jo%'
ORDER BY first_name;

* sqlite://
Done.
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[30]: [(110, 'John', 'Chen'),
(145, 'John', 'Russell'),
(176, 'Jonathon', 'Taylor'),
(112, 'Jose Manuel', 'Urman')]

Select employees with first names whose second character is h.

[31]: %%sql
SELECT

employee_id, first_name, last_name
FROM

employees
WHERE

first_name LIKE '_h%'
ORDER BY first_name;

* sqlite://
Done.

[31]: [(179, 'Charles', 'Johnson'),
(123, 'Shanta', 'Vollman'),
(205, 'Shelley', 'Higgins'),
(116, 'Shelli', 'Baida')]

[32]: %%sql
SELECT

first_name, last_name, department_id
FROM

employees
WHERE department_id IN (8, 9)
ORDER BY department_id;

* sqlite://
Done.

[32]: [('John', 'Russell', 8),
('Karen', 'Partners', 8),
('Jonathon', 'Taylor', 8),
('Jack', 'Livingston', 8),
('Kimberely', 'Grant', 8),
('Charles', 'Johnson', 8),
('Steven', 'King', 9),
('Neena', 'Kochhar', 9),
('Lex', 'De Haan', 9)]
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IS NULL Operator

To determine whether a row or column has missing or non-defined values, we can use the IS NULL operator.

For instance, to find all employees who do not have phone numbers, we use the IS NUL operator as follows.

[33]: %%sql
SELECT

first_name, last_name, phone_number
FROM

employees
WHERE phone_number IS NULL
ORDER BY first_name , last_name;

* sqlite://
Done.

[33]: [('Charles', 'Johnson', None),
('Jack', 'Livingston', None),
('John', 'Russell', None),
('Jonathon', 'Taylor', None),
('Karen', 'Partners', None),
('Kimberely', 'Grant', None)]

7.10.8 10.8 Conditional Expressions

The CASE expression is used to add if-then-else logic to SQL statements, which allows to evaluate a list of conditions
and returns one of the possible results.

In the next cell, the CASE expression returns the results Low, Average, or High based on the conditions regarding the
salary. The results are collected in the evaluation column.

[34]: %%sql
SELECT

first_name, last_name,
CASE WHEN salary < 3000 THEN 'Low'

WHEN salary >= 3000 AND salary <= 5000 THEN 'Average'
WHEN salary > 5000 THEN 'High'

END evaluation
FROM

employees
LIMIT 15;

* sqlite://
Done.

[34]: [('Steven', 'King', 'High'),
('Neena', 'Kochhar', 'High'),
('Lex', 'De Haan', 'High'),
('Alexander', 'Hunold', 'High'),
('Bruce', 'Ernst', 'High'),
('David', 'Austin', 'Average'),
('Valli', 'Pataballa', 'Average'),
('Diana', 'Lorentz', 'Average'),
('Nancy', 'Greenberg', 'High'),
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('Daniel', 'Faviet', 'High'),
('John', 'Chen', 'High'),
('Ismael', 'Sciarra', 'High'),
('Jose Manuel', 'Urman', 'High'),
('Luis', 'Popp', 'High'),
('Den', 'Raphaely', 'High')]

7.10.9 10.9 Joining Multiple Tables

SQL provides several ways to join tables, such as INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN, CROSS JOIN,
and others.

INNER JOIN

INNER JOIN combines rows from two or more tables based on a related column between them. It retrieves only the
rows that have matching values in both tables.

The syntax is:

SELECT
column1, column2, ...

FROM
table1

INNER JOIN table2 ON table1.columnX = table2.columnX;

It specifies to join table1 and table2 by matching values in columnX from table1 and columnX from table2, adn
returns column1, column2, ... from the joined tables.

Let’s show how we can use INNER JOIN, where for instance, we want to retrieve the list of employees who work in
departments 1, 2, and 3, and we would like to list the names of the departments.

To do that, first we can notice that both the employees table and the departments table have a column
department_id. Therefore, we can use the department_id column in the employees table as the foreign key
column to link the employees to the departments table.

Let’s first display the employees who work in departments 1, 2, and 3.

[35]: %%sql
SELECT

first_name, last_name, department_id
FROM

employees
WHERE department_id IN (1, 2, 3)
ORDER BY department_id;

* sqlite://
Done.

[35]: [('Jennifer', 'Whalen', 1),
('Michael', 'Hartstein', 2),
('Pat', 'Fay', 2),
('Den', 'Raphaely', 3),
('Alexander', 'Khoo', 3),
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('Shelli', 'Baida', 3),
('Sigal', 'Tobias', 3),
('Guy', 'Himuro', 3),
('Karen', 'Colmenares', 3)]

We can also find the names of the departments that have a department_id of 1, 2, and 3.

[36]: %%sql
SELECT

department_id, department_name
FROM

departments
WHERE department_id IN (1, 2, 3);

* sqlite://
Done.

[36]: [(1, 'Administration'), (2, 'Marketing'), (3, 'Purchasing')]

Next, we join the employees and departments tables, and use INNER JOIN to match the department_id column
in the two tables. For each row, if the condition departments.department_id = employees.department_id is
satisfied, the combined row will include data from rows in both employees and departments tables in the result set.

[37]: %%sql
SELECT

first_name, last_name, employees.department_id, departments.department_id,␣
→˓department_name
FROM

employees
INNER JOIN departments ON departments.department_id = employees.department_id
WHERE employees.department_id IN (1, 2, 3);

* sqlite://
Done.

[37]: [('Jennifer', 'Whalen', 1, 1, 'Administration'),
('Michael', 'Hartstein', 2, 2, 'Marketing'),
('Pat', 'Fay', 2, 2, 'Marketing'),
('Den', 'Raphaely', 3, 3, 'Purchasing'),
('Alexander', 'Khoo', 3, 3, 'Purchasing'),
('Shelli', 'Baida', 3, 3, 'Purchasing'),
('Sigal', 'Tobias', 3, 3, 'Purchasing'),
('Guy', 'Himuro', 3, 3, 'Purchasing'),
('Karen', 'Colmenares', 3, 3, 'Purchasing')]

Let’s look at one more example, where we used INNER JOIN to join three tables. Specifically, in the next cell we use
one more INNER JOIN clause to join the tables employees and jobs using the jobs_id column, in order to retrieve
the information about the job_title column from the jobs table.

[38]: %%sql
SELECT

first_name, last_name, job_title, department_name
FROM

employees
INNER JOIN departments ON departments.department_id = employees.department_id
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INNER JOIN jobs ON jobs.job_id = employees.job_id
WHERE employees.department_id IN (1, 2, 3);

* sqlite://
Done.

[38]: [('Den', 'Raphaely', 'Purchasing Manager', 'Purchasing'),
('Alexander', 'Khoo', 'Purchasing Clerk', 'Purchasing'),
('Shelli', 'Baida', 'Purchasing Clerk', 'Purchasing'),
('Sigal', 'Tobias', 'Purchasing Clerk', 'Purchasing'),
('Guy', 'Himuro', 'Purchasing Clerk', 'Purchasing'),
('Karen', 'Colmenares', 'Purchasing Clerk', 'Purchasing'),
('Jennifer', 'Whalen', 'Administration Assistant', 'Administration'),
('Michael', 'Hartstein', 'Marketing Manager', 'Marketing'),
('Pat', 'Fay', 'Marketing Representative', 'Marketing')]

LEFT JOIN

LEFT JOIN (also referred to as LEFT OUTER JOIN) is similar to INNER JOIN, only it retrieves all rows from the left
table in the JOIN clause and the matched rows from the right table.

The “left table” is the table that appears on the left side of the JOIN clause. It is considered the primary table, and its
rows are the ones that we want to retrieve or work with primarily.

The “right table” is the table that appears on the right side of the JOIN clause. It is the secondary table, and we are
typically interested in its data to complement or match with the data from the left table.

For instance, the countries table is shown below, with country_id column being the primary key. The following
query returns columns for the countries US, UK, and China.

[39]: %%sql
SELECT

country_id,
country_name

FROM
countries

WHERE country_id IN ('US', 'UK', 'CN');

* sqlite://
Done.

[39]: [('CN', 'China'), ('UK', 'United Kingdom'), ('US', 'United States of America')]

Similarly, the locations table shown below has a country_id column as the foreign key. The query returns the
locations located in the US, UK, and China.

[40]: %%sql
SELECT

country_id,
street_address,
city

FROM
locations

WHERE country_id IN ('US', 'UK', 'CN');
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* sqlite://
Done.

[40]: [('US', '2014 Jabberwocky Rd', 'Southlake'),
('US', '2011 Interiors Blvd', 'South San Francisco'),
('US', '2004 Charade Rd', 'Seattle'),
('UK', '8204 Arthur St', 'London'),
('UK', 'Magdalen Centre, The Oxford Science Park', 'Oxford')]

In the next cell, because we use the LEFT JOIN clause, all rows that satisfy the condition in the WHERE clause of the
countries table are included in the result set.

For each row in the countries table, the LEFT JOIN clause finds the matching rows in the locations table. If at
least one matching row is found, the database engine combines the data from columns of the matching rows in both
tables.

In this case, there is no matching row found for the country with the country_id of CN, and therefore, the row in the
countries table is included in the result set and the row in the locations table is filled with None values.

[41]: %%sql
SELECT

countries.country_name,
countries.country_id,
locations.country_id,
locations.street_address,
locations.city

FROM
countries

LEFT JOIN locations ON locations.country_id = countries.country_id
WHERE countries.country_id IN ('US', 'UK', 'CN')

* sqlite://
Done.

[41]: [('China', 'CN', None, None, None),
('United Kingdom', 'UK', 'UK', '8204 Arthur St', 'London'),
('United Kingdom', 'UK', 'UK', 'Magdalen Centre, The Oxford Science Park', 'Oxford'),
('United States of America', 'US', 'US', '2014 Jabberwocky Rd', 'Southlake'),
('United States of America', 'US', 'US', '2011 Interiors Blvd', 'South San Francisco'),
('United States of America', 'US', 'US', '2004 Charade Rd', 'Seattle')]

LEFT JOIN is useful when we want to retrieve data from a primary table and include related information from a
secondary table, but we don’t want to exclude records from the primary table if there are no matching rows in the
secondary table.

And, because non-matching rows in the locations table are filled with the None values, we can apply the LEFT JOIN
clause to find mismatched rows between the tables.

For example, to find the country that does not have any locations in the locations table, we use the following query.

[42]: %%sql
SELECT

country_name
FROM

countries
LEFT JOIN locations ON locations.country_id = countries.country_id
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WHERE locations.location_id IS NULL
ORDER BY country_name;

* sqlite://
Done.

[42]: [('Argentina',),
('Australia',),
('Belgium',),
('Brazil',),
('China',),
('Denmark',),
('Egypt',),
('France',),
('HongKong',),
('India',),
('Israel',),
('Italy',),
('Japan',),
('Kuwait',),
('Mexico',),
('Netherlands',),
('Nigeria',),
('Singapore',),
('Switzerland',),
('Zambia',),
('Zimbabwe',)]

Compare the previous cell to the next cell.

[43]: %%sql
SELECT

countries.country_name,
countries.country_id,
locations.country_id,
locations.street_address,
locations.city

FROM
countries

LEFT JOIN locations ON locations.country_id = countries.country_id

* sqlite://
Done.

[43]: [('Argentina', 'AR', None, None, None),
('Australia', 'AU', None, None, None),
('Belgium', 'BE', None, None, None),
('Brazil', 'BR', None, None, None),
('Canada', 'CA', 'CA', '147 Spadina Ave', 'Toronto'),
('Switzerland', 'CH', None, None, None),
('China', 'CN', None, None, None),
('Germany', 'DE', 'DE', 'Schwanthalerstr. 7031', 'Munich'),
('Denmark', 'DK', None, None, None),
('Egypt', 'EG', None, None, None),
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('France', 'FR', None, None, None),
('HongKong', 'HK', None, None, None),
('Israel', 'IL', None, None, None),
('India', 'IN', None, None, None),
('Italy', 'IT', None, None, None),
('Japan', 'JP', None, None, None),
('Kuwait', 'KW', None, None, None),
('Mexico', 'MX', None, None, None),
('Nigeria', 'NG', None, None, None),
('Netherlands', 'NL', None, None, None),
('Singapore', 'SG', None, None, None),
('United Kingdom', 'UK', 'UK', '8204 Arthur St', 'London'),
('United Kingdom', 'UK', 'UK', 'Magdalen Centre, The Oxford Science Park', 'Oxford'),
('United States of America', 'US', 'US', '2004 Charade Rd', 'Seattle'),
('United States of America', 'US', 'US', '2011 Interiors Blvd', 'South San Francisco'),
('United States of America', 'US', 'US', '2014 Jabberwocky Rd', 'Southlake'),
('Zambia', 'ZM', None, None, None),
('Zimbabwe', 'ZW', None, None, None)]

RIGHT JOIN

By analogy, RIGHT JOIN (or RIGHT OUTER JOIN) returns all rows from the right table and the matched rows from
the left table. If there are no matches in the left table, the result will contain None values for those columns from the
left table.

[44]: %%sql
SELECT

countries.country_name,
countries.country_id,
locations.country_id,
locations.street_address,
locations.city

FROM
countries

RIGHT JOIN locations ON locations.country_id = countries.country_id
WHERE countries.country_id IN ('US', 'UK', 'CN', 'CA', 'DE', 'IT')

* sqlite://
Done.

[44]: [('Canada', 'CA', 'CA', '147 Spadina Ave', 'Toronto'),
('Germany', 'DE', 'DE', 'Schwanthalerstr. 7031', 'Munich'),
('United Kingdom', 'UK', 'UK', '8204 Arthur St', 'London'),
('United Kingdom', 'UK', 'UK', 'Magdalen Centre, The Oxford Science Park', 'Oxford'),
('United States of America', 'US', 'US', '2014 Jabberwocky Rd', 'Southlake'),
('United States of America', 'US', 'US', '2011 Interiors Blvd', 'South San Francisco'),
('United States of America', 'US', 'US', '2004 Charade Rd', 'Seattle')]

FULL JOIN (also known as a FULL OUTER JOIN) combines the result sets of both a LEFT JOIN and a RIGHT JOIN, it
returns all rows from both tables and includes rows from the left table that have no match in the right table (with None
values for right table columns) and rows from the right table that have no match in the left table (with None values for
left table columns).
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CROSS JOIN (also known as a CARTESIAN JOIN), combines all rows from the first table with all rows from the second
table, and generates all possible combinations of data.

7.10.10 10.10 Return Data Statistics

Aggregate functions in SQL take a list of values and return a single value, such as the average AVG(), MIN(), MAX(),
SUM(), or COUNT().

[45]: %%sql
SELECT

AVG(salary)
FROM

employees;

* sqlite://
Done.

[45]: [(8060.0,)]

[46]: %%sql
SELECT

MAX(salary)
FROM

employees;

* sqlite://
Done.

[46]: [(24000.0,)]

[47]: %%sql
SELECT

SUM(salary)
FROM

employees
WHERE department_id = 5;

* sqlite://
Done.

[47]: [(41200.0,)]

COUNT returns the number of rows in a table. It can be used by providing the name of a column, or it can also be used
with an asterisk * as in the following cell.

[48]: %%sql
SELECT

COUNT(employee_id)
FROM

employees;

* sqlite://
Done.

[48]: [(40,)]
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[49]: %%sql
SELECT

COUNT(*)
FROM

employees;

* sqlite://
Done.

[49]: [(40,)]

7.10.11 10.11 Grouping Data

GROUP BY allows to group rows based on values from more than one column. It is typically combined with aggregate
functions, like COUNT, SUM, AVG, MIN, and MAX.

For instance, let’s assume that we would like to retrieve information about the average salary in each department. In
the next cell we will first display the salaries of all employees per department, and in the following cell we can see how
GROUP BY is used to calculate the average salary for each department.

[50]: %%sql
SELECT

department_id, salary
FROM

employees

* sqlite://
Done.

[50]: [(9, 24000.0),
(9, 17000.0),
(9, 17000.0),
(6, 9000.0),
(6, 6000.0),
(6, 4800.0),
(6, 4800.0),
(6, 4200.0),
(10, 12000.0),
(10, 9000.0),
(10, 8200.0),
(10, 7700.0),
(10, 7800.0),
(10, 6900.0),
(3, 11000.0),
(3, 3100.0),
(3, 2900.0),
(3, 2800.0),
(3, 2600.0),
(3, 2500.0),
(5, 8000.0),
(5, 8200.0),
(5, 7900.0),
(5, 6500.0),
(5, 2700.0),

(continues on next page)
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(8, 14000.0),
(8, 13500.0),
(8, 8600.0),
(8, 8400.0),
(8, 7000.0),
(8, 6200.0),
(5, 4000.0),
(5, 3900.0),
(1, 4400.0),
(2, 13000.0),
(2, 6000.0),
(4, 6500.0),
(7, 10000.0),
(11, 12000.0),
(11, 8300.0)]

[51]: %%sql
SELECT

department_id, AVG(salary)
FROM

employees
GROUP BY department_id;

* sqlite://
Done.

[51]: [(1, 4400.0),
(2, 9500.0),
(3, 4150.0),
(4, 6500.0),
(5, 5885.714285714285),
(6, 5760.0),
(7, 10000.0),
(8, 9616.666666666666),
(9, 19333.333333333332),
(10, 8600.0),
(11, 10150.0)]

Similarly, the following cell displays the minimum, maximum, and average salary for each department. And, instead of
using the department_id column, it will be more convenient to display the department names. Since the employees
table does not have a column with the department names, we will use INNER JOIN to retrieve the department_name
column from the departments table.

[52]: %%sql
SELECT

department_name, MIN(salary) AS min_salary, MAX(salary) AS max_salary,
ROUND(AVG(salary)) AS average_salary

FROM
employees

INNER JOIN departments ON departments.department_id = employees.department_id
GROUP BY department_name;

* sqlite://
Done.
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[52]: [('Accounting', 8300.0, 12000.0, 10150.0),
('Administration', 4400.0, 4400.0, 4400.0),
('Executive', 17000.0, 24000.0, 19333.0),
('Finance', 6900.0, 12000.0, 8600.0),
('Human Resources', 6500.0, 6500.0, 6500.0),
('IT', 4200.0, 9000.0, 5760.0),
('Marketing', 6000.0, 13000.0, 9500.0),
('Public Relations', 10000.0, 10000.0, 10000.0),
('Purchasing', 2500.0, 11000.0, 4150.0),
('Sales', 6200.0, 14000.0, 9617.0),
('Shipping', 2700.0, 8200.0, 5886.0)]

7.10.12 10.12 Modifying Data

INSERT

INSERT is used to insert one or more rows into a table, and we already used it in subsection 10.3 when we created new
tables. The general syntax is:

INSERT INTO table (column1, column2,...)
VALUES (value1, value2, ...);

It is important to ensure that the number of values matches the number of columns, and that the value type corresponds
to the data type for that column.

It is also possible to insert value without specifying the columns, as in:

INSERT INTO table
VALUES (value1, value2, ...);

For instance, to insert a new row into the dependents table, we can use the following code. The new row will be added
to the bottom of the table dependents.

[53]: %%sql
INSERT INTO

dependents (first_name, last_name, relationship, employee_id)
VALUES ('Dustin', 'Johnson', 'Child', 178);

* sqlite://
1 rows affected.

[53]: []

[54]: # verify the changes
%sql SELECT * from dependents

* sqlite://
Done.

[54]: [(1, 'Penelope', 'Gietz', 'Child', 206),
(2, 'Nick', 'Higgins', 'Child', 205),
(3, 'Ed', 'Whalen', 'Child', 200),
(4, 'Jennifer', 'King', 'Child', 100),
(5, 'Johnny', 'Kochhar', 'Child', 101),

(continues on next page)
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(6, 'Bette', 'De Haan', 'Child', 102),
(7, 'Grace', 'Faviet', 'Child', 109),
(8, 'Matthew', 'Chen', 'Child', 110),
(9, 'Joe', 'Sciarra', 'Child', 111),
(10, 'Christian', 'Urman', 'Child', 112),
(11, 'Zero', 'Popp', 'Child', 113),
(12, 'Karl', 'Greenberg', 'Child', 108),
(13, 'Uma', 'Mavris', 'Child', 203),
(14, 'Vivien', 'Hunold', 'Child', 103),
(15, 'Cuba', 'Ernst', 'Child', 104),
(16, 'Fred', 'Austin', 'Child', 105),
(17, 'Helen', 'Pataballa', 'Child', 106),
(18, 'Dan', 'Lorentz', 'Child', 107),
(19, 'Bob', 'Hartstein', 'Child', 201),
(20, 'Lucille', 'Fay', 'Child', 202),
(21, 'Kirsten', 'Baer', 'Child', 204),
(22, 'Elvis', 'Khoo', 'Child', 115),
(23, 'Sandra', 'Baida', 'Child', 116),
(24, 'Cameron', 'Tobias', 'Child', 117),
(25, 'Kevin', 'Himuro', 'Child', 118),
(26, 'Rip', 'Colmenares', 'Child', 119),
(27, 'Julia', 'Raphaely', 'Child', 114),
(28, 'Woody', 'Russell', 'Child', 145),
(29, 'Alec', 'Partners', 'Child', 146),
(30, 'Sandra', 'Taylor', 'Child', 176),
(31, 'Dustin', 'Johnson', 'Child', 178)]

UPDATE

UPDATE is used to update existing data in a table.

For instance, to update the last name of the employee with id=192, we can write:

[55]: %%sql
UPDATE employees
SET last_name = 'Lopez'
WHERE employee_id = 192;

* sqlite://
1 rows affected.

[55]: []

And we can verify the changes.

[56]: %%sql
SELECT

employee_id, first_name, last_name
FROM

employees
WHERE employee_id = 192;

* sqlite://
Done.
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[56]: [(192, 'Sarah', 'Lopez')]

DELETE

DELETE is used to delete one or more rows from a table permanently.

[57]: %%sql
DELETE FROM dependents
WHERE dependent_id = 16;

* sqlite://
1 rows affected.

[57]: []

[58]: # verify the changes

%sql SELECT * FROM dependents

* sqlite://
Done.

[58]: [(1, 'Penelope', 'Gietz', 'Child', 206),
(2, 'Nick', 'Higgins', 'Child', 205),
(3, 'Ed', 'Whalen', 'Child', 200),
(4, 'Jennifer', 'King', 'Child', 100),
(5, 'Johnny', 'Kochhar', 'Child', 101),
(6, 'Bette', 'De Haan', 'Child', 102),
(7, 'Grace', 'Faviet', 'Child', 109),
(8, 'Matthew', 'Chen', 'Child', 110),
(9, 'Joe', 'Sciarra', 'Child', 111),
(10, 'Christian', 'Urman', 'Child', 112),
(11, 'Zero', 'Popp', 'Child', 113),
(12, 'Karl', 'Greenberg', 'Child', 108),
(13, 'Uma', 'Mavris', 'Child', 203),
(14, 'Vivien', 'Hunold', 'Child', 103),
(15, 'Cuba', 'Ernst', 'Child', 104),
(17, 'Helen', 'Pataballa', 'Child', 106),
(18, 'Dan', 'Lorentz', 'Child', 107),
(19, 'Bob', 'Hartstein', 'Child', 201),
(20, 'Lucille', 'Fay', 'Child', 202),
(21, 'Kirsten', 'Baer', 'Child', 204),
(22, 'Elvis', 'Khoo', 'Child', 115),
(23, 'Sandra', 'Baida', 'Child', 116),
(24, 'Cameron', 'Tobias', 'Child', 117),
(25, 'Kevin', 'Himuro', 'Child', 118),
(26, 'Rip', 'Colmenares', 'Child', 119),
(27, 'Julia', 'Raphaely', 'Child', 114),
(28, 'Woody', 'Russell', 'Child', 145),
(29, 'Alec', 'Partners', 'Child', 146),
(30, 'Sandra', 'Taylor', 'Child', 176),
(31, 'Dustin', 'Johnson', 'Child', 178)]
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7.10.13 10.13 Working with Tables

In subsection 10.3 we learned how to use the CREATE TABLE statement. Several other related SQL statements for
working with tables are described next.

ALTER TABLE

ALTER TABLE allows to add new columns in an existing table using ADD, remove columns in a table with DROP, rename
columns with RENAME, or modify attributes of a column such as primary key, default value, etc. with ADD CONSTRAINT
or DROP CONSTRAINT and related commands.

Add a Column

[59]: %%sql
ALTER TABLE cars
ADD mileage INT;

* sqlite://
Done.

[59]: []

[60]: %sql SELECT * FROM cars

* sqlite://
Done.

[60]: [(1, 'Audi', 52642, None),
(2, 'Mercedes', 57127, None),
(3, 'Skoda', 9000, None),
(4, 'Volvo', 29000, None),
(5, 'Bentley', 350000, None),
(6, 'Citroen', 21000, None),
(7, 'Hummer', 41400, None),
(8, 'Volkswagen', 21600, None)]

Remove a Column

[61]: %%sql
ALTER TABLE cars
DROP price;

* sqlite://
Done.

[61]: []

[62]: # verfiy the change
%sql SELECT * FROM cars

* sqlite://
Done.

[62]: [(1, 'Audi', None),
(2, 'Mercedes', None),
(3, 'Skoda', None),
(4, 'Volvo', None),

(continues on next page)
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(5, 'Bentley', None),
(6, 'Citroen', None),
(7, 'Hummer', None),
(8, 'Volkswagen', None)]

Rename a Column

[63]: %%sql
ALTER TABLE cars
RENAME mileage TO miles;

* sqlite://
Done.

[63]: []

[64]: # verfiy the change
%sql SELECT * FROM cars

* sqlite://
Done.

[64]: [(1, 'Audi', None),
(2, 'Mercedes', None),
(3, 'Skoda', None),
(4, 'Volvo', None),
(5, 'Bentley', None),
(6, 'Citroen', None),
(7, 'Hummer', None),
(8, 'Volkswagen', None)]

Rename a Table

Similarly, ALTER TABLE can be used to rename a table, as in the following example.

[65]: %%sql
ALTER TABLE writer
RENAME TO authors;

* sqlite://
Done.

[65]: []

[66]: # verfiy the change
%sql SELECT name FROM sqlite_master WHERE type='table'

* sqlite://
Done.

[66]: [('cars',),
('authors',),
('regions',),
('sqlite_sequence',),
('countries',),
('locations',),

(continues on next page)
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('departments',),
('jobs',),
('employees',),
('dependents',)]

DROP TABLE

DROP TABLE removes a table from a database.

[67]: %sql DROP TABLE cars;

* sqlite://
Done.

[67]: []

[68]: # verfiy the change
%sql SELECT name FROM sqlite_master WHERE type='table'

* sqlite://
Done.

[68]: [('authors',),
('regions',),
('sqlite_sequence',),
('countries',),
('locations',),
('departments',),
('jobs',),
('employees',),
('dependents',)]

7.10.14 10.14 Constraints

Constraints enforce restrictions on the data that a column can contain or impose other related restrictions. So far, we
described some of the constraints used in SQL databases, such as:

• PRIMARY KEY, defines a primary key for a table.

• NOT NULL, ensures that values are inserted in a column.

• UNIQUE, ensures that each row in a column has unique values.

FOREIGN KEY

Beside the primary key, some tables also define a foreign key. This is a column or a group of columns that enforces a
link between the data in two tables. In a foreign key reference, the primary key column of the first table is referenced
by the column of the second table, and the column of the second table becomes the foreign key.

For instance, when we created the countries table (see the inserted code below), we specified that it has country_id
column as a primary key, and region_id column as a foreign key. Therefore, the region_id column in countries
will point to the region_id column in the regions table. This is indicated in the last line below: FOREIGN KEY
(region_id) REFERENCES regions (region_id).
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CREATE TABLE countries (
country_id TEXT NOT NULL,
country_name TEXT NOT NULL,
region_id INTEGER NOT NULL,
PRIMARY KEY (country_id ASC),
FOREIGN KEY (region_id) REFERENCES regions (region_id) ON DELETE CASCADE ON UPDATE␣

→˓CASCADE);

Note also that in the last line ON DELETE CASCADE specifies that if a row in the regions table is deleted, all rows in
the countries table that have a matching region_id will also be deleted automatically. Analogously, ON UPDATE
CASCADE specifies that if a region_id value in the regions table is updated, all corresponding rows in the countries
table will be updated accordingly. This is useful for maintaining referential integrity between the rows in these two
tables.

Let’s inspect the countries table.

[69]: %sql SELECT * FROM countries

* sqlite://
Done.

[69]: [('AR', 'Argentina', 2),
('AU', 'Australia', 3),
('BE', 'Belgium', 1),
('BR', 'Brazil', 2),
('CA', 'Canada', 2),
('CH', 'Switzerland', 1),
('CN', 'China', 3),
('DE', 'Germany', 1),
('DK', 'Denmark', 1),
('EG', 'Egypt', 4),
('FR', 'France', 1),
('HK', 'HongKong', 3),
('IL', 'Israel', 4),
('IN', 'India', 3),
('IT', 'Italy', 1),
('JP', 'Japan', 3),
('KW', 'Kuwait', 4),
('MX', 'Mexico', 2),
('NG', 'Nigeria', 4),
('NL', 'Netherlands', 1),
('SG', 'Singapore', 3),
('UK', 'United Kingdom', 1),
('US', 'United States of America', 2),
('ZM', 'Zambia', 4),
('ZW', 'Zimbabwe', 4)]

[70]: %sql SELECT * FROM regions

* sqlite://
Done.

[70]: [(1, 'Europe'), (2, 'Americas'), (3, 'Asia'), (4, 'Middle East and Africa')]

As we mentioned in the section on joining tables, we can use the foreign key column in a table to link to other tables. In
the above example, the region_id column establishes a relationship between the countries table and the regions
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table, wherecountries.region_id must match an existing value in regions.region_id.

7.10.15 10.15 Subqueries

A subquery is a query that is nested inside another query, such as SELECT.

For instance, the following cell retrieves employees in the departments that have a location_id=1700.

The query placed inside the parentheses is a subquery. It is also known as an inner query or inner select. The query
that contains the subquery is called an outer query or an outer select.

To execute the query, the database system first has to execute the subquery and retrieve the departments with a
location_id of 1700, and afterward it has to execute the outer query.

[71]: %%sql
SELECT

employee_id, first_name, last_name
FROM

employees
WHERE department_id IN

(SELECT department_id FROM departments
WHERE location_id = 1700)

ORDER BY first_name , last_name;

* sqlite://
Done.

[71]: [(115, 'Alexander', 'Khoo'),
(109, 'Daniel', 'Faviet'),
(114, 'Den', 'Raphaely'),
(118, 'Guy', 'Himuro'),
(111, 'Ismael', 'Sciarra'),
(200, 'Jennifer', 'Whalen'),
(110, 'John', 'Chen'),
(112, 'Jose Manuel', 'Urman'),
(119, 'Karen', 'Colmenares'),
(102, 'Lex', 'De Haan'),
(113, 'Luis', 'Popp'),
(108, 'Nancy', 'Greenberg'),
(101, 'Neena', 'Kochhar'),
(205, 'Shelley', 'Higgins'),
(116, 'Shelli', 'Baida'),
(117, 'Sigal', 'Tobias'),
(100, 'Steven', 'King'),
(206, 'William', 'Gietz')]

The next code finds the employee who has the highest salary.

[72]: %%sql
SELECT

employee_id, first_name, last_name, salary
FROM

employees
WHERE salary =

(SELECT MAX(salary) FROM employees)
ORDER BY first_name , last_name;
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* sqlite://
Done.

[72]: [(100, 'Steven', 'King', 24000.0)]

E.g., find all employees who salaries are greater than the average salary of all employees.

[73]: %%sql
SELECT

employee_id, first_name, last_name, salary
FROM

employees
WHERE

salary >
(SELECT AVG(salary) FROM employees);

* sqlite://
Done.

[73]: [(100, 'Steven', 'King', 24000.0),
(101, 'Neena', 'Kochhar', 17000.0),
(102, 'Lex', 'De Haan', 17000.0),
(103, 'Alexander', 'Hunold', 9000.0),
(108, 'Nancy', 'Greenberg', 12000.0),
(109, 'Daniel', 'Faviet', 9000.0),
(110, 'John', 'Chen', 8200.0),
(114, 'Den', 'Raphaely', 11000.0),
(121, 'Adam', 'Fripp', 8200.0),
(145, 'John', 'Russell', 14000.0),
(146, 'Karen', 'Partners', 13500.0),
(176, 'Jonathon', 'Taylor', 8600.0),
(177, 'Jack', 'Livingston', 8400.0),
(201, 'Michael', 'Hartstein', 13000.0),
(204, 'Hermann', 'Baer', 10000.0),
(205, 'Shelley', 'Higgins', 12000.0),
(206, 'William', 'Gietz', 8300.0)]

7.10.16 10.16 Connect to an Existing Database

Recall again that when we created new tables in section 10.3 or a new database in section 10.4, we used sqlite://
to connect to the tables or to the database. This syntax is used to specify an in-memory table or database, that is, it
indicates that we want to work with tables or databases that exist only in the memory of our local machine. This syntax
uses two forward slashes // after sqlite:.

To connect to an existing database that is stored in a local directory of our computer, we will use the syntax sqlite:/
//relative_database_path, where relative_database_path specifies the relative path to the local directory
where the SQL database is stored. This syntax uses three forward slashes /// after sqlite:.

Similarly, we can connect to an existing database that is stored in a directory of our computer by using the absolute
path to the database with the syntax sqlite:////absolute_database_path. This syntax uses four forward slashes
//// after sqlite:.

In the following cell, we used sqlite:///data/EssentialSQL.db to initialize the connection to the database
EssentialSQL.db which is located in the data subdirectory in the current working directory.
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[74]: %sql sqlite:///data/EssentialSQL.db

Note again that there are three forward slashes after sqlite:, since we provided a relative path to the database.

We can inspect the tables in the database EssentialSQL.db in the following cell.

[75]: %sql SELECT name FROM sqlite_master WHERE type='table'

sqlite://
* sqlite:///data/EssentialSQL.db
Done.

[75]: [('Customers',), ('Shippers',), ('Employees',), ('Orders',), ('OrderDetails',)]

And we can inspect the data in the table Customers.

[76]: %sql SELECT * FROM Customers

sqlite://
* sqlite:///data/EssentialSQL.db
Done.

[76]: [(1, 'Deerfield Tile', 'Dick Terrcotta', 'Owner', '450 Village Street', 'Deerfield', 'IL
→˓'),
(2, 'Sagebrush Carpet', 'Barbara Berber', 'Director of Installations', '10 Industrial␣
→˓Drive', 'El Paso', 'TX'),
(3, 'Floor Co.', 'Jim Wood', 'Installer', '34218 Private Lane', 'Monclair', 'NJ'),
(4, 'Main Tile and Bath', 'Toni Faucet', 'Owner', 'Suite 23, Henry Building', 'Orlando',
→˓ 'FL'),
(5, 'Slots Carpet', 'Jack Diamond III', 'Purchaser', '3024 Jackpot Drive', 'Las Vegas',
→˓'NV')]

If the database does not exist, SQLite will create a new database with the provided name in the home directory. The
following cell will create a new database named test.db in the current working directory.

[77]: %sql sqlite:///test.db

7.10.17 References

1. SQL Tutorial, available at https://www.sqltutorial.org/.

2. Practice SQL with SQLite and Jupyter Notebook, by Chonghua Yin, available at https://github.com/royalosyin/
Practice-SQL-with-SQLite-and-Jupyter-Notebook.
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7.11 Lecture 11 - Data Exploration and Preprocessing

• 11.1 Exploratory Data Analysis

• 11.2 Preprocessing Numerical Data

– 11.2.1 Normalization

– 11.2.2 Standardization

– 11.2.1 Robust Scaling

• 11.3 Preprocessing Categorical Data

– 11.3.1 Mapping Method

– 11.3.2 Ordinal Encoding

– 11.3.3 Label Encoding

– 11.3.4 Pandas Dummies

– 11.3.5 One-Hot Encoding

• 11.4 Combining Numerical and Categorical Features

• References

7.11.1 11.1 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is an important step in all data science projects, and involves several exploratory
steps to obtain a better understanding of the data.

EDA typically includes: inspecting the summary statistics of the data, observing if there are missing values and adopting
an appropriate strategy for handling them, checking the distribution of the features and whether there is a correlation
between features, understanding which features are important and worth keeping and which ones are less important,
and similar.

To provide an example of EDA, we will use the Titanic dataset which can be loaded from the Seaborn datasets.

[1]: # import libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

[2]: titanic = sns.load_dataset('titanic')

Let’s check the basic information about the data. There are 891 rows (samples) and 15 columns (features). We can see
below the data types of each column.

[3]: titanic.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----

(continues on next page)
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0 survived 891 non-null int64
1 pclass 891 non-null int64
2 sex 891 non-null object
3 age 714 non-null float64
4 sibsp 891 non-null int64
5 parch 891 non-null int64
6 fare 891 non-null float64
7 embarked 889 non-null object
8 class 891 non-null category
9 who 891 non-null object
10 adult_male 891 non-null bool
11 deck 203 non-null category
12 embark_town 889 non-null object
13 alive 891 non-null object
14 alone 891 non-null bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB

Let’s display the first five rows and the last five rows. As we can notice, each row presents data for one passenger on
Titanic.

[4]: titanic.head()

[4]: survived pclass sex age sibsp parch fare embarked class \
0 0 3 male 22.0 1 0 7.2500 S Third
1 1 1 female 38.0 1 0 71.2833 C First
2 1 3 female 26.0 0 0 7.9250 S Third
3 1 1 female 35.0 1 0 53.1000 S First
4 0 3 male 35.0 0 0 8.0500 S Third

who adult_male deck embark_town alive alone
0 man True NaN Southampton no False
1 woman False C Cherbourg yes False
2 woman False NaN Southampton yes True
3 woman False C Southampton yes False
4 man True NaN Southampton no True

[5]: titanic.tail()

[5]: survived pclass sex age sibsp parch fare embarked class \
886 0 2 male 27.0 0 0 13.00 S Second
887 1 1 female 19.0 0 0 30.00 S First
888 0 3 female NaN 1 2 23.45 S Third
889 1 1 male 26.0 0 0 30.00 C First
890 0 3 male 32.0 0 0 7.75 Q Third

who adult_male deck embark_town alive alone
886 man True NaN Southampton no True
887 woman False B Southampton yes True
888 woman False NaN Southampton no False
889 man True C Cherbourg yes True
890 man True NaN Queenstown no True

Let’s also see the summary statistic. Recall that statistics are shown only for the columns with numerical data.
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[6]: titanic.describe()

[6]: survived pclass age sibsp parch fare
count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200

Let’s assume that our task is to predict whether the passenger shown in the next cell survived. I.e., we will take the
survived column to be the target, and we will implement a classification algorithm to predict it based on the other
columns in the dataset.

[7]: titanic.head(1)

[7]: survived pclass sex age sibsp parch fare embarked class who \
0 0 3 male 22.0 1 0 7.25 S Third man

adult_male deck embark_town alive alone
0 True NaN Southampton no False

Explore Column Information

Let’s first inspect some of the columns in the dataset.

For instance, we can use the following code to find how many passengers survived and how many died.

[8]: titanic['survived'].value_counts()

[8]: 0 549
1 342
Name: survived, dtype: int64

It is often easier to understand the data if we plot the values. The pandas library provides basic plotting functions.
For instance, in the next cell we created a bar plot by using plot(kind='bar') directly in pandas. The syntax for
plotting in pandas is somewhat different than the matplotlib functions, and admittedly, the functionality for plotting
in pandas is limited. We will learn later about the Seaborn library which allows plotting directly in DataFrames and
provides improved visualizations in comparison to pandas plots.

[9]: titanic['survived'].value_counts().plot(kind='bar')

[9]: <Axes: >
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Notice that there is a column called alive which is the same as the survived column. We need to remove this column
from the data, otherwise the classifier will just use that column to make predictions for the survived passengers, and
will achieve 100% accuracy.

[10]: titanic['alive'].value_counts()

[10]: no 549
yes 342
Name: alive, dtype: int64

[11]: titanic.drop(['alive'], axis=1, inplace=True)

[12]: # verify the change
titanic.head()

[12]: survived pclass sex age sibsp parch fare embarked class \
0 0 3 male 22.0 1 0 7.2500 S Third
1 1 1 female 38.0 1 0 71.2833 C First
2 1 3 female 26.0 0 0 7.9250 S Third
3 1 1 female 35.0 1 0 53.1000 S First
4 0 3 male 35.0 0 0 8.0500 S Third

who adult_male deck embark_town alone
0 man True NaN Southampton False
1 woman False C Cherbourg False
2 woman False NaN Southampton True
3 woman False C Southampton False

(continues on next page)
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4 man True NaN Southampton True

Also, there are two columns called class and plass. Let’s examine how many passengers are in these columns.

[13]: titanic['pclass'].value_counts()

[13]: 3 491
1 216
2 184
Name: pclass, dtype: int64

[14]: titanic['class'].value_counts()

[14]: Third 491
First 216
Second 184
Name: class, dtype: int64

[15]: # compare the two columns
p_class = titanic[['pclass', 'class']]
p_class.head()

[15]: pclass class
0 3 Third
1 1 First
2 3 Third
3 1 First
4 3 Third

It seems that both of these columns are the same, except that one is numeric and the other contains text. Let’s drop the
class column.

[16]: titanic.drop(['class'], axis=1, inplace=True)

[17]: # verify the change
titanic.head()

[17]: survived pclass sex age sibsp parch fare embarked who \
0 0 3 male 22.0 1 0 7.2500 S man
1 1 1 female 38.0 1 0 71.2833 C woman
2 1 3 female 26.0 0 0 7.9250 S woman
3 1 1 female 35.0 1 0 53.1000 S woman
4 0 3 male 35.0 0 0 8.0500 S man

adult_male deck embark_town alone
0 True NaN Southampton False
1 False C Cherbourg False
2 False NaN Southampton True
3 False C Southampton False
4 True NaN Southampton True

Let’s explore the two columns embarked and embark_town.
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[18]: titanic['embarked'].value_counts()

[18]: S 644
C 168
Q 77
Name: embarked, dtype: int64

[19]: titanic['embark_town'].value_counts()

[19]: Southampton 644
Cherbourg 168
Queenstown 77
Name: embark_town, dtype: int64

They are the same, therefore, drop embarked.

[20]: titanic.drop(['embarked'], axis=1, inplace=True)

[21]: # verify the change
titanic.head()

[21]: survived pclass sex age sibsp parch fare who adult_male \
0 0 3 male 22.0 1 0 7.2500 man True
1 1 1 female 38.0 1 0 71.2833 woman False
2 1 3 female 26.0 0 0 7.9250 woman False
3 1 1 female 35.0 1 0 53.1000 woman False
4 0 3 male 35.0 0 0 8.0500 man True

deck embark_town alone
0 NaN Southampton False
1 C Cherbourg False
2 NaN Southampton True
3 C Southampton False
4 NaN Southampton True

Let’s plot the occurrences in embark_town in a bar plot.

[22]: titanic['embark_town'].value_counts().plot(kind='bar')
plt.show()
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Also, let’s check how many men and women there are in the dataset.

[23]: titanic['sex'].value_counts()

[23]: male 577
female 314
Name: sex, dtype: int64

[24]: titanic['sex'].value_counts().plot(kind='bar')

[24]: <Axes: >
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[25]: titanic['who'].value_counts()

[25]: man 537
woman 271
child 83
Name: who, dtype: int64

We can note that the column who is similar to the sex column, but it also includes the number of children.

As an exercise, let’s show the categories of the column who using a Pie Chart to visualize their values.

[26]: titanic.who.value_counts().plot(kind='pie')
plt.show()
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There is another column adult_male which is similar, but different than sex and who.

[27]: titanic['adult_male'].value_counts()

[27]: True 537
False 354
Name: adult_male, dtype: int64

Missing Data

Let’s check which columns have data missing.

[28]: titanic.isnull().sum()

[28]: survived 0
pclass 0
sex 0
age 177
sibsp 0
parch 0
fare 0
who 0
adult_male 0
deck 688
embark_town 2
alone 0
dtype: int64
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There are missing data in age, deck, and embark_town columns.

The deck column has too many rows missing, and probably the deck on which the passenger boarded the ship is not
too important for the task of predicting the survived passengers, thus, let’s drop it.

[29]: titanic.drop(['deck'], axis=1, inplace=True)

[30]: # verify the change
titanic.head()

[30]: survived pclass sex age sibsp parch fare who adult_male \
0 0 3 male 22.0 1 0 7.2500 man True
1 1 1 female 38.0 1 0 71.2833 woman False
2 1 3 female 26.0 0 0 7.9250 woman False
3 1 1 female 35.0 1 0 53.1000 woman False
4 0 3 male 35.0 0 0 8.0500 man True

embark_town alone
0 Southampton False
1 Cherbourg False
2 Southampton True
3 Southampton False
4 Southampton True

Since only 2 rows are missing in embark town let’s remove those two rows. In the next cell we used dropna to remove
only those rows that have missing values in the the embark town column.

Recall again that to drop columns in pandas we use axis=1 and to drop rows we use axis=0.

[31]: titanic.dropna(subset=['embark_town'], axis=0, inplace=True)

We can notice that the number of rows was reduced to 889 from the original 891, because of the removed 2 rows.

[32]: # verify the change
titanic.shape

[32]: (889, 11)

Now we have Nan values only in the age column.

[33]: titanic.isnull().sum()

[33]: survived 0
pclass 0
sex 0
age 177
sibsp 0
parch 0
fare 0
who 0
adult_male 0
embark_town 0
alone 0
dtype: int64

There are several ways to deal with this. One is to replace the missing values in the age column with the average value
of the age of passengers, or with some other value (e.g., 0 in some cases).
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Let’s first explore the first option, and let’s create a new DataFrame called titanic_filledwhich replaces the missing
values in the age column with the average age. For this purpose we will use the method fillna that will calculate the
mean and fill in the missing values.

[34]: titanic_filled = titanic.fillna(titanic.mean(axis=0))

C:\Users\vakanski\AppData\Local\Temp\ipykernel_10716\1546117764.py:1: FutureWarning: The␣
→˓default value of numeric_only in DataFrame.mean is deprecated. In a future version, it␣
→˓will default to False. In addition, specifying 'numeric_only=None' is deprecated.␣
→˓Select only valid columns or specify the value of numeric_only to silence this warning.
titanic_filled = titanic.fillna(titanic.mean(axis=0))

To verify the above, let’s display several rows that have missing values for the age, and let’s display below the DataFrame
with the filled values. We can note that the average age is 29.64 years.

[35]: titanic.head(8)

[35]: survived pclass sex age sibsp parch fare who adult_male \
0 0 3 male 22.0 1 0 7.2500 man True
1 1 1 female 38.0 1 0 71.2833 woman False
2 1 3 female 26.0 0 0 7.9250 woman False
3 1 1 female 35.0 1 0 53.1000 woman False
4 0 3 male 35.0 0 0 8.0500 man True
5 0 3 male NaN 0 0 8.4583 man True
6 0 1 male 54.0 0 0 51.8625 man True
7 0 3 male 2.0 3 1 21.0750 child False

embark_town alone
0 Southampton False
1 Cherbourg False
2 Southampton True
3 Southampton False
4 Southampton True
5 Queenstown True
6 Southampton True
7 Southampton False

[36]: titanic_filled.head(8)

[36]: survived pclass sex age sibsp parch fare who \
0 0 3 male 22.000000 1 0 7.2500 man
1 1 1 female 38.000000 1 0 71.2833 woman
2 1 3 female 26.000000 0 0 7.9250 woman
3 1 1 female 35.000000 1 0 53.1000 woman
4 0 3 male 35.000000 0 0 8.0500 man
5 0 3 male 29.642093 0 0 8.4583 man
6 0 1 male 54.000000 0 0 51.8625 man
7 0 3 male 2.000000 3 1 21.0750 child

adult_male embark_town alone
0 True Southampton False
1 False Cherbourg False
2 False Southampton True
3 False Southampton False
4 True Southampton True

(continues on next page)
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5 True Queenstown True
6 True Southampton True
7 False Southampton False

We can observe now that there are no missing values in the titanic_filled DataFrame.

[37]: titanic_filled.isnull().sum()

[37]: survived 0
pclass 0
sex 0
age 0
sibsp 0
parch 0
fare 0
who 0
adult_male 0
embark_town 0
alone 0
dtype: int64

Another alternative is to drop the rows with the missing values for the age. Let’s explore this strategy as well.

In general, we can try both strategies and check which one produces better results with the classification algorithm.

After dropping the rows with missing values, 712 rows are remaining in the dataset. The method reset_index will
change the index column to range from 0 to 711. If we didn’t reset the index column, the index values would have still
ranged from 0 to 891.

[38]: titanic.dropna(inplace=True)

[39]: titanic.reset_index(inplace=True)

[40]: titanic.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 712 entries, 0 to 711
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 index 712 non-null int64
1 survived 712 non-null int64
2 pclass 712 non-null int64
3 sex 712 non-null object
4 age 712 non-null float64
5 sibsp 712 non-null int64
6 parch 712 non-null int64
7 fare 712 non-null float64
8 who 712 non-null object
9 adult_male 712 non-null bool
10 embark_town 712 non-null object
11 alone 712 non-null bool
dtypes: bool(2), float64(2), int64(5), object(3)
memory usage: 57.1+ KB
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[41]: titanic.head()

[41]: index survived pclass sex age sibsp parch fare who \
0 0 0 3 male 22.0 1 0 7.2500 man
1 1 1 1 female 38.0 1 0 71.2833 woman
2 2 1 3 female 26.0 0 0 7.9250 woman
3 3 1 1 female 35.0 1 0 53.1000 woman
4 4 0 3 male 35.0 0 0 8.0500 man

adult_male embark_town alone
0 True Southampton False
1 False Cherbourg False
2 False Southampton True
3 False Southampton False
4 True Southampton True

Checking Feature Distribution

Let’s check the distribution of the numerical columns in the dataset, by plotting the histograms. For the columns with
categorical data, such as survived and pclass, the histograms are equivalent to bar plots, and are less helpful.

[42]: titanic[['survived','pclass','age','sibsp','parch','fare']].hist(bins=10)
plt.tight_layout()
plt.show()
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Or, we can inspect the distribution of each feature.

[43]: titanic['age'].plot(kind='hist', bins=30)
plt.show()
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If we wish, we can use the groupby function in pandas, for instance, to show the counts for the pclass column grouped
by survived.

[44]: titanic.groupby('survived')['pclass'].value_counts().plot(kind="bar")
plt.show()
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As we mentioned earlier, although the pandas library provides some functionality for plotting directly from DataFrames,
there are other plotting libraries that provide improved graphs. Among the most popular is Seaborn. A few plots created
with Seaborn are shown below.

[45]: sns.countplot(data=titanic, x='survived', hue='pclass')
plt.show()
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[46]: sns.countplot(data=titanic, x='survived', hue='sex')
plt.show()
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In the next figure we can see a scatter plot of the age, grouped by fare and class. As expected, the fare in the first
class was more expensive, in comparison to the second and third classes.

[47]: sns.scatterplot(data=titanic, x='age', y='fare', hue='pclass', palette='viridis')
plt.show()
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Checking Correlated Features

Checking correlations between the features in a dataset can help to identify similarities between the features. If two
features have high correlation, that means they contain similar or perhaps the same information, and if one of them is
removed, the performance of the classification algorithm will be less affected.

We use the corr() method in pandas to check the correlation between the columns. Based on the correlation values,
there aren’t columns that are highly correlated. One of the reasons is that we already dropped several columns that
were similar or the same as other columns.

[48]: correlation = titanic.corr()
correlation

C:\Users\vakanski\AppData\Local\Temp\ipykernel_10716\825769680.py:1: FutureWarning: The␣
→˓default value of numeric_only in DataFrame.corr is deprecated. In a future version, it␣
→˓will default to False. Select only valid columns or specify the value of numeric_only␣
→˓to silence this warning.
correlation = titanic.corr()

[48]: index survived pclass age sibsp parch \
index 1.000000 0.029526 -0.035609 0.033681 -0.082704 -0.011672
survived 0.029526 1.000000 -0.356462 -0.082446 -0.015523 0.095265
pclass -0.035609 -0.356462 1.000000 -0.365902 0.065187 0.023666
age 0.033681 -0.082446 -0.365902 1.000000 -0.307351 -0.187896
sibsp -0.082704 -0.015523 0.065187 -0.307351 1.000000 0.383338

(continues on next page)
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parch -0.011672 0.095265 0.023666 -0.187896 0.383338 1.000000
fare 0.009655 0.266100 -0.552893 0.093143 0.139860 0.206624
adult_male 0.024069 -0.551151 0.094635 0.286543 -0.313016 -0.365580
alone 0.059677 -0.199741 0.150576 0.195766 -0.629408 -0.577109

fare adult_male alone
index 0.009655 0.024069 0.059677
survived 0.266100 -0.551151 -0.199741
pclass -0.552893 0.094635 0.150576
age 0.093143 0.286543 0.195766
sibsp 0.139860 -0.313016 -0.629408
parch 0.206624 -0.365580 -0.577109
fare 1.000000 -0.177446 -0.262799
adult_male -0.177446 1.000000 0.400718
alone -0.262799 0.400718 1.000000

If we observe the correlation for the column survived, we can see that it is most correlated with adult_male, pclass,
fare, and alone, and less correlated with age, sibsp (siblings), and parch (parent or child).

[49]: correlation['survived']

[49]: index 0.029526
survived 1.000000
pclass -0.356462
age -0.082446
sibsp -0.015523
parch 0.095265
fare 0.266100
adult_male -0.551151
alone -0.199741
Name: survived, dtype: float64

[50]: correlation['fare']

[50]: index 0.009655
survived 0.266100
pclass -0.552893
age 0.093143
sibsp 0.139860
parch 0.206624
fare 1.000000
adult_male -0.177446
alone -0.262799
Name: fare, dtype: float64

The following heatmap shows the correlation between all features in a graph with a colorbar.

[51]: sns.heatmap(correlation, annot=True)
plt.show()
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7.11.2 11.2 Preprocessing Numerical Data

Tabular data can be classified into two main categories:

• Numerical data: a quantity represented by a real or integer number.

• Categorical data: a discrete value, typically represented by string labels taken from a finite list of possible
choices, but it is also possible to be represented by numbers from a discrete set of possible choices.

Most machine learning algorithms are sensitive to the range of values that are used for numerical inputs, and expect
the input features to be scaled before processing. Feature scaling is transforming the numerical features into a small
range of values.

Common feature scaling techniques for numerical features include:

• Normalization

• Standardization

• Robust scaling

Whether or not a machine learning model requires scaling of the features depends on the model family. Linear models,
such as logistic regression, generally benefit from scaling the features, while other models such as tree-based models
(i.e., decision trees, random forests) do not need such preprocessing.
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11.2.1 Normalization

Normalization is a scaling technique that transforms numerical features into a range of values between 0 and 1. When
we work with features that have different ranges of values, normalizing the features can be a good practice. For example,
if we have one feature (column) in the range from 100-1000, and another feature varies from 0.05-0.2, we can scale
them so that they both have a range of values from 0 to 1.

Normalizing data is performed using the following formula, where𝑋𝑚𝑖𝑛 is the minimum value of feature𝑋 , and𝑋𝑚𝑎𝑥

is the maximum value of 𝑋 .

𝑋𝑛𝑜𝑟𝑚 =
𝑋 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛

For illustration purposes of normalization, we will use a smaller dataset called tips available in Seaborn.

[52]: tip_data = sns.load_dataset('tips')
tip_data.head()

[52]: total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

Let’s separate all numerical features from the above data into a new DataFrame original_features.

[53]: original_features = tip_data[['total_bill', 'tip', 'size']]

To perform normalization, we will use the scikit-learn library which provides the function MinMaxScaler() to
scale the data to the range between 0 and 1. That is the default range, but we can also select an arbitrary range to scale
the data.

The fit method in the code below first fits the data, i.e., for this task it calculates the minimum and maximum values
for each column.

Afterwards, the transform method scales the data, i.e., it uses the calculated minimum and maximum values for each
column and substitutes them in the above formula to obtain scaled values of the data.

The syntax is scaler.fit(data) and scaler.transform(data).

[54]: from sklearn.preprocessing import MinMaxScaler

minmax_scaler = MinMaxScaler()

minmax_scaler.fit(original_features)

normalized_features = minmax_scaler.transform(original_features)

[55]: # Show the first five rows in 'total_bill', 'tip', and 'size'
normalized_features[:5]

[55]: array([[0.29157939, 0.00111111, 0.2 ],
[0.1522832 , 0.07333333, 0.4 ],
[0.3757855 , 0.27777778, 0.4 ],
[0.43171345, 0.25666667, 0.2 ],
[0.45077503, 0.29 , 0.6 ]])
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The scikit-learn library also provides a combined method fit_transform which calls first fit and then
transform in one step. This can be more efficient than calling fit and transform separately. The syntax is scaler.
fit_transform(data).

[56]: normalized_features_2 = minmax_scaler.fit_transform(original_features)

[57]: # Show the first five rows in 'total_bill', 'tip', and 'size'
normalized_features_2[:5]

[57]: array([[0.29157939, 0.00111111, 0.2 ],
[0.1522832 , 0.07333333, 0.4 ],
[0.3757855 , 0.27777778, 0.4 ],
[0.43171345, 0.25666667, 0.2 ],
[0.45077503, 0.29 , 0.6 ]])

The output of MinMaxScaler() is a NumPy array, with the values in each column scaled in the range between 0 and
1.

11.2.2 Standardization

Standardization is another scaling technique where numerical features are rescaled to have 0 mean (𝜇) and 1 standard
deviation (𝜎 ).

The formula for standardization is as follows:

𝑋𝑠𝑡𝑑 =
𝑋 − 𝜇

𝜎

where 𝑋𝑠𝑡𝑑 is the standardized feature, 𝑋 is the original feature, 𝜇 is the mean of the feature, and 𝜎 is the standard
deviation.

When should we standardize the features? When we know that the training data has a normal (Gaussian) distribution.
And, if the data does not have normal distribution, then normalization is a preferable scaling technique to standardiza-
tion.

With some machine learning algorithms the performance will be the same with features scaling using normalization or
standardization, but with other algorithms, there can be a difference in the performance. Therefore, in some cases, we
can try both feature scaling techniques, especially if we are not sure about the distribution of the data.

Standardization is implemented in scikit-learn with StandardScaler. Similar to MinMaxScaler, we can
either use the syntax scaler.fit_transform(data) or the syntax with scaler.fit(data) and scaler.
transform(data). And, we will explain the difference between these two syntaxes in the next lectures when we
will introduce the concepts of training and testing datasets.

[58]: from sklearn.preprocessing import StandardScaler

std_scaler = StandardScaler()

standardized_features = std_scaler.fit_transform(original_features)

[59]: standardized_features[:5]

[59]: array([[-0.31471131, -1.43994695, -0.60019263],
[-1.06323531, -0.96920534, 0.45338292],
[ 0.1377799 , 0.36335554, 0.45338292],
[ 0.4383151 , 0.22575414, -0.60019263],
[ 0.5407447 , 0.4430195 , 1.50695847]])

346 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

We can inspect the mean and standard variation of the original data using the mean_ and var_ attributes. The convention
in scikit-learn is that if an attribute is learned from the data, its name ends with an underscore, as in mean_ and var_
for the StandardScaler.

[60]: # The mean of each feature in the original data
std_scaler.mean_

[60]: array([19.78594262, 2.99827869, 2.56967213])

[61]: # The variance each feature in the original data
std_scaler.var_

[61]: array([78.92813149, 1.90660851, 0.9008835 ])

As expected, each column in the scaled data standardized_features has zero mean and unit variance.

[62]: # The mean of each feature in the scaled data
np.round(standardized_features.mean(axis=0))

[62]: array([-0., 0., -0.])

[63]: # The variance each feature in the scaled data
np.round(standardized_features.std(axis=0))

[63]: array([1., 1., 1.])

It is easy to confuse normalization with standardization, since standardization rescales the data to have a normal distri-
bution with mean 0 and standard deviation 1, therefore, pay attention and try not to confuse these two scaling techniques.

11.2.3 Robust Scaling

Scikit-learn provides another scaling method called RobustScaler, which is more suitable when the data contain
many outliers.

RobustScaler applies similar scaling to standardization, but it uses the median and the interquartile range (IQR)
instead of the mean and standard deviation to scale the features. This makes it less sensitive to extreme values or
outliers in the data. Recall the Interquartile Range(IQR) is the difference between the 1st quartile (25th percentile) and
the 3rd quartile (75th percentile).

Because of that, RobustScaler is also more suitable for datasets with non-normal distributions.

[64]: from sklearn.preprocessing import RobustScaler

rob_scaler = RobustScaler()
robust_scaled_features = rob_scaler.fit_transform(original_features)

[65]: robust_scaled_features[:5]

[65]: array([[-0.07467532, -1.2096 , 0. ],
[-0.69155844, -0.7936 , 1. ],
[ 0.29823748, 0.384 , 1. ],
[ 0.54591837, 0.2624 , 0. ],
[ 0.63033395, 0.4544 , 2. ]])

We can confirm that the columns in the scaled data have 0 median.
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[66]: np.round(np.median(robust_scaled_features, axis=0))

[66]: array([-0., 0., 0.])

The MinMaxScaler, StandardScaler, and RobustScaler in scikit-learn are also called transformers, since they
are used to perform various data transformations on the original dataset before feeding the data into a machine learning
model. Transformers are an essential part of the data processing in scikit-learn’s pipeline.

7.11.3 11.3 Preprocessing Categorical Data

Categorical data contain a limited number of discrete categories. An example is the feature who in the titanic
dataset that has three categories: man, woman, and child.

In many cases, categorical features have text values, and they need to be converted into numerical values in order to be
processed by machine learning algorithms.

We will look into the following techniques for converting categorical features into numerical features:

• Mapping method

• Ordinal encoding

• Label encoding

• Pandas dummies

• One-hot encoding

The first three techniques produce a single number for each category, and the last two techniques produce one-hot
matrix.

We are going to use again the Titanic dataset, which has several categorical features.

[67]: titanic.head()

[67]: index survived pclass sex age sibsp parch fare who \
0 0 0 3 male 22.0 1 0 7.2500 man
1 1 1 1 female 38.0 1 0 71.2833 woman
2 2 1 3 female 26.0 0 0 7.9250 woman
3 3 1 1 female 35.0 1 0 53.1000 woman
4 4 0 3 male 35.0 0 0 8.0500 man

adult_male embark_town alone
0 True Southampton False
1 False Cherbourg False
2 False Southampton True
3 False Southampton False
4 True Southampton True
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11.3.1 Mapping Method

The mapping method is a straightforward way to encode categorical features when there are few categories. For in-
stance, for the who feature, we will create a dictionary map_dict whose keys are the three categories man, woman,
child, and they are mapped to numerical values 0, 1, and 2.

[68]: titanic['who'].value_counts()

[68]: man 413
woman 216
child 83
Name: who, dtype: int64

[69]: map_dict = {'man': 0, 'woman': 1, 'child': 2}

The map() method is applied next to map the keys to values in the who column.

[70]: titanic['who'] = titanic['who'].map(map_dict)

Now the who feature is numerical, and all instances with the class man were replaced with 0, and the same applies to
the other two classes.

[71]: titanic.head()

[71]: index survived pclass sex age sibsp parch fare who \
0 0 0 3 male 22.0 1 0 7.2500 0
1 1 1 1 female 38.0 1 0 71.2833 1
2 2 1 3 female 26.0 0 0 7.9250 1
3 3 1 1 female 35.0 1 0 53.1000 1
4 4 0 3 male 35.0 0 0 8.0500 0

adult_male embark_town alone
0 True Southampton False
1 False Cherbourg False
2 False Southampton True
3 False Southampton False
4 True Southampton True

[72]: # verify that value_counts remained the same after the mapping
titanic['who'].value_counts()

[72]: 0 413
1 216
2 83
Name: who, dtype: int64
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11.3.2 Ordinal Encoding

Ordinal encoding can be implemented with the OrdinalEncoder in scikit-learn, which will automatically encode each
category with a different numerical value. This method is often preferred, since it is automated and less prone to errors.

Let’s apply it to the columns alone and adult_male.

[73]: titanic['alone'].value_counts()

[73]: True 402
False 310
Name: alone, dtype: int64

[74]: titanic['adult_male'].value_counts()

[74]: True 413
False 299
Name: adult_male, dtype: int64

[75]: from sklearn.preprocessing import OrdinalEncoder

categs_feats = titanic[['adult_male', 'alone']]

encoder = OrdinalEncoder()

categs_encoded = encoder.fit_transform(categs_feats)

The output of the OrdinalEncoder is a NumPy array categs_encoded, shown below.

[76]: categs_encoded

[76]: array([[1., 0.],
[0., 0.],
[0., 1.],
...,
[0., 1.],
[1., 1.],
[1., 1.]])

In the next cell, we will convert the NumPy array categs_encoded into pandas DataFrame. In this line,
columns=categs_feats.columns specifies the column names for the DataFrame, and index=categs_feats.
index specifies the row index for the DataFrame.

Note below that the text values in the columns alone and adult_male have been replaced with numeric values 0 or
1.

[77]: titanic[['adult_male', 'alone']] = pd.DataFrame(categs_encoded, columns=categs_feats.
→˓columns, index=categs_feats.index)
titanic.head()

[77]: index survived pclass sex age sibsp parch fare who \
0 0 0 3 male 22.0 1 0 7.2500 0
1 1 1 1 female 38.0 1 0 71.2833 1
2 2 1 3 female 26.0 0 0 7.9250 1
3 3 1 1 female 35.0 1 0 53.1000 1
4 4 0 3 male 35.0 0 0 8.0500 0

(continues on next page)
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(continued from previous page)

adult_male embark_town alone
0 1.0 Southampton 0.0
1 0.0 Cherbourg 0.0
2 0.0 Southampton 1.0
3 0.0 Southampton 0.0
4 1.0 Southampton 1.0

[78]: # verify that value_counts remained the same after the mapping
titanic['alone'].value_counts()

[78]: 1.0 402
0.0 310
Name: alone, dtype: int64

We can also check the applied mapping between the categories and the numerical values via the attribute categories_.

[79]: encoder.categories_

[79]: [array([False, True]), array([False, True])]

Note that OrdinalEncoder can not handle missing values, and if we try to apply it to a column with missing values,
we will get an error.

Also, we need to be careful when applying this encoding strategy, because by default, OrdinalEncoder uses a lexico-
graphical strategy to map string category labels to integers. For instance, suppose the dataset has a categorical variable
named "size" with categories such as “S”, “M”, “L”, “XL”, and we would like the integer representation to respect
the meaning of the sizes by mapping them to increasing integers such as 0, 1, 2, 3. However, the lexicographical
strategy used by default would map the labels “S”, “M”, “L”, “XL” to 2, 1, 0, 3, by following the alphabetical order. To
avoid that, we can pass a list with the expected order for the categories argument for each feature (e.g., encoder =
OrdinalEncoder(categories=[True, False] for the column alone).

If a categorical variable does not carry any meaningful order information, then we can consider using one-hot encoding
described in the sections below.

11.3.3 Label Encoding

Label encoding is used to encode categorical values in the target label column with the LabelEncoder in scikit-learn.

In this case, the target label column survived has numerical values, and it does not need to be encoded. Therefore,
let’s apply the LabelEncoder to the embark_town column.

[80]: from sklearn.preprocessing import LabelEncoder

embtown_feat = titanic[['embark_town']]

label_encoder = LabelEncoder()

embtown_encoded = label_encoder.fit_transform(embtown_feat)

C:\Users\vakanski\anaconda3\Lib\site-packages\sklearn\preprocessing\_label.py:114:␣
→˓DataConversionWarning: A column-vector y was passed when a 1d array was expected.␣
→˓Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
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The output of Label Encoder is also a NumPy array. Let’s convert it to a pandas dataframe, and add it as a new column
embark_town_ord.

[81]: titanic['embark_town_ord'] = pd.DataFrame(embtown_encoded, columns=embtown_feat.columns,␣
→˓index=embtown_feat.index)

titanic.head()

[81]: index survived pclass sex age sibsp parch fare who \
0 0 0 3 male 22.0 1 0 7.2500 0
1 1 1 1 female 38.0 1 0 71.2833 1
2 2 1 3 female 26.0 0 0 7.9250 1
3 3 1 1 female 35.0 1 0 53.1000 1
4 4 0 3 male 35.0 0 0 8.0500 0

adult_male embark_town alone embark_town_ord
0 1.0 Southampton 0.0 2
1 0.0 Cherbourg 0.0 0
2 0.0 Southampton 1.0 2
3 0.0 Southampton 0.0 2
4 1.0 Southampton 1.0 2

[82]: label_encoder.classes_

[82]: array(['Cherbourg', 'Queenstown', 'Southampton'], dtype=object)

[83]: titanic['embark_town_ord'].value_counts()

[83]: 2 554
0 130
1 28
Name: embark_town_ord, dtype: int64

11.3.4 Pandas Dummies

Pandas provides a function get_dummies that can be also used to handle categorical features. This function creates
new columns based on the number of available categories in a target column. For example, let’s apply it to the feature
sex.

[84]: titanic.head()

[84]: index survived pclass sex age sibsp parch fare who \
0 0 0 3 male 22.0 1 0 7.2500 0
1 1 1 1 female 38.0 1 0 71.2833 1
2 2 1 3 female 26.0 0 0 7.9250 1
3 3 1 1 female 35.0 1 0 53.1000 1
4 4 0 3 male 35.0 0 0 8.0500 0

adult_male embark_town alone embark_town_ord
0 1.0 Southampton 0.0 2
1 0.0 Cherbourg 0.0 0
2 0.0 Southampton 1.0 2
3 0.0 Southampton 0.0 2
4 1.0 Southampton 1.0 2
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[85]: dummies = pd.get_dummies(titanic['sex'])

[86]: titanic = pd.concat([titanic.drop('sex',axis=1),dummies], axis=1)

Note that new columns female and male with 0 or 1 values were added to the right of the DataFrame.

[87]: titanic.head()

[87]: index survived pclass age sibsp parch fare who adult_male \
0 0 0 3 22.0 1 0 7.2500 0 1.0
1 1 1 1 38.0 1 0 71.2833 1 0.0
2 2 1 3 26.0 0 0 7.9250 1 0.0
3 3 1 1 35.0 1 0 53.1000 1 0.0
4 4 0 3 35.0 0 0 8.0500 0 1.0

embark_town alone embark_town_ord female male
0 Southampton 0.0 2 0 1
1 Cherbourg 0.0 0 1 0
2 Southampton 1.0 2 1 0
3 Southampton 0.0 2 1 0
4 Southampton 1.0 2 0 1

This type of encoding is also called one-hot encoding, where each category (unique value) in the column sex became
a column, and for each row (sample), 1 specifies the category to which it belongs.

11.3.5 One-Hot Encoding

Scikit-learn provides a function OneHotEncoder that converts a feature into one-hot matrix. As with the pandas
dummies, additional columns corresponding to the values of the given categories are created.

Let’s apply it to embark_town.

[88]: titanic['embark_town'].value_counts()

[88]: Southampton 554
Cherbourg 130
Queenstown 28
Name: embark_town, dtype: int64

[89]: titanic.head()

[89]: index survived pclass age sibsp parch fare who adult_male \
0 0 0 3 22.0 1 0 7.2500 0 1.0
1 1 1 1 38.0 1 0 71.2833 1 0.0
2 2 1 3 26.0 0 0 7.9250 1 0.0
3 3 1 1 35.0 1 0 53.1000 1 0.0
4 4 0 3 35.0 0 0 8.0500 0 1.0

embark_town alone embark_town_ord female male
0 Southampton 0.0 2 0 1
1 Cherbourg 0.0 0 1 0
2 Southampton 1.0 2 1 0
3 Southampton 0.0 2 1 0
4 Southampton 1.0 2 0 1
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[90]: from sklearn.preprocessing import OneHotEncoder

one_hot = OneHotEncoder()

town_encoded = one_hot.fit_transform(titanic[['embark_town']])

[91]: one_hot.categories_

[91]: [array(['Cherbourg', 'Queenstown', 'Southampton'], dtype=object)]

[92]: town_encoded

[92]: <712x3 sparse matrix of type '<class 'numpy.float64'>'
with 712 stored elements in Compressed Sparse Row format>

The output of OneHotEncoder is a sparse matrix. We will need to convert it into NumPy array first, and afterward we
can convert it into pandas DataFrame.

[93]: town_encoded = town_encoded.toarray()

[94]: columns = list(one_hot.categories_)

town_df = pd.DataFrame(town_encoded, columns=columns)

town_df.head()

[94]: Cherbourg Queenstown Southampton
0 0.0 0.0 1.0
1 1.0 0.0 0.0
2 0.0 0.0 1.0
3 0.0 0.0 1.0
4 0.0 0.0 1.0

[95]: titanic.drop('embark_town',axis=1, inplace=True)

[96]: titanic[['Cherbourg', 'Queenstown', 'Southampton']] = town_df

[97]: titanic.head()

[97]: index survived pclass age sibsp parch fare who adult_male \
0 0 0 3 22.0 1 0 7.2500 0 1.0
1 1 1 1 38.0 1 0 71.2833 1 0.0
2 2 1 3 26.0 0 0 7.9250 1 0.0
3 3 1 1 35.0 1 0 53.1000 1 0.0
4 4 0 3 35.0 0 0 8.0500 0 1.0

alone embark_town_ord female male Cherbourg Queenstown Southampton
0 0.0 2 0 1 0.0 0.0 1.0
1 0.0 0 1 0 1.0 0.0 0.0
2 1.0 2 1 0 0.0 0.0 1.0
3 0.0 2 1 0 0.0 0.0 1.0
4 1.0 2 0 1 0.0 0.0 1.0
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Choosing an encoding strategy

Choosing an encoding strategy depends on the used models and the type of categories (i.e., ordinal vs. nominal).
In general, One-Hot Encoding is the encoding strategy used when the downstream models are linear models, while
Ordinal Encoding is often a good strategy with tree-based models.

With ordinal encoding, there is an order in the resulting categories, e.g. 0 < 1 < 2 (called ordinal categories). The
impact of violating this ordering assumption is dependent on the downstream models. Linear models will be impacted
by misordered categories, while tree-based models will not.

One-hot encoding is applied when the ordering of the categories is not important. Such categories are also called
nominal categories. This encoding can cause computational inefficiency in tree-based models with high number of
categories, and because of this, it is not recommended to use with these models.

7.11.4 11.4 Combining Numerical and Categorical Features

Now let’s prepare the numerical and categorical data in the titanic dataset and train a classification model.

First, assign the survived column to be the target label y.

[98]: y = titanic['survived']

We will use the other columns to be data features X, therefore let’s drop the survived column and the index column.

It is very important to always remove the index column from the data used for training a model. If we leave the index
column in the data, the model can learn to associate the target labels with the index of each data point (row).

[99]: X = titanic.drop(['survived', 'index'], axis=1)

[100]: X

[100]: pclass age sibsp parch fare who adult_male alone \
0 3 22.0 1 0 7.2500 0 1.0 0.0
1 1 38.0 1 0 71.2833 1 0.0 0.0
2 3 26.0 0 0 7.9250 1 0.0 1.0
3 1 35.0 1 0 53.1000 1 0.0 0.0
4 3 35.0 0 0 8.0500 0 1.0 1.0
.. ... ... ... ... ... ... ... ...
707 3 39.0 0 5 29.1250 1 0.0 0.0
708 2 27.0 0 0 13.0000 0 1.0 1.0
709 1 19.0 0 0 30.0000 1 0.0 1.0
710 1 26.0 0 0 30.0000 0 1.0 1.0
711 3 32.0 0 0 7.7500 0 1.0 1.0

embark_town_ord female male Cherbourg Queenstown Southampton
0 2 0 1 0.0 0.0 1.0
1 0 1 0 1.0 0.0 0.0
2 2 1 0 0.0 0.0 1.0
3 2 1 0 0.0 0.0 1.0
4 2 0 1 0.0 0.0 1.0
.. ... ... ... ... ... ...
707 1 1 0 0.0 1.0 0.0
708 2 0 1 0.0 0.0 1.0
709 2 1 0 0.0 0.0 1.0
710 0 0 1 1.0 0.0 0.0

(continues on next page)
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(continued from previous page)

711 1 0 1 0.0 1.0 0.0

[712 rows x 14 columns]

We will first split the dataset into a training and test dataset. This step will be explained in more detail in the next
lectures. The objective of this lecture is to learn how to preprocess the data and prepare it for model fitting.

[101]: from sklearn.model_selection import train_test_split

# split into train & test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=123, stratify=y)

[102]: print('Training data inputs', X_train.shape)
print('Training labels', y_train.shape)
print('Testing data inputs', X_test.shape)
print('Testing labels', y_test.shape)

Training data inputs (534, 14)
Training labels (534,)
Testing data inputs (178, 14)
Testing labels (178,)

We will apply standard scaling to the training and test datasets.

[103]: # Apply StandardScaler
scaler = StandardScaler()

scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

Now, let’s apply k-Nearest Neighbor classifier from the scikit-learn library. The function fit() is used to fit the model
to the data.

[104]: from sklearn import neighbors

# create the model
knn_model = neighbors.KNeighborsClassifier(n_neighbors=5)

# fit the model
knn_model.fit(X_train_scaled, y_train)

[104]: KNeighborsClassifier()

The function score() is used to predict the accuracy of the model. The model can predict whether a passenger survived
with an accuracy of 82.58%.

[105]: # score on test set
accuracy = knn_model.score(X_test_scaled, y_test)
print('The test accuracy of k-Nearest Neighbors is {0:5.2f} %'.format(accuracy*100))

The test accuracy of k-Nearest Neighbors is 82.58 %

Next, let’s use the trained model to predict the survived labels for the first 10 passengers in the X_test dataset.
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[106]: # Make predictions on the test data
y_pred = knn_model.predict(X_test_scaled[:10])

[107]: # Show the predictions
y_pred

[107]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 0], dtype=int64)

[108]: # Show the actual values from the 'survived' column
np.array(y_test[:10])

[108]: array([0, 1, 0, 0, 0, 1, 1, 0, 1, 0], dtype=int64)

As we can see, for the first 10 samples, the model predicted correctly the target label for 7 samples.

We will have a separate lecture on scikit-learn in which we will explain in more detail how to perform classification
with machine learning models.

7.11.5 References

1. Complete Machine Learning Package, Jean de Dieu Nyandwi, available at: https://github.com/Nyandwi/
machine_learning_complete.

2. Advanced Python for Data Science, University of Cincinnati, available at: https://github.com/uc-python/
advanced-python-datasci.

3. Python Machine Learning (2nd Ed.) Code Repository, Sebastian Raschka, available at: https://github.com/rasbt/
python-machine-learning-book-2nd-edition.
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7.12 Lecture 12 - Data Visualization with Seaborn

Seaborn is a Python library for data visualization that provides an interface for drawing plots and conducting data
exploration via visualization and informative graphics. Internally, Seaborn uses Matplotlib to create the plots, therefore
it can be considered a high-level interface for Matplotlib which allows to quickly and easily customize our plots.

For more information please visit the official website. Examples of plots created with Seaborn can be found in the
gallery page.

• 12.1 Relational Plots

• 12.2 Distributional Plots

• 12.3 Categorical Plots

• 12.4 Regression Plots

• 12.5 Multiple Plots

• 12.6 Matrix Plots

• 12.7 Styles, Themes, and Colors

• References

7.12. Lecture 12 - Data Visualization with Seaborn 357

https://github.com/Nyandwi/machine_learning_complete
https://github.com/Nyandwi/machine_learning_complete
https://github.com/uc-python/advanced-python-datasci
https://github.com/uc-python/advanced-python-datasci
https://github.com/rasbt/python-machine-learning-book-2nd-edition
https://github.com/rasbt/python-machine-learning-book-2nd-edition
https://github.com/avakanski/Fall-2023-Python-Programming-for-Data-Science/blob/main/docs/Lectures/Theme_2-Data_Engineering/Lecture_12-Seaborn/Lecture_12-Seaborn.ipynb
https://colab.research.google.com/github/avakanski/Fall-2023-Python-Programming-for-Data-Science/blob/main/docs/Lectures/Theme_2-Data_Engineering/Lecture_12-Seaborn/Lecture_12-Seaborn.ipynb
https://seaborn.pydata.org
https://seaborn.pydata.org/examples/index.html


Fall 2023 Python Programming for Data Science, Release 0.1

By convention, Seaborn is imported as sns. The name Seaborn was originally based on a character named Samuel
Norman Seaborn from a television show, and the alias sns is based on the character’s initials.

To explain the functionality of Seaborn, in this lecture we will use the following four datasets: titanic, fmri, tips,
and flights, which can be loaded directly as DataFrames from the Seaborn datasets. We already worked with the
titanic and tips datasets in previous lectures.

The first few rows of these datasets are shown below.

[1]: # Import libraries
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Loading the datasets for this lecture
titanic = sns.load_dataset('titanic')
fmri = sns.load_dataset('fmri')
tips = sns.load_dataset('tips')
flights = sns.load_dataset('flights')

[2]: titanic.head(3)

[2]: survived pclass sex age sibsp parch fare embarked class \
0 0 3 male 22.0 1 0 7.2500 S Third
1 1 1 female 38.0 1 0 71.2833 C First
2 1 3 female 26.0 0 0 7.9250 S Third

who adult_male deck embark_town alive alone
0 man True NaN Southampton no False
1 woman False C Cherbourg yes False
2 woman False NaN Southampton yes True

[3]: fmri.head(3)

[3]: subject timepoint event region signal
0 s13 18 stim parietal -0.017552
1 s5 14 stim parietal -0.080883
2 s12 18 stim parietal -0.081033

[4]: tips.head(3)

[4]: total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3

[5]: flights.head(3)

[5]: year month passengers
0 1949 Jan 112
1 1949 Feb 118
2 1949 Mar 132
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7.12.1 12.1 Relational Plots

Relational plots are used to visualize the statistical relationship between the features in a dataset.

We will provide examples using the following relational plots in Seaborn:

• Line Plots

• Scatter Plots

Line Plots

Line plots can be created in Seaborn by using the function relplot(), with the kind parameter set to line. Similarly,
setting the kind to scatter is used for creating scatter plots. In general, relplot() is a flexible function that allows
to visualize different relational plots between the features.

In the figure below, we used the flights dataset, and plotted the feature month along the x-axis and the passenger
along the y-axis. The plot also calculates the confidence intervals and draws error bars representing the uncertainty for
the number of passengers per month. Many plotting functions in Seaborn use statistical estimators to plot data statistics
by default.

Note also that when we create Seaborn plots in Jupyter notebooks, the figure object information is displayed above the
plot, in this case <seaborn.axisgrid.FacetGrid at 0x20dd5e50810>. The same is true for Matplotlib plots, as
they also return the figure object information in Jupyter notebooks. We can suppress the text by either adding plt.
show() in the cells, or by adding a semicolon to the last line in the cells. We will add a semicolon for all plots in this
lecture to suppress the text for the figure objects.

[6]: sns.relplot(data=flights, x='month', y='passengers', kind='line')
# Use either 'plt.show()' or add a semicolon to suppress the returned text above the plot

[6]: <seaborn.axisgrid.FacetGrid at 0x20dd5e50810>
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And another plot shows the number of passengers per year.

[7]: sns.relplot(data=flights, x='year', y='passengers', kind='line');
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We can remove the drawn error bars for the confidence intervals by setting the parameter errorbar=None. In the older
versions of Seaborn this was controlled by the parameter ci. Therefore using ci=None still works, but it will produce
a warning that ci has been deprecated.

Similarly, by setting style="darkgrid" in set_theme() we indicate to set the background in the plot to a shade of
dark, and to show the grid. By applying a theme with set_theme() we can control the appearance of all next plots.

[8]: sns.set_theme(style="darkgrid") # show the grid for all next plots on a dark background
sns.relplot(data=flights, x='month', y='passengers', errorbar=None, kind='line');
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If we set the confidence interval to errorbar=sd, the standard deviation for the x-axis values will be shown in the plot.

[9]: sns.relplot(data=flights, x='month', y='passengers', errorbar='sd', kind='line');
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By default, relplot() employs a statistical estimator to aggregate the values and display the average values on the
y-axis (e.g., average number of passengers per month). If we would like to see all values on the y-axis instead of the
average values, we can set the parameter estimator=None.

[10]: sns.relplot(data=flights, x='month', y='passengers', errorbar=None, estimator=None, kind=
→˓'line');
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We can plot multiple lines in a figure by setting the hue parameter to another feature in the dataset.

[11]: sns.relplot(data=fmri, x='timepoint', y='signal', hue='event', kind='line');
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The parameter style allows to vary the appearance of the lines based on a specified feature (in the next cell, based on
the feature event). Seaborn will automatically assign a different line style (e.g., dashed line) to each category in the
feature event. In this case, there are two categories: stim and cue.

[12]: sns.relplot(data=fmri, x='timepoint', y='signal', hue='event', kind='line', style='event
→˓');
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To highlight the differences between the categories in hue, we can use markers=True to add markers for the data
points.

[13]: sns.relplot(data=fmri, x='timepoint', y='signal', hue='event', kind='line',
style='event', dashes=False, markers=True);
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And, we can plot multiple relationships by introducing a parameter col to create multiple columns, or we can also
introduce multiple rows with the row parameter, as in the following cell below.

[14]: sns.relplot(data=tips, x='total_bill', y='tip', hue='smoker', col='time');
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[15]: sns.relplot(data=fmri, x='timepoint', y='signal', hue='subject',
col='region', row='event', height=4, kind='line', estimator=None);
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Scatter Plots

We can create scatter plots in Seaborn by using either sns.scatterplot() or sns.relplot().

[16]: sns.scatterplot(data=titanic, x='age', y='fare');
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Similar to line plots, the hue parameter distinguishes the data points in the plot based on another feature.

[17]: sns.scatterplot(data=titanic, x='age', y='fare', hue='sex');
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To highlight the difference between the categories in hue, we can add different marker styles with style='sex'.

[18]: sns.scatterplot(data=titanic, x='age', y='fare', hue='sex', style='sex');
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Recall that the default size of figures in Matplotlib is 6.4 by 4.8 inches. The same applies to Seaborn, and similar to
Matplblib, to specify the figure size, we can use figure(figsize=()).

[19]: plt.figure(figsize=(8,6))
sns.scatterplot(data=titanic, x='age', y='fare', hue='sex', style='pclass');
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We can also define the type of markers to use with the parameter markers.

[20]: marker_types = {1:'P', 2:'X', 3:'D'} # P(plus), X (cross), and D (diamond) markers
sns.scatterplot(data=titanic, x='age', y='fare', hue='sex', style='pclass',␣
→˓markers=marker_types);
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Adding the parameter sizes can make the plot more meaningful, as Seaborn will use sizes to control the size of the
markers in the plot.

[21]: sns.scatterplot(data=titanic, x='age', y='fare', hue='pclass', size='pclass', sizes=(100,
→˓10));
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7.12.2 12.2 Distributional Plots

Distributional plots visualize the distribution of data features, and can help understand the range of values, their central
tendency, potential skewness in the data, presence of outliers, and other data characteristics.

Distribution plot functions in Seaborn include:

• displot()

• histplot()

• jointplot()

• pairplot()

• rugplot()

• kdeplot
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Univariate Analysis with displot()

Univariate analysis explores the characteristics of a single feature in a data set in isolation. It involves studying the
range of values, central tendency of the values, and other statistical properties of the feature. This analysis typically
employs histograms, bar plots, box plots, and other related plots for presenting the distribution of an individual feature.

In Seaborn, the displot() function is a general function for plotting different distributional plots. Its default behavior
is to draw a histogram, and internally displot() uses the histplot() function to draw histograms. By changing the
parameter kind in displot(), we can create different distributional plots.

[22]: sns.displot(titanic['age']);

We can set the number of bins in histograms to a value of choice. Similarly, if we set the parameter kde which
stands for Kernel Density Estimator (KDE) to True, a KDE plot will be overlaid on top of the histogram. KDE is a
smoothed curve representation of the probability density function of the data. It uses a Gaussian kernel to smooth the
data distribution.

[23]: sns.displot(titanic['age'], kde=True, bins=20);
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We can also plot categorical data with histograms, in which case the histograms become bar plots. The parameter
shrink in the next cells has a value between 0 and 1 and controls the width of the bars in the plot. Compare the
following two cells.

[24]: sns.displot(tips, x='day', shrink=0.8);
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[25]: sns.displot(tips, x='day', shrink=0.2);
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We can also use histplot() to draw histograms.

[26]: sns.histplot(titanic, x="age", hue="survived");
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We can stack histograms of multiple features by setting the parameter multiple to 'stack'.

[27]: sns.histplot(titanic, x='age', hue='survived', multiple='stack');
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Bivariate Analysis with jointplot()

Bivariate analysis explores the relationship and patterns among two variables, or two features in a dataset. The goal
is to understand how changes in one variable are related to changes in another variable. Common plots in bivariate
analysis include scatter plots, and correlation plots.

In Seaborn, we can use jointplot() to plot the joint distribution between two features along with the marginal dis-
tribution for each of the features. This function creates multi-panel plots, and it provides useful statistical visualization
for any two features in a dataset.

The joint distribution drawn in the central plot displays the simultaneous behavior of the two features as they both
change, i.e., it provides information about the probability of different combinations of values for the two features.

The marginal distribution plots are shown on the side axes, and they present the distribution of each feature when con-
sidered independently by ignoring or “marginalizing out” the other feature. I.e., they show the histogram for numerical
features or the bar plot for categorical features.

[28]: sns.jointplot(data=tips, x='total_bill', y='tip');
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In the function jointplot(), the following options for the parameter kind are available:

• scatter (default) displays a scatter plot

• hex displays a hexagonal binning style to visualize the density

• kde displays kernel density estimates

• reg displays a scatter plot with a linear regression line

• resid displays the residuals of a linear regression, useful for checking goodness of fit

[29]: sns.jointplot(data=tips, x='total_bill', y='tip', kind='hex');
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[30]: sns.jointplot(data=tips, x='total_bill', y='tip', hue='day', kind='kde');
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[31]: sns.jointplot(data=tips, x='total_bill', y='tip', kind='reg');
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[32]: sns.jointplot(data=tips, x='total_bill', y='tip', kind='resid');

7.12. Lecture 12 - Data Visualization with Seaborn 385



Fall 2023 Python Programming for Data Science, Release 0.1

Multivariate Analysis with pairplot()

Multivariate analysis explores relationships and dependencies among multiple features in a dataset, in order to reveal
complex interactions between more several features.

The function pairplot() visualizes all possible joint and marginal distributions for all pairwise relationships and for
each variable in datasets. It allows to immediately notice relationships between the features.

In particular, pairplot() creates a grid of subplots, where the diagonal subplots are the marginal distributions of each
feature (i.e., histograms for numerical features and bar plots for categorical features), and the off-diagonal subplots draw
the pairwise joint distributions between different pairs of features.

Note the difference: while jointplot() visualizes the relationship between two features (bivariate analysis),
pairplot() visualizes the pairwise relationships between all features in a dataset (muliivariate analysis).

386 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

[33]: sns.pairplot(tips);

Plotting Distributions with rugplot()

The function rugplot() visualizes marginal distributions by drawing ticks or dashes along the x-axis and/or y-axis in
a plot. It consists of short vertical ‘ticks’ where each tick shows the presence of a data point at that value on the axis.
This plot is useful for showing the density of data points along an axis.

The ticks in the plot resemble the appearance of a rug, therefore, it is named a rug plot.

[34]: sns.rugplot(data=tips, x='total_bill', y='tip');
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Similarly, we can combine relplot() and rugplot() in one figure.

[35]: sns.relplot(data=tips, x='total_bill', y='tip')
sns.rugplot(data=tips, x='total_bill', y='tip');
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Kernel Density Estimation (KDE) Plot with kdeplot()

Besides using the kde parameter with displot(), Seaborn also provides the function kdeplot() to visualize the
smoothed curve of the probability density function of a single feature or multiple features.

[36]: sns.kdeplot(data=tips, x='tip');
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[37]: sns.kdeplot(data=tips, x='tip', hue='day');
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[38]: sns.kdeplot(data=tips, x='tip', hue='day', fill=True);
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[39]: sns.kdeplot(data=tips, x='tip', hue='day', multiple='stack');
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Cumulative Distributions

By setting the parameter kind in displot() to ecdf, we can plot the cumulative distribution of a feature, where ecdf
stands for empirical cumulative distribution function.

[40]: sns.displot(titanic, x='age', kind='ecdf');
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7.12.3 12.3 Categorical Plots

In Seaborn, there are various plot functions for visualizing categorical data. These include:

1. Categorical estimate plots

• barplot()

• countplot()

• pointplot()

2. Categorical distribution plots

• boxplot()

• boxenplot()

• violinplot()

3. Categorical scatter plots

• stripplot()

• swarmplot()
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Similar to the high-level function displot() for creating distribution plots, Seaborn also provides a high-level function
catplot() for plotting all of the above types of categorical plots, by passing different values for the kind parameter.
The available settings include: bar, count, point, box, boxen, violin, strip, and swarm.

Categorical Estimate Plots

The function barplot() is used to visualize statistics of categorical data based on different statistical estimator func-
tions (mean is the default estimate). As stated earlier, to create bar plots we can either use barplot() or catplot(...,
kind='bar').

[41]: sns.catplot(data=titanic, x='sex', y='survived', hue='pclass', kind='bar');

The function countplot() is used to visualize the number of observations in each category.

[42]: sns.countplot(data=tips, x='day', palette='coolwarm');

# The same plot can be obtained with
#sns.catplot(data=tips, x='day', palette='coolwarm', kind='count')
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Rather than plotting bars, the function pointplot() visualizes the point estimates of categorical data. Notice that it
can also connect the points with the categorical variable specified with hue.

[43]: sns.pointplot(data=titanic, x='sex', y='survived', hue='class', palette='dark');
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Categorical Distribution Plots

The functions boxplot(), boxenplot(), and violinplot() are used to plot the distributions of categorical data.

A box plot (or box-and-whisker plot) shows the median, the inter-quartile range with the first (25%) and third (75%)
quartiles of the dataset, and the whiskers extend to show the rest of the distribution. Exceptions are data points that are
determined to be outliers based on a method that is a function of the inter-quartile range.

[44]: sns.boxplot(data=tips, x='day', y='total_bill');
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[45]: sns.catplot(data=tips, x='day', y='total_bill', hue='smoker', kind='box');
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The kind parameter set to boxenplot creates boxen plots, which are an enhanced version of box plots. Boxen plots
employ additional steps for calculating the quartiles, and are more efficient in visualizing features that have many
outliers.

The approach for creating boxen plots includes first dividing the data into groups and then iteratively constructing
the plot by starting with the largest group and data and progressing to the smallest group of data. The boxes can be
considered subgroups of data, with the width and height corresponding to the size and range of the data in the groups.
Therefore, the boxes do not correspond to the first and third quartiles, as in traditional box plots.

[46]: sns.catplot(data=tips, x='day', y='total_bill', hue='smoker', kind='boxen');
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The function violinplot() shows the entire distribution of categorical data and uses a rotated kernel density plot on
both the right and left sides of the plots. Understandably, the plots resemble violins, and they make it easier to visualize
the shape, skewness, and presence of multiple peaks in the data distribution. Unlike box plots and boxen plots, violin
plots do not display the individual outliers in the data.

[47]: sns.violinplot(data=tips, x='day', y='total_bill', palette='autumn');
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Categorical Scatter Plots

The functions stripplot() and swarmplot() visualize categorical data with scatter plots.

In a stripplot() the data points are shown in a strip, whereas in a swarmplot() the data are randomly shifted
horizontally to avoid overlaps. Strip plots are simpler and can be used to see the exact positions of data points, and
swarm plots resemble a swarm of bees and they make it easier to see the distribution of the data points.

[48]: sns.stripplot(data=tips, x='day', y='total_bill', jitter=False);
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[49]: sns.swarmplot(data=tips, x='day', y='total_bill');
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Also, when using catplot(), the parameter strip is the default value of the kind parameter.

[50]: sns.catplot(data=tips, x='total_bill', y='day', hue='sex', kind='swarm');
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Plotting Multiple Categorical Plots

We can plot multiple plots with catplot() by setting the parameters col or row to a data feature.

[51]: sns.catplot(data=tips, x='day', y='total_bill', hue='smoker', col='time', kind='swarm');
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7.12.4 12.4 Regression Plots

Seaborn provides plots for visualizing the linear relationship between the features. The functions regplot() and
lmplot() can be used for fitting a linear regression model, where lm stands for linear model.

For instance, the figure below shows the regression line, as well as the uncertainty in the predicted values corresponding
to 95% confidence interval for the regression fit with lmplot().

[52]: sns.lmplot(data=tips, x='total_bill', y='tip');
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[53]: sns.lmplot(data=tips, x='total_bill', y='tip', hue='sex');
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If one of the features is a categorical variable (e.g., survived in the next example), linear regression models may
not produce good results, and an alternative is to apply a logistic regression model by using logistic=True. The
regression line shown the estimated probability of the variable y=1 for a given value of x.

The function lmplot() also allows to add jitter to the data in the scatter plot by using the y_jitter parameter, in
order to better visualize the values. Jitter is applied only to the scatter plot, and it is not applied to the data for fitting
the regression model.

In the plot below, the regression lines indicate that the probablity of men to survive decreased with age, whereas the
probability of women to survive increased with age.

[54]: sns.lmplot(data=titanic, x='age', y='survived', logistic=True, y_jitter=0.05, hue='sex');
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If the relationship between two features is not linear, the function lmplot() can also fit a polynomial regression model
to identify nonlinear trends in the dataset by using the parameter order. E.g., order=2 in the next cell fits a second-
degree polynomial regression model.

[55]: sns.lmplot(data=tips, x='total_bill', y='tip', hue='sex', order=2);
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As we explained in the above sections, we can create subplots by setting the parameters col and row to specific data
features.

[56]: sns.lmplot(data=tips, x='total_bill', y='tip', hue='smoker', col='time', row='sex');
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7.12.5 12.5 Multiple Plots

Multiple plot functions in Seaborn are used to visualize multiple features along different axes. Seaborn provides the
following functions:

• FacetGrid()

• PairGrid()

• PairPlot()
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FacetGrid()

The function FacetGrid() creates multiple grid plots and allows plotting the features on row and column axes in
order to visualize the relationship between multiple features in separate subplots. It allows to draw a grid based on
three parameters: col, row, and hue, where hue allows to draw different categories in a subplot with separate colors.

After the grid is created with FacetGrid(), visualizations are added with the map() method that specifies the plot
type (such as scatter, histogram, bar plot, etc.).

[57]: plot = sns.FacetGrid(tips, col='sex', hue='smoker')

[58]: plot = sns.FacetGrid(tips, col='sex', hue='smoker')
plot.map(sns.scatterplot,'total_bill', 'tip')
plot.add_legend();

FacetGrid() allows to control the height, aspect ratio, and other properties of the subplots in the grid.
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[59]: plot = sns.FacetGrid(tips, col='day', height=5, aspect=0.5)
plot.map(sns.barplot, 'sex', 'total_bill');

C:\Users\vakanski\anaconda3\Lib\site-packages\seaborn\axisgrid.py:712: UserWarning:␣
→˓Using the barplot function without specifying `order` is likely to produce an␣
→˓incorrect plot.
warnings.warn(warning)

PairGrid()

The function PairGrid() allows to plot pairwise relationships between the features in the dataset. It is similar to the
function pairplot() that we saw earlier for multivariate data analysis.

An example is shown next, where PairGrid creates a grid of subplots by assigning each row and column to a different
feature in the dataset. Since the tips dataset has three numerical columns, the created grid is of 3x3 size.

Note also the difference between FacetGrid() and PairGrid(). FacetGrid()shows the same relationship between
two features, conditioned on different categories of other features. E.g., in the above example, all subplots show the
scatter plots of total_bill and tip, conditioned on the features sex and smoker. PariGrid() shows different
relationships between the features in the subplots.

[60]: plot = sns.PairGrid(tips, hue='sex')
plot.map(sns.scatterplot)
plot.add_legend();
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With PairGrid(), we can also be selective on the type of plots to include in diagonal subplots with map_diag and
in the off-diagonal subplots (e.g., map_upper for the upper off-diagonal subplots and map_lower for the lower off-
diagonal subplots).

[61]: plot = sns.PairGrid(tips)
plot.map_diag(sns.histplot)
plot.map_upper(sns.scatterplot)
plot.map_lower(sns.kdeplot)
plot.add_legend();
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Also, instead of plotting all features in a dataset, we can select the features we are interested in.

[62]: plot = sns.PairGrid(tips, vars=['total_bill', 'tip'], hue='day')
plot.map(sns.scatterplot)
plot.add_legend();
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pairplot()

The function pairplot() is very similar to PairGrid(), and it allows to plot pairwise relationships between the
features in a dataset. It provides faster plotting in comparison to PairGrid() but it also offers less functionality.

[63]: sns.pairplot(tips, hue='sex');
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7.12.6 12.6 Matrix Plots

When performing data analysis, in some cases it is beneficial to visualize array data as color-encoded matrices that can
be used to find patterns within the data.

Heat Maps

The function heatmap() in Seaborn adds colors to the elements in a matrix, and attaches a color bar to the plot.

Let’s visualize a matrix with random values.

[64]: sns.set_theme()
data = np.random.randn(10,15)
sns.heatmap(data);
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Or, if you recall from the previous lecture, we used the .corr() method in pandas to calculate the correlation between
the features, and afterward we used heatmap to visualize the correlations. By applying colors that correspond to the
correlation values, it makes it easier to identify relationships between the features.

[65]: # Finding the correlation of features in titanic dataset
correlation = titanic.corr()
correlation

C:\Users\vakanski\AppData\Local\Temp\ipykernel_8840\971058138.py:2: FutureWarning: The␣
→˓default value of numeric_only in DataFrame.corr is deprecated. In a future version, it␣
→˓will default to False. Select only valid columns or specify the value of numeric_only␣
→˓to silence this warning.
correlation = titanic.corr()

[65]: survived pclass age sibsp parch fare \
survived 1.000000 -0.338481 -0.077221 -0.035322 0.081629 0.257307
pclass -0.338481 1.000000 -0.369226 0.083081 0.018443 -0.549500
age -0.077221 -0.369226 1.000000 -0.308247 -0.189119 0.096067
sibsp -0.035322 0.083081 -0.308247 1.000000 0.414838 0.159651
parch 0.081629 0.018443 -0.189119 0.414838 1.000000 0.216225
fare 0.257307 -0.549500 0.096067 0.159651 0.216225 1.000000
adult_male -0.557080 0.094035 0.280328 -0.253586 -0.349943 -0.182024
alone -0.203367 0.135207 0.198270 -0.584471 -0.583398 -0.271832

adult_male alone
survived -0.557080 -0.203367
pclass 0.094035 0.135207

(continues on next page)
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(continued from previous page)

age 0.280328 0.198270
sibsp -0.253586 -0.584471
parch -0.349943 -0.583398
fare -0.182024 -0.271832
adult_male 1.000000 0.404744
alone 0.404744 1.000000

[66]: sns.heatmap(correlation);

If we want to add the values to the heat map, we can set the parameter annot to True.

[67]: sns.heatmap(correlation, annot=True);
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7.12.7 12.7 Styles, Themes, and Colors

Seaborn allows to customize the visualizations depending on our needs, and provides ways to control the styles, themes,
and colors in our plots.

Styles and Themes

There are five styles in Seaborn plots:

• darkgrid (default) provides a dark background with grid lines

• whitegrid provides a white background with grid lines

• dark provides a dark background without grid lines

• white provides a white background without grid lines

• ticks provides a light gray background with tick marks on the axes

[68]: sns.set_style('whitegrid')
sns.catplot(data=tips, x='day', y='total_bill', kind='bar');
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[69]: sns.set_style('dark')
sns.catplot(data=tips, x='day', y='total_bill', kind='box');
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[70]: sns.set_style('white')
sns.catplot(data=tips, x='day', y='total_bill', kind='boxen');

7.12. Lecture 12 - Data Visualization with Seaborn 421



Fall 2023 Python Programming for Data Science, Release 0.1

[71]: sns.set_style('ticks')
sns.catplot(data=tips, x='day', y='total_bill', kind='box');
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Removing the Axes Spines

We can use the function despine() to remove the axes spines (borders) in the plots, or to show the spines by setting
them to False.

[72]: sns.catplot(data=tips, x='day', y='total_bill', kind='box')
sns.despine(right=False);
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We can also move the spines away from the data by setting the offset distance that spines should move away from the
axes.

[73]: sns.catplot(data=tips, x='day', y='total_bill', kind='violin')
sns.despine(offset=10, trim=True);

424 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

Scaling Plot Elements with Context

Context is used to control the scale of the elements of the plot. This can be helpful depending on where we want to use
the visualizations.

The function set_context() allows to select four contexts: paper, notebook (default), talk, and poster.

[74]: sns.set_theme()

[75]: sns.set_context('paper')
sns.kdeplot(data=tips, x='tip', hue='day');
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[76]: sns.set_context('talk')
sns.kdeplot(data=tips, x='tip', hue='day');
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[77]: sns.set_context('poster')
sns.kdeplot(data=tips, x='tip', hue='day');
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[78]: sns.set_context('notebook')
sns.kdeplot(data=tips, x='tip', hue='day');
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Colors

Seaborn allows us to choose colors from a wide range of color palettes for plot visualization.

To specify preferred colors, we can either use color_palette() before each plot, or set the parameter palette inside
the plot definition.

[79]: sns.set_palette('rocket')
sns.kdeplot(data=tips, x='tip', hue='day', multiple='stack');
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[80]: sns.kdeplot(data=tips, x='tip', hue='day', multiple='stack', palette='icefire');
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To see the available color palettes, check out the Seaborn documentation.

[81]: # Check the palettes

sns.color_palette('tab10')

[81]: [(0.12156862745098039, 0.4666666666666667, 0.7058823529411765),
(1.0, 0.4980392156862745, 0.054901960784313725),
(0.17254901960784313, 0.6274509803921569, 0.17254901960784313),
(0.8392156862745098, 0.15294117647058825, 0.1568627450980392),
(0.5803921568627451, 0.403921568627451, 0.7411764705882353),
(0.5490196078431373, 0.33725490196078434, 0.29411764705882354),
(0.8901960784313725, 0.4666666666666667, 0.7607843137254902),
(0.4980392156862745, 0.4980392156862745, 0.4980392156862745),
(0.7372549019607844, 0.7411764705882353, 0.13333333333333333),
(0.09019607843137255, 0.7450980392156863, 0.8117647058823529)]

[82]: sns.color_palette('dark')

[82]: [(0.0, 0.10980392156862745, 0.4980392156862745),
(0.6941176470588235, 0.25098039215686274, 0.050980392156862744),
(0.07058823529411765, 0.44313725490196076, 0.10980392156862745),
(0.5490196078431373, 0.03137254901960784, 0.0),
(0.34901960784313724, 0.11764705882352941, 0.44313725490196076),
(0.34901960784313724, 0.1843137254901961, 0.050980392156862744),

(continues on next page)
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(continued from previous page)

(0.6352941176470588, 0.20784313725490197, 0.5098039215686274),
(0.23529411764705882, 0.23529411764705882, 0.23529411764705882),
(0.7215686274509804, 0.5215686274509804, 0.0392156862745098),
(0.0, 0.38823529411764707, 0.4549019607843137)]

Also, we can use sns.set_theme() to directly set the style, palette, and context.

[83]: sns.set_theme(style='white', context='talk', palette='viridis')
sns.kdeplot(data=tips, x='tip', hue='day', multiple='stack');

7.12.8 References

1. Complete Machine Learning Package, Jean de Dieu Nyandwi, available at: https://github.com/Nyandwi/
machine_learning_complete.

2. Seaborn Tutorial: An Introduction to Seaborn, available at: https://seaborn.pydata.org/tutorial/introduction.
html.
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7.13 Lecture 13 - Scikit-Learn Library for Data Science

• 13.1 Introduction to Scikit-Learn

• 13.2 Supervised Learning: Classification

– 13.2.1 k-Nearest Neighbors (kNN)

– 13.2.2 Support Vector Machines (SVM)

– 13.2.3 Logistic Regression

– 13.2.4 Decision Trees

– 13.2.5 Random Forest

– 13.2.6 Naive Bayes

– 13.2.7 Perceptron

– 13.2.8 Stochastic Gradient Descent (SGD)

• 13.3 Supervised Learning: Regression

• 13.4 Unsupervised Learning: Clustering

• 13.5 Hyperparameter Tuning

– 13.5.1 Grid Search

– 13.5.2 Random Search

• 13.6 Cross-Validation

– 13.6.1 k-Fold Cross-Validation

• 13.7 Performance Metrics

• 13.8 Model Pipelines

• 13.9 Flow Chart: How to Choose an Estimator

• Appendix

• References

7.13.1 13.1 Introduction to Scikit-Learn

Scikit-Learn is a Python library designed to provide access to machine learning algorithms within Python code, through
a clean and well-designed API. It has been built by hundreds of contributors from around the world, and is used in
industry and academia.

Scikit-Learn is built upon Python’s NumPy (Numerical Python) and SciPy (Scientific Python) libraries, which enable
efficient numerical and scientific computation within Python.

Scikit-Learn is imported via the sklearn module.

[1]: import sklearn
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Representation of Data in Scikit-Learn

Most machine learning algorithms implemented in scikit-learn expect the training data to be stored in a two-
dimensional array (matrix). The size of the array is expected to be [n_samples, n_features].

• n_samples is the number of samples (also referred to as inputs, data points, instances, examples), where each
sample is an item to process (e.g., classify). A sample can be a row in database or CSV file, an image, a video,
a document, an astronomical object, or anything that we can describe with a set of quantitative features.

• n_features is the number of features or distinct characteristics that can be used to describe each sample in a
quantitative manner. Features are generally real-valued numbers, but they can also be boolean or discrete values.

A Dataset Example: Iris Dataset

As an example of a simple dataset, we are going to look at the Iris dataset stored by the scikit-learn library.

The data consists of measurements of three different species of irises:

1. Iris Setosa

2. Iris Versicolour

3. Iris Virginica

Each sample has 4 features, which include:

1. Sepal length in cm

2. Sepal width in cm

3. Petal length in cm

4. Petal width in cm

All four features are measured in centimeters (cm). Note that the data are not images of iris flowers, but 4 measurements
for each flower.

Examples of images from the three iris species are shown below.

There are 50 samples for each species, therefore there are 150 samples in total for all 3 species.

Scikit-learn provides a helper function load_iris to load the dataset into a dictionary with numpy arrays as values.
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[2]: from sklearn.datasets import load_iris
iris = load_iris()

Let’s explore the keys in the loaded dictionary. The main elements are the data and the target keys.

[3]: iris.keys()

[3]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename
→˓', 'data_module'])

[4]: # 150 samples, 4 features
iris.data.shape

[4]: (150, 4)

[5]: # Show the features for the first sample
iris.data[0]

[5]: array([5.1, 3.5, 1.4, 0.2])

[6]: # 'Target' is the array of class labels for each sample
iris.target.shape

[6]: (150,)

[7]: print(iris.target)
# 0 is Iris Setosa, 1 is Iris Versicolor, 2 is Iris Virginica

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]

[8]: print(iris.target_names)

['setosa' 'versicolor' 'virginica']

[9]: print(iris.feature_names)

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

Although the dataset is four-dimensional, we can visualize two of the dimensions at a time using a scatter plot.

[10]: import numpy as np
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings('ignore')

x_index = 0 # sepal_length
y_index = 1 # sepal_width

# this formatter will label the colorbar with the correct target names
formatter = plt.FuncFormatter(lambda i, *args: iris.target_names[int(i)])

(continues on next page)
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(continued from previous page)

plt.scatter(iris.data[:, x_index], iris.data[:, y_index],
c=iris.target, cmap=plt.cm.get_cmap('viridis_r', 3))

plt.colorbar(ticks=[0, 1, 2], format=formatter)
plt.clim(-0.5, 2.5)
plt.xlabel(iris.feature_names[x_index])
plt.ylabel(iris.feature_names[y_index]);

Other Available Data in Scikit-Learn

Besides the Iris dataset, scikit-learn provides other datasets, that can be loaded directly from scikit-learn. The datasets
include:

• Packaged Data: several small datasets are packaged with the scikit-learn installation, and can be downloaded
using the tools in sklearn.datasets.load_*

• Downloadable Data: several larger datasets are available for download, and scikit-learn includes tools that
streamline this process. These tools can be found in sklearn.datasets.fetch_*

• Generated Data: several datasets can be generated using various random sample generators. These are available
in sklearn.datasets.make_*

[11]: from sklearn import datasets

To see the available datasets in scikit-learn use the following:

436 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

# Type datasets.load_<TAB> to see all available datasets
datasets.load_

# Type datasets.fetch_<TAB> to see all available datasets
datasets.fetch_

# Type datasets.make_<TAB> to see all available datasets
datasets.make_

7.13.2 13.2 Supervised Learning: Classification

In supervised learning, an algorithm processes a dataset consisting of samples (training data) and labels. Supervised
learning is further broken down into two main categories: classification and regression. In classification, the label is
discrete such as the class membership, while in regression the label is continuous. We will first look at examples of
performing classification with scikit-learn, and afterwards we will study regression tasks.

The implementations of machine learning algorithms and models in scikit-learn are called estimators or estimator
objects. Each estimator can be fitted to input data using the fit() method in scikit-learn. Fitting an estimator to data
is equivalent to training a model, that is, the parameters of the model are learned from the data.

13.2.1 k-Nearest Neighbors (kNN)

We will illustrate classification first with the k-nearest neighbors (kNN) algorithm. This algorithm uses a very simple
learning strategy: to predict the target class of a new sample, it takes into account its k closest samples in the training
set and predicts the class labels based on majority voting of these samples.

For instance, if k=1, to assign a class label to the test example shown with the white square in the figure below, the kNN
classifier will first calculate the distance to each data point in the training set, and afterward, it will assign the class of
the nearest data point to the test example.

Or, if k=3, then the 3 nearest neighbors will be considered to classify a test data point. For the test data points shown
with the + marker in the figure below, the class is obtained by voting based on the class labels of the 3 closest data
points.
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kNN is a simple classification algorithm, and one main disadvantage is that the classifier needs to remember all of
the training data and store it for future comparisons with test samples. This can be space inefficient when working
with large datasets having many data points, and it can be computationally expensive since it requires calculating the
distance to all data points.

Let’s try kNN on the iris classification problem. In the following cell, we passed the newly created classifier object to
the name knn and we chose to use 5 nearest neighbors.

[12]: from sklearn import neighbors

# create the model
knn = neighbors.KNeighborsClassifier(n_neighbors=5)

X, y = iris.data, iris.target

The full set of arguments that can be passed to kNN in scikit-learn is shown below, and more information about the
arguments can be found at this link.

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, *, weights='uniform',
algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)

Train the Model

[13]: # fit the model with model.fit(training data, training target)
knn.fit(X, y)

[13]: KNeighborsClassifier()

The model training is depicted in the following diagram. The model is fit to the training data/samples/instances (often
denoted X) and training target/label/class/category (often denoted y). The method fit uses the specified learning
algorithm for estimating the parameters of the model. The learned parameters constitute the model state that can later
be used to make predictions (to classify test data).

438 Chapter 7. Lectures

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html


Fall 2023 Python Programming for Data Science, Release 0.1

Note again the syntax for training/fitting a model: model.fit(data, target)

Figure source: Reference [5].

Make Predictions

Next, we will use our trained model to make predictions on the same dataset X that we used for training. To predict,
the model uses the input data together with the model state to output a target/label for each data point.

Note the syntax for predicting with a model: model.predict(data)

Figure source: Reference [5].

[14]: y_predicted = knn.predict(X)

# y_predicted is an array of predicted class labels for each input
y_predicted

[14]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

[15]: y_predicted.shape

[15]: (150,)

The output of model.predict() is an array with a class label assigned to each data instance. The array y_predicted
has 150 items, because we passed an array X with 150 data instances.

Compare the predicted class labels to the ground-truth target array y given below.

[16]: # Ground-truth target array
y

[16]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

We can also make a prediction only on a subset of the data. For example, the next cell shows the prediction for the first
two samples. The predicted class labels are 0 and 0.

[17]: result = knn.predict(X[0:2])

[18]: result

[18]: array([0, 0])

Note that predict expects the data to be two-dimensional, and if we input only 1 sample, we will get an error.
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[19]: result_1 = knn.predict(X[0])

---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_16588\255161176.py in <module>
----> 1 result_1 = knn.predict(X[0])

~\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py in predict(self, X)
212 Class labels for each data sample.
213 """

--> 214 neigh_dist, neigh_ind = self.kneighbors(X)
215 classes_ = self.classes_
216 _y = self._y

~\anaconda3\lib\site-packages\sklearn\neighbors\_base.py in kneighbors(self, X, n_
→˓neighbors, return_distance)

715 X = _check_precomputed(X)
716 else:

--> 717 X = self._validate_data(X, accept_sparse="csr", reset=False)
718 else:
719 query_is_train = True

~\anaconda3\lib\site-packages\sklearn\base.py in _validate_data(self, X, y, reset,␣
→˓validate_separately, **check_params)

564 raise ValueError("Validation should be done on X, y or both.")
565 elif not no_val_X and no_val_y:

--> 566 X = check_array(X, **check_params)
567 out = X
568 elif no_val_X and not no_val_y:

~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_
→˓sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd,
→˓ ensure_min_samples, ensure_min_features, estimator)

767 # If input is 1D raise error
768 if array.ndim == 1:

--> 769 raise ValueError(
770 "Expected 2D array, got 1D array instead:\narray={}.\n"
771 "Reshape your data either using array.reshape(-1, 1) if "

ValueError: Expected 2D array, got 1D array instead:
array=[5.1 3.5 1.4 0.2].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or␣
→˓array.reshape(1, -1) if it contains a single sample.

This is because the shape of the first sample is (4,). If we make the sample two-dimensional with X[np.newaxis,
0], then we can perform a prediction without error.

[20]: X[0].shape

[20]: (4,)

[21]: # This works, we changed the shape from (4,) to (1,4)
result_1 = knn.predict(X[np.newaxis, 0])
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[22]: print(result_1)

[0]

Or, we can use the suggestion in the error message, and use array.reshape(1,-1).

[23]: first_sample = X[0].reshape(1,-1)
first_sample.shape

[23]: (1, 4)

[24]: result_2 = knn.predict(first_sample)
print(result_2)

[0]

Similarly, we can make predictions by specifying arbitrary input features; for example, an iris flower that has 3cm x
5cm sepal and 4cm x 2cm petal, as follows.

[25]: # what kind of iris has 3cm x 5cm sepal and 4cm x 2cm petal?
result_2 = knn.predict([[3, 5, 4, 2]])

[26]: print(result_2)

[1]

[27]: print(iris.target_names[result_2])

['versicolor']

We can also perform probabilistic predictions with predict_proba, which outputs the probability that a sample be-
longs to each of the three iris species. In the output, the first element 1 means target class 0.

[28]: knn.predict_proba(first_sample)

[28]: array([[1., 0., 0.]])

Applying the argmax() function will output the index of the greatest element in the array.

[29]: knn.predict_proba(first_sample).argmax()

[29]: 0

[30]: # for the first 4 data samples
knn.predict_proba(X[0:4])

[30]: array([[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.]])

[31]: knn.predict_proba(X[0:4]).argmax(axis=1)

[31]: array([0, 0, 0, 0], dtype=int64)
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Evaluate the Performance

Model evaluation (model validation) is determining how well the model predictions are relative to the known target
labels.

To assess the accuracy of the prediction, we can compute the average success rate, i.e., all cases where the predicted
target label y_predicted is the same as the ground-truth target label y.

[32]: (y == y_predicted).mean()

[32]: 0.9666666666666667

Or, using .sum(). we can see that the model predicted correctly 145 samples out of the 150 samples in the dataset X.
The above function mean() just calculates the average as 145/150.

[33]: (y == y_predicted).sum()

[33]: 145

And, instead of manually calculating the accuracy, we can use model.score() to calculate the average success rate.
This method first performs prediction on a set of data inputs, and afterwards it calculates the accuracy of the predicted
class labels in comparison to the true class labels.

The syntax is: model.score(data, target)

Figure source: Reference [5].

[34]: accuracy = knn.score(X, y)
accuracy

[34]: 0.9666666666666667

One additional way to calculate the average success rate is to import the accuracy_score metric, and then apply it to
find the match between ground-truth and predicted class labels.

[35]: from sklearn.metrics import accuracy_score
accuracy_score(y, y_predicted)

[35]: 0.9666666666666667

Another useful way to examine the prediction results is to view the confusion matrix, that is, the matrix showing the
frequency of inputs and outputs for each class. In the output of this cell, we can see in the first row that all 50 data
points in class 0 (iris setosa) were correct. In the second row, we see that 47 data points in class 1 (iris versicolor) were
correct, but 3 data points were predicted in class 2 (iris virginica). Similarly, 2 data points from class 2 were incorrectly
classified as class 1. Apparently, there is some confusion between the second and third species. And, as we know,
out of 150 data points, in total 5 data points were misclassified, which can be seen in the off-diagonal elements in the
confusion matrix.

[36]: from sklearn.metrics import confusion_matrix
print(confusion_matrix(y, y_predicted))

[[50 0 0]
[ 0 47 3]
[ 0 2 48]]
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Train-test Data Split

When building a machine learning model, it is important to evaluate the trained model on data that was not used to fit
it, since the generalization ability of the model on new unseen data is of primary concern.

Correct evaluation of a model is done by leaving out a subset of the data when training the model, and using it afterwards
for model evaluation.

Scikit-learn provides the function sklearn.model_selection.train_test_split to automatically split a dataset
into two subsets: training dataset and testing dataset. This function shuffles the data and randomly splits it into a
train and test set. Setting the random_state parameter allows to obtain deterministic results when using a random
number generator. Setting stratify=y will ensure that the training and testing datasets have the same proportions of
data points from the 3 classes of irises.

[37]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=123, test_size=0.
→˓25, stratify=y)

[38]: print('Training data inputs', X_train.shape)
print('Training labels', y_train.shape)
print('Testing data inputs', X_test.shape)
print('Testing labels', y_test.shape)

Training data inputs (112, 4)
Training labels (112,)
Testing data inputs (38, 4)
Testing labels (38,)

We can use the bincount() function to examine how the data from different classes were distributed in the training
and testing datasets. In the next cell, we can see that the datasets are stratified.

[39]: print(np.bincount(y_train))
print(np.bincount(y_test))

[38 37 37]
[12 13 13]

Let’s re-train and re-evaluate the model.

[40]: # 1. initialize the model
knn_model = neighbors.KNeighborsClassifier()

# 2. fit the model on train data
knn_model.fit(X_train, y_train)

# 3. evaluate the model on test data
accuracy = knn_model.score(X_test, y_test)

print(f'The test accuracy is {round(accuracy, 4) * 100}%')

The test accuracy is 97.37%

This example was not the best though, because the obtained score on the unseen test data (97.37%) is typically lower
than the accuracy obtained by evaluating the model on the training data (96.67% in this case). This is probably due to
the small dataset. In practice, evaluating a machine learning model on the training data is unacceptable in all scenarios.
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Finally, how do we know how many nearest neighbors to use: 5, 7, 29? Well, it is not easy to answer that question.
First, we can make an intuitive guess based on our understanding of the dataset, or second, we can run the model several
times using different numbers of nearest neighbors and see which model performs the best.

Plot the Decision Boundary

If we select only 2 features of the iris data, we can also inspect the decision boundary. Let’s select the last two features,
fit a model, and plot the decision boundary for the model using the function in the following cell.

[41]: X1 = iris.data[:, [2, 3]] # select only the last two features
y1 = iris.target

X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, random_state=123, test_
→˓size=0.25, stratify=y1)

knn_model_2 = neighbors.KNeighborsClassifier()

knn_model_2.fit(X1_train, y1_train)

accuracy = knn_model_2.score(X1_test, y1_test)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 97.37 %

[42]: # The code in this cell is not required to quizzes or assignments

from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):

# Adapted from Python Machine Learning (2nd Ed.) Code Repository, Sebastian Raschka,
# available at: [https://github.com/rasbt/python-machine-learning-book-2nd-edition]

# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])

# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),

np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())

for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0],

y=X[y == cl, 1],
alpha=0.8,

(continues on next page)
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(continued from previous page)

c=colors[idx],
marker=markers[idx],
label=cl,
edgecolor='black')

plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()

plot_decision_regions(X1, y1, classifier=knn_model_2)
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13.2.2 Support Vector Machines (SVM)

Support Vector Machines are supervised learning algorithms used for classification, regression, and outlier detection.
SVM are one of the most powerful models in machine learning suited for handling complex and high-dimensional
datasets.

SVM algorithm solves an optimization problem to identify a decision boundary (also referred to as hyperplane) that
separates class instances in an optimal manner. Specifically, depending on the dimensionality of the data, to separate
two-dimensional data into two groups we can use a line (one dimension), then to separate three-dimensional data we
can use a plane (two dimensions), or to separate N-dimensional data we can use a hyperplane (N-1 dimensions).

For instance, in the following figure, all lines correctly separate the classes of blue circles and red squares. The question
is how to find the best decision boundary?

SVM solves this problem by finding the maximum margin between the decision boundary and the data points, where the
main assumption is that the line that is farthest from all training examples will have better generalization capabilities.
Conversely, hyperplanes that pass too close to the training examples will be sensitive to noise and, therefore, less likely
to generalize well for data outside the training set.

The algorithm first identifies a classifier that correctly classifies all the examples, and afterwards increases the geometric
margin until it cannot increase the margin any further. In the following figure, the maximum margin boundary is
specified by three data points, called support vectors.
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An advantage of SVM is that if the data is linearly separable, there is a unique global solution. An ideal SVM analysis
should produce a hyperplane that completely separates the data points into two non-overlapping classes. However,
perfect separation may not be possible, and in that situation, SVM finds the hyperplane that maximizes the margin and
minimizes the misclassifications.

The mathematical details regarding SVM and other machine learning models are omitted in this lecture. Instead, we
will just treat the scikit-learn algorithm as a black box which fits an SVM and predicts on the data.

Let’s import SVM classifier from scikit-learn and fit it to the iris dataset. Note the SVC stands for Support Vector
Classifier.

[43]: from sklearn.svm import LinearSVC

lin_svm = LinearSVC()
lin_svm.fit(X_train, y_train)

[43]: LinearSVC()

[44]: linsvm_pred = lin_svm.predict(X_test)

accuracy_score(y_test, linsvm_pred)

[44]: 1.0

[45]: confusion_matrix(y_test, linsvm_pred)

[45]: array([[12, 0, 0],
[ 0, 13, 0],
[ 0, 0, 13]], dtype=int64)

And recall again that we could have obtained the same result using the score function.

[46]: lin_svm.score(X_test, y_test)
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[46]: 1.0

Interestingly, SVM achieved 100% accuracy on the iris dataset.

SVM Kernel Methods

Although the Linear SVM method is very efficient when the data points are linearly separable, in cases when the data
are not linearly separable (as the data in the following figure), SVM will fail, as obviously, no linear discrimination can
separate these data points.

SVM can handle such cases by using a kernel function, which applies a functional transformation of the input data
into a different space. This is shown in the following figure, where a non-linear kernel function 𝜑 is used to map the
data 𝑥 into a different space where the data is linearly separable. This is called the kernel trick, which means the kernel
function transforms the data into a higher dimensional feature space to make it possible to perform the linear separation.
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SVM supports several kernels, including linear, polynomial, sigmoid, and rbf kernels. Linear kernel is just the
regular SVM. Among the non-linear kernels, Gaussian radial basis function (RBF) kernel is one of the most commonly
used. In scikit-learn, SVM with a linear kernel can be imported as LinearSVC (as we did above), while SVC provides
access to the different kernels (meaning that LinearSVC can be implemented as SVC with the argument kernel =
'linear').

Let’s try to apply SVM with polynomial and rbf kernels to the Iris dataset and compare the results.

[47]: from sklearn.svm import SVC

poly_svm = SVC(kernel='poly')

poly_svm.fit(X_train, y_train)

[47]: SVC(kernel='poly')

[48]: polysvm_pred = poly_svm.predict(X_test)

accuracy_score(y_test, polysvm_pred)

[48]: 0.9736842105263158

[49]: rbf_svm = SVC(kernel='rbf')

rbf_svm.fit(X_train, y_train)

[49]: SVC()

[50]: rbfsvm_pred = rbf_svm.predict(X_test)

accuracy_score(y_test, rbfsvm_pred)

[50]: 0.9736842105263158

[51]: confusion_matrix(y_test, rbfsvm_pred)
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[51]: array([[12, 0, 0],
[ 0, 12, 1],
[ 0, 0, 13]], dtype=int64)

Therefore, for the Iris dataset the linear kernel has the best performance, indicating that the data is linearly separable.

Due to supporting different types of kernels, SVM can tackle different kinds of datasets, both linear and non-linear. In
the real world, many datasets are not linear. If we cannot get good results with linear models, it helps to apply SVM
with non-linear kernels.

Let’s compare two SVM models using a linear and rbf kernel to the following data which is obviously non-linearly
separable.

[52]: from sklearn.datasets import make_circles
X2, y2 = make_circles(100, factor=.1, noise=.1)
plt.scatter(X2[:, 0], X2[:, 1], c=y2, s=50, cmap='spring')

[52]: <matplotlib.collections.PathCollection at 0x21948f4ea90>

[53]: X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, random_state=123, test_
→˓size=0.25)

[54]: rbf_svm = SVC(kernel='rbf')

rbf_svm.fit(X2_train, y2_train)

[54]: SVC()
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[55]: rbfsvm_pred = rbf_svm.predict(X2_test)

accuracy_score(y2_test, rbfsvm_pred)

[55]: 1.0

[56]: lin_svm_2 = SVC(kernel='linear')
lin_svm_2 .fit(X2_train, y2_train)

[56]: SVC(kernel='linear')

[57]: linsvm_pred = lin_svm_2.predict(X2_test)

accuracy_score(y2_test, linsvm_pred)

[57]: 0.6

As expected, the model with the rbf kernel performed much better than the linear model.

Plot the Decision Boundary

We can also plot the decision boundary again when using two features of the dataset. Note that in this case because we
use only two features, the accuracy of linear SVM is not 100%.

[58]: lin_svm_3 = SVC(kernel='linear')

lin_svm_3.fit(X1_train, y1_train)

accuracy = lin_svm_3.score(X1_test, y1_test)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

plot_decision_regions(X1, y1, classifier=lin_svm_3)

The test accuracy is 97.37 %
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[59]: rbf_svm_3 = SVC(kernel='rbf')

rbf_svm_3.fit(X1_train, y1_train)

accuracy = rbf_svm_3.score(X1_test, y1_test)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

plot_decision_regions(X1, y1, classifier=rbf_svm_3)

The test accuracy is 94.74 %
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13.2.3 Logistic Regression

Logistic Regression is one of the most frequently used classifiers, because it is simple and fast, it performs well on
linearly separable data, and it can produce good baseline performance. The name can be confusing, because Logistic
Regression is a classification algorithm, and not a regression algorithm.

The main concept of classification with Logistic Regression is shown in the next figure. Namely, for a set of input
features 𝑥0, 𝑥1, ..., 𝑥𝑚, the algorithm calculates a set of weights 𝑤0, 𝑤1, ..., 𝑤𝑚. The product of the input features and
weights 𝑤𝑇 * 𝑥 is passed through a logistic sigmoid activation function, also simply known as sigmoid function.
The parameters (weights) of Logistic Regression 𝑤0, 𝑤1, ..., 𝑤𝑚 are learned by applying an optimization algorithm
(e.g., gradient descent, or Newton methods), and it can be considered a simple type of neural network with one layer.
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The plot of a sigmoid function is shown on the next graph, for an input 𝑧 = 𝑤𝑇 * 𝑥. The function squeezes all inputs
into the [0,1] range. The output of the sigmoid function can be interpreted as a probability that the data point belongs
to class 1 or 0 in binary classification problems (two classes).

For multiclass classification problems, the softmax function is used as a generalized version of the sigmoid function,
and it outputs the probability that a data point belongs to multiple classes.

Let’s fit a Logistic Regression model to the Iris dataset.

[60]: from sklearn.linear_model import LogisticRegression

lr_model_1 = LogisticRegression()
lr_model_1.fit(X_train, y_train)

accuracy = lr_model_1.score(X_test, y_test)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 97.37 %
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Plot the Decision Boundary

[61]: lr_model_2 = LogisticRegression()

lr_model_2.fit(X1_train, y1_train)

accuracy = lr_model_2.score(X1_test, y1_test)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

plot_decision_regions(X1, y1, classifier=lr_model_2)

The test accuracy is 97.37 %

13.2.4 Decision Trees

Decision trees is a machine learning algorithm based on applying an intuitive way to classify or label objects, by simply
asking a series of questions designed to help the classification. A simple example is shown below, where the decision
tree starts from the root node and splits the data at each next node based on selected features and a threshold value. The
nodes create the branches of the tree.

The total number of times the nodes are split is the depth of the tree. We can typically set a limit for the maximum
depth of the tree. The ending nodes in the tree are called leaf nodes.

Decision trees can be applied for classification and regression of numerical and categorical features. For numerical
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data, the same concept applies, where the tree can split the data based on selected features and threshold values.

To make predictions on new data, we follow the branches from the root node to a leaf node by following the splits based
on the values of the input features. The predicted class is the value associated with the leaf node reached.

Figure source: Refer-
ence [1].

The trick in splitting the nodes is to ask the right questions. In training a decision tree classifier, the algorithm looks at
the data and selects the features and threshold values that contain the most information (i.e., maximize the information
gain). Several splitting criteria are available in scikit-learn. In the following example, criterion='gini' indicates
that the “gini impurity” criterion is used.

Here is an example of training a decision tree classifier in scikit-learn on the Iris dataset.

[62]: from sklearn.tree import DecisionTreeClassifier

tree_model_1 = DecisionTreeClassifier(criterion='gini', max_depth=4)

tree_model_1.fit(X_train, y_train)

tree_pred = tree_model_1.predict(X_test)

accuracy = accuracy_score(y_test, tree_pred)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 89.47 %

Scikit-learn has a function for plotting decision trees. In the plot below, we can see that splitting was done mostly based
on the features X[2] and X[3]. For instance, in the root node if the petal length is < 2.45 cm, then split the node, etc.

[63]: from sklearn import tree

plt.figure(figsize=(8,8))
tree.plot_tree(tree_model_1)
plt.show()
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Plot the Decision Boundary

The decision boundary is shown in the figure below. The decision tree algorithm separates the data by dividing the
space of the input features into rectangles.

One issue with Decision Trees is that it is easy to create trees that overfit the data. That is, such models can fit the
training data almost perfectly, to the point where they begin fitting the noise in the data. This can be seen below for the
decision boundary for the second class.

[64]: tree_model_2 = DecisionTreeClassifier(criterion='gini', max_depth=6)

tree_model_2.fit(X1_train, y1_train)
(continues on next page)
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(continued from previous page)

tree_pred = tree_model_2.predict(X1_test)

accuracy = accuracy_score(y1_test, tree_pred)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

plot_decision_regions(X1, y1, classifier=tree_model_2)

The test accuracy is 94.74 %

One possible way to address overfitting is to use an ensemble method, which essentially averages the results of many
individual estimators that overfit the data. The resulting ensemble estimators are usually more robust and accurate than
the individual estimators which make them up.

One of the most common ensemble methods is Random Forest, in which the ensemble is made up of many decision
trees. This is the topic of the next section.
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13.2.5 Random Forest

As we mentioned, Random Forest uses many decision trees (n_estimators below) to create a more robust model
that has reduced overfitting on the data. Typically, using larger number of estimators results in improved performance,
but increased computational cost.

In the next cell, we used 100 estimators (decision trees). The parameter n_jobs specify the number of CPU cores used
for speeding up the model training by using parallel processing, where different cores can process different decision
trees.

[65]: from sklearn.ensemble import RandomForestClassifier

rf_model_1 = RandomForestClassifier(criterion='gini', n_estimators=100, random_state=1,␣
→˓n_jobs=2)

rf_model_1.fit(X_train, y_train)

rf_pred = rf_model_1.predict(X_test)

accuracy = accuracy_score(y_test, rf_pred)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 97.37 %

Plot the Decision Boundary

[66]: rf_model_2 = RandomForestClassifier(criterion='gini', n_estimators=100, random_state=1,␣
→˓n_jobs=2)

rf_model_2.fit(X1_train, y1_train)

rf_pred = rf_model_2.predict(X1_test)

accuracy = accuracy_score(y1_test, rf_pred)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

plot_decision_regions(X1, y1, classifier=rf_model_2)

The test accuracy is 97.37 %
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13.2.6 Naive Bayes

Naive Bayes are a set of learning algorithms that are based on applying Bayes’ theorem. According to the theorem,
the posterior probability of the class label 𝑦 given input features 𝑥1, . . . , 𝑥𝑛 can be calculated based on the prior prob-
ability of the class 𝑃 (𝑦), the likelihood of the training data given the class label 𝑃 (𝑥1, . . . , 𝑥𝑛 | 𝑦), and the evidence
𝑃 (𝑥1, . . . , 𝑥𝑛).

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) =
𝑃 (𝑦)𝑃 (𝑥1, . . . , 𝑥𝑛 | 𝑦)

𝑃 (𝑥1, . . . , 𝑥𝑛)

This method is called Naive Bayes, because it is based on a “naive” assumption that the input features are independent
given the class label.

The implementation is shown below.

[67]: from sklearn.naive_bayes import GaussianNB

nb_model_1 = GaussianNB()

nb_model_1.fit(X_train, y_train)

nb_pred = nb_model_1.predict(X_test)

(continues on next page)
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(continued from previous page)

accuracy = accuracy_score(y_test, nb_pred)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 97.37 %

Scikit-learn offers several different implementations of Naive Bayes, which differ based on the assumption made about
the distribution of the training data. These include: GaussianNB (typically used with continuous features that have
normal distribution), BernoulliNB (used with binary features), CategoricalNB (used with categorical features), and
MutlinomialNB (used with discrete features that represent counts or frequencies).

13.2.7 Perceptron

Perceptron classification algorithm has similarities to the Logistic Regression classifier, and they are both linear clas-
sifiers that can be seen as a simple one-layer neural network. Both algorithms learn a set of weights and use similar
learning strategies. One difference is that Perceptron uses a step threshold function to output the class prediction, and
Logistic Regression uses a sigmoid logistic function to output the class prediction.

Perceptron outputs a binary class label based on whether the product of input and weights is above or below a certain
threshold. The parameters in Perceptron are updated via a simple learning algorithm. Whenever a misclassification
occurs, the algorithm tries to minimize classification errors.

Perceptron is most suitable for binary classification of linearly separable data.

The following figure depicts classification with Perceptron.

Figure
source: Reference [2].

In the model below, the argument max_iter is the number of epochs (i.e., the number of passes through the training
data), and eta0 is the learning rate of the model.

[68]: from sklearn.linear_model import Perceptron

ppn_model_1 = Perceptron(max_iter=40, eta0=0.1)

ppn_model_1.fit(X_train, y_train)

ppn_pred = ppn_model_1.predict(X_test)

accuracy = accuracy_score(y_test, ppn_pred)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))
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The test accuracy is 65.79 %

This type of learning algorithms require more finetuning of the hyperparameters. One of the most important parameters
is the learning rate (eta0 in this case). Let’s try to change it.

[69]: ppn_model_2 = Perceptron(max_iter=40, eta0=0.001)

ppn_model_2.fit(X_train, y_train)

ppn_pred = ppn_model_2.predict(X_test)

accuracy = accuracy_score(y_test, ppn_pred)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 78.95 %

Although the accuracy improved with different learning rate, the performance is still not very good. One reason may
be because this algorithm is more sensitive to the range of input data, and we may need to scale the training data to
obtain better performance.

Plot the Decision Boundary

[70]: ppn_model_3 = Perceptron(max_iter=40, eta0=0.001)

ppn_model_3.fit(X1_train, y1_train)

ppn_pred = ppn_model_3.predict(X1_test)

accuracy = accuracy_score(y1_test, ppn_pred)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

plot_decision_regions(X1, y1, classifier=ppn_model_3)

The test accuracy is 81.58 %
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13.2.8 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is another popular estimator in scikit-learn. In fact, SGD is an optimization
technique, and it does not correspond to a specific family of machine learning models. In other words, SGD is just an
approach to train a model using stochastic gradient descent to learn an optimal set of model parameters that minimize
a loss function.

SGD in scikit-learn supports several loss functions, and depending on the loss parameters that we select, it is used for
different types of classification tasks. For instance, if we use loss='perceptron' it will be equivalent to solving the
Perceptron algorithm with SGD optimization. Using loss='log' is equivalent to training Logistic Regression with
SGD (note that by default Logistic Regression in scikit-learn uses a different optimization algorithm, called BFGS
algorithm). Similarly, using loss='hinge' corresponds to linear SVM.

[71]: from sklearn.linear_model import SGDClassifier

sgd_model_1 = SGDClassifier(max_iter=80, loss='hinge', random_state=1)

sgd_model_1 .fit(X_train, y_train)

sgd_pred = sgd_model_1 .predict(X_test)

accuracy = accuracy_score(y_test, sgd_pred)
(continues on next page)
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print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 92.11 %

[72]: from sklearn.linear_model import SGDClassifier

sgd_model_2 = SGDClassifier(max_iter=40, loss='perceptron', random_state=1)

sgd_model_2.fit(X_train, y_train)

sgd_pred = sgd_model_2.predict(X_test)

accuracy = accuracy_score(y_test, sgd_pred)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 65.79 %

Similar to Perceptron, SGD is sensitive to feature scaling. And also, scikit-learn offers SGDRegressor for regression
tasks.

7.13.3 13.3 Supervised Learning: Regression

Linear Regression

Estimator functions in scikit-learn are implemented in a very simmilar way as the classification estimators.

For instance, a Linear Regression estimator is imported and implemented in scikit-learn as follows.

[73]: from sklearn.linear_model import LinearRegression

In the following cell, a new instance of a Linear Regression estimator is created, and we named it lr_model.

[74]: lr_model = LinearRegression()

[75]: print(lr_model)

LinearRegression()

Let’s create data for fitting the Linear Regression model. For example, we can create data for a line 2 * x + 1.

[76]: x = np.arange(10)
y = 2 * x + 1

print(x)
print(y)

plt.plot(x, y, 'o')
plt.show()

[0 1 2 3 4 5 6 7 8 9]
[ 1 3 5 7 9 11 13 15 17 19]
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Since the input data in scikit-learn needs to be a 2-dimensional array, we will add a second dimension to X with np.
newaxis.

[77]: # The input data needs to be a 2D array
X = x[:, np.newaxis]
print(X.shape)
print(y.shape)

(10, 1)
(10,)

The next line fits the model to the data.

[78]: # fit the model on our data
lr_model.fit(X, y)

[78]: LinearRegression()

The learned model parameters are shown next.

[79]: # underscore at the end indicates a fit parameter
print(lr_model.coef_)
print(lr_model.intercept_)

[2.]
1.0000000000000053

In linear regression, the goal is to learn a linear model (line) that fits the input data in an optimal way. The estimator has
two parameters: coefficient (the slope of the line) and intercept (the point of interception of the y-axis). The algorithm
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solves the linear regression by minimizing the deviation of the input data from the line.

The two parameters shown in the above cell are correctly estimated, since the data was generated from the line 2 * x
+ 1, and the model found a line with a slope 2 and intercept of approximately 1, as expected.

Linear Regression - Example 2

Let’s look at another example where the data does not come from a straight line.

[80]: # Create data
np.random.seed(0)
X = np.random.random(size=(20, 1))
y = 3 * X.squeeze() + 2 + np.random.randn(20)

plt.plot(X.squeeze(), y, 'o')
plt.show()
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Let’s apply Linear Regression to obtain a new model that fits the data.

[81]: lr_model_2 = LinearRegression()
lr_model_2.fit(X, y)

[81]: LinearRegression()

We can predict the target values y_predicted for given input values X, as with classifier estimators.

[82]: y_predicted = lr_model_2.predict(X)

[83]: plt.plot(X, y, 'o') # plot the training data with circle markers
plt.plot(X, y_predicted) # plot the predicted line
plt.show()
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Regression with Random Forest

Besides Linear Regression, scikit-learn also offers many more sophisticated models for regression. In the next example,
a Random Forest regression model is used to fit the data that we created. The output of the model is non-linear, and
hence, this model fits better the data than the Linear Regression model.

[84]: # Fit a Random Forest
from sklearn.ensemble import RandomForestRegressor
rf_model = RandomForestRegressor()
rf_model.fit(X, y)

X_fit = np.linspace(0, 1, 100)[:, np.newaxis]
y_predicted = rf_model.predict(X_fit)

# Plot the data and the model prediction
plt.plot(X, y, 'o')
plt.plot(X_fit.squeeze(), y_predicted)

[84]: [<matplotlib.lines.Line2D at 0x2194acb6880>]
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7.13.4 13.4 Unsupervised Learning: Clustering

Unsupervised learning algorithms employ data without labels, and often focus on finding similarities or patterns in
the set of samples. Unsupervised learning comprises tasks such as dimensionality reduction, clustering, and density
estimation.

There are also semi-supervised learning approaches, where for example, unsupervised learning can be used to find
informative features in data, and then these features can be used within a supervised learning framework.

Clustering with k-Means

Clustering methods find clusters in the data, i.e., they group together data points that are homogeneous with respect to
a given criterion.

A popular clustering algorithm is k-means clustering, which iteratively calculates distances from data points to centroids
of clusters, until the distances from all data points to the centroids of the clusters are minimized. It employs the
Expectation Maximization approach to cluster the data points.

[85]: from sklearn.cluster import KMeans

k_means = KMeans(n_clusters=3, random_state=0)

k_means.fit(X_train)

y_pred = k_means.predict(X_train)
(continues on next page)
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plt.scatter(X_train[:, 2], X_train[:, 3], c=y_pred, cmap='rainbow');

Here is one more example.

[86]: from sklearn.datasets import make_blobs
# n_samples is number of blobs, centers is number of clusters, cluster_std is the␣
→˓standard deviation of each cluster
X3, y3 = make_blobs(n_samples=300, centers=4, random_state=0, cluster_std=0.60)
plt.scatter(X3[:, 0], X3[:, 1], s=50);
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[87]: k_means_2 = KMeans(n_clusters=4, random_state=0) # 4 clusters
k_means_2.fit(X3)
kmeans_pred = k_means_2.predict(X3)
plt.scatter(X3[:, 0], X3[:, 1], c=kmeans_pred, s=50, cmap='rainbow');
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[88]: k_means_2 = KMeans(n_clusters=3, random_state=0) # 3 clusters
k_means_2.fit(X3)
kmeans_pred = k_means_2.predict(X3)
plt.scatter(X3[:, 0], X3[:, 1], c=kmeans_pred, s=50, cmap='rainbow');
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7.13.5 13.5 Hyperparameter Tuning

During model training, the parameters of the model are updated in an iterative process.

Hyperparameters (tuning parameters) are a set of parameters that control the complexity of the model. For instance, in
k-Nearest Neighbors, the number of nearest neighbors is a hyperparameter of the model. Unlike the model parameters
that are learned during training, hyperparameters are selected (i.e., tuned) by the user. While models such as kNN have
only one or two hyperparameters, other models such as deep neural networks can have many.

Hyperparameter tuning is the process of screening hyperparameter values (or combinations of hyperparameter val-
ues) to find a model that generalizes well to unseen data. The performance of some models (e.g., deep neural networks)
can significantly depend on the value of hyperparameters.

For instance, to find a suitable value for the number of nearest neighbors in kNN, we can write a for-loop to train the
kNN model multiple times and evaluate the performance when the number of nearest neighbors varies from 3 to 15, as
in the next cell. We can see that the best performance is achieved for 3 to 5 neighbors.

[89]: from sklearn.neighbors import KNeighborsClassifier

for n_neighbors in range(3, 15):
knn_model = KNeighborsClassifier(n_neighbors)

knn_model.fit(X_train, y_train)

accuracy = knn_model.score(X_test, y_test)
print('Number of neighbors is {0:}, the test accuracy is {1:5.2f} %'.format(n_

→˓neighbors, accuracy*100)) (continues on next page)
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Number of neighbors is 3, the test accuracy is 97.37 %
Number of neighbors is 4, the test accuracy is 97.37 %
Number of neighbors is 5, the test accuracy is 97.37 %
Number of neighbors is 6, the test accuracy is 94.74 %
Number of neighbors is 7, the test accuracy is 94.74 %
Number of neighbors is 8, the test accuracy is 94.74 %
Number of neighbors is 9, the test accuracy is 94.74 %
Number of neighbors is 10, the test accuracy is 92.11 %
Number of neighbors is 11, the test accuracy is 94.74 %
Number of neighbors is 12, the test accuracy is 94.74 %
Number of neighbors is 13, the test accuracy is 94.74 %
Number of neighbors is 14, the test accuracy is 94.74 %

13.5.1 Grid Search

Scikit-learn offers the function GridSearchCV() for hyperparameter tuning, which searches through different values
of hyperparameters to find the best combination of values based on a used performance metric. The letters CV in the
name of the function stand for cross-validation, which is explained in the next section.

When there are several hyperparameters to tune, doing it manually can take time and resources, and functions like
GridSearchCV can help to automate the tuning of hyperparameters.

In the cell below, we can see that GridSearchCV() takes as arguments the model, a grid of hyperparameter values
named hyper_grid, and a scoring function (in this case accuracy). It will loop through the predefined values for the
hyperparameters in the grid and fit the model for each predefined value. Based on the scoring function, it will find the
best values from the listed hyperparameters.

[90]: from sklearn.model_selection import GridSearchCV

knn_model = KNeighborsClassifier()

# Create grid of hyperparameter values
hyper_grid = {'n_neighbors': [3, 6, 9, 12]}

# Tune a knn model using grid search
grid_search = GridSearchCV(knn_model, hyper_grid, scoring='accuracy')
results = grid_search.fit(X_train, y_train)

The best accuracy score on the training dataset and best value of the hyperparameters are attributes of the results
from the grid search.

[91]: results.best_score_

[91]: 0.9557312252964426

[92]: results.best_params_

[92]: {'n_neighbors': 3}

And, we can check the accuracy on the test set as well to confirm that the results are consistent with the accuracies in
the previous section.
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[93]: accuracy = grid_search.score(X_test, y_test)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 97.37 %

One more example is shown below, where a Support Vector Machines Classifier is used with the same dataset, and
grid search is performed over two hyperparameters: C is a regularization value, and kernel is the kernel type. The
function searches over all combinations of the two hyperparameters, and the best accuracy is achieved for C=0.1 and
kernel='linear'.

[94]: from sklearn.svm import SVC

svc_model = SVC()

hyper_grid = {'C': [0.01, 0.1, 1.0, 10.0, 100.0],
'kernel': ['linear', 'rbf', 'poly']}

grid_search = GridSearchCV(svc_model, hyper_grid, scoring='accuracy')
results = grid_search.fit(X_train, y_train)

print('Accuracy:',results.best_score_)
print('Hyperparameters:', results.best_params_)

Accuracy: 0.9739130434782609
Hyperparameters: {'C': 1.0, 'kernel': 'poly'}

[95]: accuracy = grid_search.score(X_test, y_test)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 97.37 %

13.5.2 Random Search

However, a Cartesian grid search approach performed by GridSeachCV() has limitations, because it does not scale
well when the number of hyperparameters to tune is high. Random search based on hyperparameter distributions is
another approach for hyperparameter tuning which has often demonstrated better performance than grid search.
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Figure source: Refer-
ence [4].

An example of using Random Search with the SVM classifier is shown next where we used the function
RandomizedSearchCV(). Unlike the grid search, in this case, the distribution of the hyperparameter C is speci-
fied, as a uniform distribution with values between 0.01 and 100. Also, in the RandomizedSearchCV() we need to
provide the number of samples for the hyperparameter from the distribution via the n_iter argument.

[96]: from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform, randint

svc_model = SVC()

# specify hyperparameter distributions to randomly sample from
hyper_distributions = {'C': uniform(0.01, 100)}

random_search = RandomizedSearchCV(svc_model, hyper_distributions, n_iter=40, scoring=
→˓'accuracy')
results = random_search.fit(X_train, y_train)

print('Accuracy:',results.best_score_)
print('Hyperparameters:', results.best_params_)

Accuracy: 0.9735177865612649
Hyperparameters: {'C': 29.838232595603078}

[97]: accuracy = random_search.score(X_test, y_test)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 100.00 %

One more example of a random search is shown with a Random Forest classifier. Random Forests can have several
hyperparameters, and here we considered the number of trees in the forest with n_estimators, maximum depth of
the trees is max_depth, and the minimum number of samples required in a leaf node is min_samples_leaf. These
hyperparameters are sampled from a uniform distribution of integers, with the ranges of values defined for each hy-
perparameter using the function randint(). For this case, a standard grid search would be more computationally
expensive.
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[98]: from sklearn.ensemble import RandomForestClassifier

rf_model = RandomForestClassifier(random_state=123)

# specify hyperparameter distributions to randomly sample from
hyper_distributions = {

'n_estimators': randint(20, 100),
'max_depth': randint(4, 20),
'min_samples_leaf': randint(1, 100),

}

random_search_2 = RandomizedSearchCV(rf_model, hyper_distributions, n_iter=20, scoring=
→˓'accuracy')
results = random_search_2.fit(X_train, y_train)

print('Accuracy:',results.best_score_)
print('Hyperparameters:', results.best_params_)

Accuracy: 0.9466403162055336
Hyperparameters: {'max_depth': 10, 'min_samples_leaf': 10, 'n_estimators': 80}

[99]: accuracy = random_search_2.score(X_test, y_test)
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))

The test accuracy is 97.37 %

7.13.6 13.6 Cross-Validation

So far, we adopted a strategy to split our data into training and testing sets, and we assessed the performance of our
model on the test set. Unfortunately, there are a few pitfalls to this approach:

1. If our dataset is small, a single test set may not provide an adequate measure of the model’s performance on
unseen data.

2. A single test set does not provide insights regarding the variability of the model’s performance.

An alternative strategy is to use a resampling method, where we can repeatedly fit a model to parts of the training data
and test its performance on other parts of the training data. This allows us to train and validate our model entirely on
the training data and not touch the test data until we have selected a final “optimal” model. The two most commonly
used resampling methods include k-fold cross-validation and bootstrap sampling. This section focuses on k-fold
cross-validation.

13.6.1 K-Fold Cross-Validation

Cross-validation involves repeating the training and testing procedure so that the training and testing sets are different
each time. The values of the performance metrics are collected for each repetition and then aggregated. This allows to
obtain an estimate of the variability of the model’s performance.

k-fold cross-validation is a resampling method that randomly divides the training data into k groups (referred to as
folds) of approximately equal size.

First, the model is fit on 𝑘 − 1 folds and then the remaining fold is used to compute the model’s performance. This
procedure is repeated k times; each time, a different fold is treated as the validation set. This process results in 𝑘
estimates of the accuracy, and the overall accuracy is calculated by averaging the 𝑘 estimates.
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Figure source: Reference [4].

In scikit-learn, the function cross_validate allows us to perform cross-validation, and we need to pass to it the
model, the data, the target, and the number of folds with cv.

In practice, it is most common to use k=5 or k=10.

[100]: from sklearn.model_selection import cross_validate

rf_model = RandomForestClassifier(n_estimators=56, max_depth=9, min_samples_leaf=3,␣
→˓random_state=123)

cv_result = cross_validate(rf_model, X_train, y_train, cv=5)
cv_result

[100]: {'fit_time': array([0.05299497, 0.05299735, 0.09700108, 0.39899945, 0.17099905]),
'score_time': array([0.00500154, 0.00400066, 0.04000068, 0.03599882, 0.0049994 ]),
'test_score': array([0.86956522, 1. , 0.86363636, 0.95454545, 1. ])}

The output of cross_validate is a Python dictionary (named cv_rsults in our case), which by default contains
three entries:

• fit_time: the time to train the model on the training data for each fold.

• score_time: the time to predict with the model on the testing data for each fold.

• test_score: the score (such as accuracy) on the testing data for each fold.

In the next cell, we displayed the mean and standard deviation of the accuracy for the five folds, by using the values for
the 'test_score' key in the resulting dictionary.

[101]: scores = cv_result["test_score"]
print("The mean cross-validation accuracy is: "

f"{scores.mean():.3f} +/- {scores.std():.3f}")

The mean cross-validation accuracy is: 0.938 +/- 0.060

And optionally, we can manually perform k-fold cross-validation by using a for-loop and feed the folds for training and
testing. In the code below train and test are the indices of the elements in each fold.

[102]: from sklearn.model_selection import StratifiedKFold

(continues on next page)
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kfold = StratifiedKFold(n_splits=5).split(X_train, y_train)

scores = []
for k, (train, test) in enumerate(kfold):

rf_model.fit(X_train[train], y_train[train])
accuracy_score = rf_model.score(X_train[test], y_train[test])
scores.append(accuracy_score)
print('Fold: %2d, Class dist.: %s, Acc: %.3f' % (k+1,

np.bincount(y_train[train]), accuracy_score))

print('\nCV accuracy: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))

Fold: 1, Class dist.: [30 30 29], Acc: 0.870
Fold: 2, Class dist.: [30 30 29], Acc: 1.000
Fold: 3, Class dist.: [30 30 30], Acc: 0.864
Fold: 4, Class dist.: [31 29 30], Acc: 0.955
Fold: 5, Class dist.: [31 29 30], Acc: 1.000

CV accuracy: 0.938 +/- 0.060

7.13.7 13.7 Performance Metrics

In the above examples, we worked only with accuracy as a performance metric, but other metrics that are also frequently
used with prediction models.

We will use the breast cancer dataset to explain the metrics. The dataset consists of diagnoses for 569 patients, and
includes 30 features for each patient, which are shown below. The targets are the benign or malignant class, shown in
the column target to the right.

[103]: import pandas as pd
from sklearn.datasets import load_breast_cancer

bc = load_breast_cancer()
df = pd.DataFrame(data=bc.data, columns=bc.feature_names)
df["target"] = bc.target
df.head()

[103]: mean radius mean texture mean perimeter mean area mean smoothness \
0 17.99 10.38 122.80 1001.0 0.11840
1 20.57 17.77 132.90 1326.0 0.08474
2 19.69 21.25 130.00 1203.0 0.10960
3 11.42 20.38 77.58 386.1 0.14250
4 20.29 14.34 135.10 1297.0 0.10030

mean compactness mean concavity mean concave points mean symmetry \
0 0.27760 0.3001 0.14710 0.2419
1 0.07864 0.0869 0.07017 0.1812
2 0.15990 0.1974 0.12790 0.2069
3 0.28390 0.2414 0.10520 0.2597
4 0.13280 0.1980 0.10430 0.1809

mean fractal dimension ... worst texture worst perimeter worst area \
(continues on next page)
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0 0.07871 ... 17.33 184.60 2019.0
1 0.05667 ... 23.41 158.80 1956.0
2 0.05999 ... 25.53 152.50 1709.0
3 0.09744 ... 26.50 98.87 567.7
4 0.05883 ... 16.67 152.20 1575.0

worst smoothness worst compactness worst concavity worst concave points \
0 0.1622 0.6656 0.7119 0.2654
1 0.1238 0.1866 0.2416 0.1860
2 0.1444 0.4245 0.4504 0.2430
3 0.2098 0.8663 0.6869 0.2575
4 0.1374 0.2050 0.4000 0.1625

worst symmetry worst fractal dimension target
0 0.4601 0.11890 0
1 0.2750 0.08902 0
2 0.3613 0.08758 0
3 0.6638 0.17300 0
4 0.2364 0.07678 0

[5 rows x 31 columns]

[104]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 mean radius 569 non-null float64
1 mean texture 569 non-null float64
2 mean perimeter 569 non-null float64
3 mean area 569 non-null float64
4 mean smoothness 569 non-null float64
5 mean compactness 569 non-null float64
6 mean concavity 569 non-null float64
7 mean concave points 569 non-null float64
8 mean symmetry 569 non-null float64
9 mean fractal dimension 569 non-null float64
10 radius error 569 non-null float64
11 texture error 569 non-null float64
12 perimeter error 569 non-null float64
13 area error 569 non-null float64
14 smoothness error 569 non-null float64
15 compactness error 569 non-null float64
16 concavity error 569 non-null float64
17 concave points error 569 non-null float64
18 symmetry error 569 non-null float64
19 fractal dimension error 569 non-null float64
20 worst radius 569 non-null float64
21 worst texture 569 non-null float64
22 worst perimeter 569 non-null float64

(continues on next page)
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23 worst area 569 non-null float64
24 worst smoothness 569 non-null float64
25 worst compactness 569 non-null float64
26 worst concavity 569 non-null float64
27 worst concave points 569 non-null float64
28 worst symmetry 569 non-null float64
29 worst fractal dimension 569 non-null float64
30 target 569 non-null int32
dtypes: float64(30), int32(1)
memory usage: 135.7 KB

[105]: df['target'].value_counts()

[105]: 1 357
0 212
Name: target, dtype: int64

There are 357 patients with malignant tumors, and 212 patients with benign tumors. Let’s create train and test datasets.

[106]: X = df.drop('target', axis=1)
y = df['target']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0,␣
→˓stratify=y)

[107]: print('Training data inputs', X_train.shape)
print('Training labels', y_train.shape)
print('Testing data inputs', X_test.shape)
print('Testing labels', y_test.shape)

Training data inputs (398, 30)
Training labels (398,)
Testing data inputs (171, 30)
Testing labels (171,)

A Logistic Regression model achieved 92.98% accuracy.

[108]: lr_model = LogisticRegression()

# fit model
lr_model.fit(X_train, y_train)

# accuracy
lr_model.score(X_test, y_test)

[108]: 0.935672514619883

[109]: from sklearn.metrics import confusion_matrix

y_pred = lr_model.predict(X_test)

confmat = confusion_matrix(y_test, y_pred, labels=[1, 0])
print(confmat)
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[[101 6]
[ 5 59]]

The confusion matrix can be interpreted as the values of positives and negatives, if there are only two classes (binary
classification). For the case of breast cancer they mean:

• True Positive (TP): Predicted malignant, actually malignant (positive). There are 101 TP samples in this case.

• True Negative (TN): Predicted benign, actually benign (negative). There are 59 TN samples in this case.

• False Negative (FN): Predicted benign, actually malignant (positive). There are 6 FN samples in this case.

• False Positive (FP): Predicted malignant, actually benign (negative). There are 5 FP samples in this case.

Obviously, correctly guessing TP and TN is the goal. Other than that, FN is the worst case, because it means that a
malignant tumor is missed. FP is also bad, because it will require to perform biopsy and will put stress on the patient,
but the outcome is still preferred.

Figure source: Reference [2].

The following performance metrics are commonly used.

Accuracy = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃 ), or it is the fraction of correct predictions by the model among
all available samples. In this case it is (101 + 59)/(101 + 6 + 5 + 59) = 160/171 = 0.9357.

Precision = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 ), or it is the fraction of correct positive predictions by the model among all positive
predictions by the model. In this case it is 101/(101 + 5) = 101/106 = 0.9528. Or, you can think of precision as,
from all patients that the model predicted to have malignant tumors, how many patients have malignant tumors.

Recall = 𝑇𝑃/(𝑇𝑃 +𝐹𝑁), or it is the fraction of all positive predictions by the model from all positive samples in the
data. In this case it is 101/(101 + 6) = 101/107 = 0.9439. Or, you can think of recall as, from all patients that have
malignant tumors, how many patients the model predicted that have malignant tumors. In binary classification, recall
is also called sensitivity or true positive rate.

Specificity = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃 ), or it is the fraction of all negative predictions by the model from all negative samples
in the data. In this case it is 59/(59 + 5) = 59/64 = 0.9219. Or, you can think of specificity as, from all patients that
have benign tumors, how many patients the model predicted that have benign tumors. Specificity is also called true
negative rate.

F1 score = (2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙), is a measure which combines the precision and recall, and
it is also called harmonic mean of precision and recall. F1 score is considered as a more suitable metric than accuracy
in cases when the dataset is unbalanced, that is, there are more samples from one class than the other class (or classes).
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In scikit-learn, we can obtain the individual metrics as follows.

[110]: from sklearn import metrics

print(metrics.precision_score(y_test, y_pred))
print(metrics.recall_score(y_test, y_pred))
print(metrics.f1_score(y_test, y_pred))

0.9528301886792453
0.9439252336448598
0.948356807511737

Also, the function classification_report prints the precision, recall, f1-score, and accuracy for all classes. The
reported averages include macro average accuracy (averaging the accuracy per each class), and weighted average
(averaging the accuracy by using weights for each class based on the proportions of samples in each class). The suuport
column shows the number of samples, i.e., rom the 171 samples in the test dataset, there are 64 benign and 107 malignant
cases.

[111]: # multiple metrics at once
print(metrics.classification_report(y_test, y_pred))

precision recall f1-score support

0 0.91 0.92 0.91 64
1 0.95 0.94 0.95 107

accuracy 0.94 171
macro avg 0.93 0.93 0.93 171

weighted avg 0.94 0.94 0.94 171

And one more commonly used metric in binary classification is Receiver Operating Characteristic (ROC). ROC
curves are created by plotting the False Positive Rate (= 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)) on the x-axis and True Positive Rate (=
𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), or sensitivity, racall) on the y-axis. The curve summarizes the trade-off between the True Positive
Rate and False Positive Rate of the model using different probability thresholds.

So far, we only used a threshold of 0.5, where predictions greater or equal to it are assigned the class label 1, and
predictions smaller than 0.5 are assigned the class label 0. In binary classification, using different thresholds for the
probability in predicting the class label of a data point changes the True Positive Rate and False Positive Rate. By
changing the threshold value from 0 to 1 we can obtain many different points with True Positive Rate and False Positive
Rate, and by connecting the different points we can plot the ROC curve. The curve allows to better interpret the results
of the classifier.
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In a ROC curve, the top left corner of the plot is the ideal point - with a False Positive Rate of 0, and a True Positive
Rate of 1. In general, a higher x-value indicates higher number of False Positives than True Negatives, and a higher
y-value indicates higher number of True Positives than False Negatives.

The plot below shows the ROC curve for the Logistic Regression model. It also shows a line for a model that makes
random predictions. The further the curve from the line with random prediction, the better the model predictions are.

[112]: # output probabilities for each sample
y_pred_probabilities = lr_model.predict_proba(X_test)

[113]: from sklearn.metrics import roc_curve

# output probabilities for each sample
y_pred_probabilities = lr_model.predict_proba(X_test)

# calculate FPR and TRP
fpr, tpr, _ = roc_curve(y_test, y_pred_probabilities[:,1])

# roc curve for tpr = fpr
random_probs = [0 for i in range(len(y_test))]
p_fpr, p_tpr, _ = roc_curve(y_test, random_probs)

plt.plot(fpr, tpr, linestyle='--', color='orange', label='Logistic Regression')
plt.plot(p_fpr, p_tpr, linestyle='--', color='blue', label='Random Prediction')
plt.title('ROC curve')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive rate')
plt.legend(loc='best')
plt.show()
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The Area Under the Curve (AUC) of ROC (AUC-ROC) is the measure of the ability of a classifier to distinguish
between classes and is used as a summary of the ROC curve. The higher the AUC, the better the performance of the
model at distinguishing between the positive and negative classes. When AUC = 1, the classifier is able to perfectly
predict the classes. When AUC = 0.5, the classifier is making random predictions of the class for the data points.

In scikit-learn, AUC-ROC is calculated using the auc_roc_score.

[114]: metrics.roc_auc_score(y_test, y_pred)

[114]: 0.9329001168224299

7.13.8 13.8 Model Pipelines

We can combine sequential operations with a scikit-learn Pipeline, which chains together operations. The helper
function make_pipeline is used to create a Pipeline, and takes as arguments the successive transformations to
perform, followed by the classifier or regressor model.

Let’s create one pipeline consisting of a Standard Scaler function and a Logistic Regression classifier, and another
pipeline consisting of a MinMax Scaler function and a Random Forest classifier.

[115]: from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler, MinMaxScaler

(continues on next page)
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pipeline_ss_lr = make_pipeline(StandardScaler(), LogisticRegression())
pipeline_ns_rf = make_pipeline(MinMaxScaler(), RandomForestClassifier())

Apply the first pipeline to perform data scaling via standardization and afterward fit the Logistic Regression model to
the data.

[116]: # apply the pipeline
pipeline_ss_lr.fit(X_train, y_train)

# score on the test data
accuracy = pipeline_ss_lr.score(X_test, y_test)
print('The test accuracy of Logistic Regression is {0:5.2f} %'.format(accuracy*100))

The test accuracy of Logistic Regression is 95.91 %

Apply the second pipeline to perform data scaling via normalization and afterward fit the Random Forest model to the
data.

[117]: # apply the pipeline
pipeline_ns_rf.fit(X_train, y_train)

# score on the test data
accuracy = pipeline_ns_rf.score(X_test, y_test)
print('The test accuracy of Random Forests is {0:5.2f} %'.format(accuracy*100))

The test accuracy of Random Forests is 93.57 %

7.13.9 13.9 Flow Chart: How to Choose an Estimator

This is a flow chart created by the scikit-learn contributor Andreas Mueller that gives a nice summary of which algo-
rithms to choose in various situations.
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Recap: Scikit-learn’s Estimator Interface

Scikit-learn strives to have a uniform interface across all methods, as we saw in the examples. Given a scikit-learn
estimator object named model, the following methods are available:

• Available in all estimators

– model.fit(): fit training data. For supervised learning applications, this accepts two arguments: the data
X and the labels y (e.g. model.fit(X, y)). For unsupervised learning applications, this accepts only a
single argument, the data X (e.g. model.fit(X)).

• Available in supervised estimators

– model.predict(): given a trained model, predict the label of a new set of data. This method accepts one
argument, the new data X_new (e.g. model.predict(X_new)), and returns the learned label for each item
in the array.

– model.predict_proba(): For classification tasks, some estimators also provide this method, which re-
turns the probability that a new sample has for each category. In this case, the label with the highest
probability is returned by model.predict().

– model.score(): for classification or regression tasks, most estimators implement a score method. Scores
are between 0 and 1, with a larger score indicating a better fit.

• Available in unsupervised estimators

– model.predict(): predict labels in clustering algorithms.

– model.transform(): given an unsupervised model, transform new data into a new basis. This also
accepts one argument X_new, and returns the new representation of the data based on the unsupervised
model.
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– model.fit_transform(): some estimators implement this method, which more efficiently performs a fit
and a transform on the same input data.

7.13.10 Appendix

The material in the Appendix is not required for quizzes and assignments.

Application Example: Optical Character Recognition

To demonstrate the above principles on a more interesting problem, let’s consider OCR (Optical Character Recognition)
– that is, recognizing hand-written digits. Here, we will use scikit-learn’s set of pre-formatted digits, which can be
loaded directly with load_digits().

Loading and visualizing the digits data

We’ll use scikit-learn’s data access interface and take a look at this data:

[118]: from sklearn import datasets
digits = datasets.load_digits()
digits.images.shape

[118]: (1797, 8, 8)

Let’s plot a few images and show the ground-truth label in the lower left corner.

[119]: import numpy as np
import matplotlib.pyplot as plt

fig, axes = plt.subplots(10, 10, figsize=(8, 8))
fig.subplots_adjust(hspace=0.1, wspace=0.1)

for i, ax in enumerate(axes.flat):
ax.imshow(digits.images[i], cmap='binary')
ax.text(0.05, 0.05, str(digits.target[i]),

transform=ax.transAxes, color='green')
ax.set_xticks([])
ax.set_yticks([])
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The images are just 8x8 pixels.

[120]: # The images themselves
print(digits.images.shape)
print(digits.images[0])

(1797, 8, 8)
[[ 0. 0. 5. 13. 9. 1. 0. 0.]
[ 0. 0. 13. 15. 10. 15. 5. 0.]
[ 0. 3. 15. 2. 0. 11. 8. 0.]
[ 0. 4. 12. 0. 0. 8. 8. 0.]
[ 0. 5. 8. 0. 0. 9. 8. 0.]
[ 0. 4. 11. 0. 1. 12. 7. 0.]

(continues on next page)
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[ 0. 2. 14. 5. 10. 12. 0. 0.]
[ 0. 0. 6. 13. 10. 0. 0. 0.]]

Because scikit-learn uses two-dimensional inputs, the images has been reshaped from 8x8 pixels into one long vector
of 64 elements.

[121]: # The data for use in our algorithms
print(digits.data.shape)
print(digits.data[0])

(1797, 64)
[ 0. 0. 5. 13. 9. 1. 0. 0. 0. 0. 13. 15. 10. 15. 5. 0. 0. 3.
15. 2. 0. 11. 8. 0. 0. 4. 12. 0. 0. 8. 8. 0. 0. 5. 8. 0.
0. 9. 8. 0. 0. 4. 11. 0. 1. 12. 7. 0. 0. 2. 14. 5. 10. 12.
0. 0. 0. 0. 6. 13. 10. 0. 0. 0.]

[122]: # The target label
print(digits.target)

[0 1 2 ... 8 9 8]

The data have 1797 samples having 64 dimensions (features).

Classification on Digits

Let’s first split the digits into a training and testing sample.

[123]: Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target, random_
→˓state=2)
print(Xtrain.shape, Xtest.shape)

(1347, 64) (450, 64)

And, we will use a simple Logistic Regression as a classification algorithm.

[124]: from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty='l2')
clf.fit(Xtrain, ytrain)
ypred = clf.predict(Xtest)

[125]: from sklearn.metrics import accuracy_score
accuracy_score(ytest, ypred)

[125]: 0.9466666666666667

[126]: from sklearn.metrics import confusion_matrix
print(confusion_matrix(ytest, ypred))

[[41 0 0 0 1 0 0 0 0 0]
[ 0 46 0 1 0 0 0 0 2 1]
[ 0 0 47 0 0 0 0 0 0 0]
[ 0 0 0 44 0 1 0 1 2 0]
[ 0 0 0 0 36 0 0 0 3 1]

(continues on next page)
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[ 0 1 0 0 1 50 0 0 0 0]
[ 0 1 0 0 0 0 41 0 1 0]
[ 0 0 0 0 0 0 0 48 1 0]
[ 0 0 0 0 0 0 0 0 39 1]
[ 0 0 0 2 0 1 0 0 2 34]]

We can plot the confusion matrix as an image.

[127]: plt.imshow(np.log(confusion_matrix(ytest, ypred)),
cmap='Blues', interpolation='nearest')

plt.grid(False)
plt.ylabel('true')
plt.xlabel('predicted');

We can also look at some of the images along with their predicted labels. The incorrect labels are in red color.

[128]: fig, axes = plt.subplots(10, 10, figsize=(8, 8))
fig.subplots_adjust(hspace=0.1, wspace=0.1)

for i, ax in enumerate(axes.flat):
ax.imshow(Xtest[i].reshape(8, 8), cmap='binary')
ax.text(0.05, 0.05, str(ypred[i]),

transform=ax.transAxes,
color='green' if (ytest[i] == ypred[i]) else 'red')

ax.set_xticks([])
(continues on next page)
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ax.set_yticks([])

In fact, some of the mislabeled cases with this simple logistic regression algorithm are difficult to classify even for us.
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7.14.1 14.1 Ensemble Methods

Ensemble methods combine the predictions of several other machine learning models, where by aggregating the results
of the other models trained on the same dataset, ensembles can typically achieve better performance than any individual
model. The individual models are often referred to as base models or base learners.

When we introduced scikit-learn we mentioned that Random Forest is an example of an ensemble model, since it
combines a multitude of Decision Tree models to make predictions.

Ensembles are one of the most powerful Machine Learning methods, and they are often used in the winning solutions
in many Machine Learning competitions.
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Ensemble methods can be used for different learning tasks, including classification and regression. In this lecture, we
will focus on ensemble classifiers.

Ensemble models are classified into four general groups:

• Voting Methods: make predictions based on majority voting of the individual models.

• Bagging Methods: train individual models on random subsets of the training data.

• Boosting Methods: train individual models sequentially by learning from the errors. Examples are Gradient
Boosting, XGBoost, LightGBM, CatBoost, and AdaBoost.

• Stacking Methods: train individual models, and use another model to aggregate their predictions.

Most of the above ensemble methods are implemented in scikit-learn, except for XGBoost, LightGBM, and CatBoost.

14.1.1 Loading the Dataset

To demonstrate the working principles of ensemble methods, we will use a dataset of electricity usage in New South
Wales, Australia. In that market, electricity prices are not fixed and they are set every five minutes based on demand
and supply of the market.

We will train classifiers to predict whether the electricity price will go UP or DOWN the next time the price is set.

The dataset contains 45,312 rows of data from May 7, 1996 to December 5, 1998. Each row of the dataset refers to a
period of 30 minutes. It has information about the date and day of the week, and has other features related to electricity
demand, schedule transfer, etc.

Let’s load the dataset electricity_data using pandas.

[1]: import numpy as np
import pandas as pd
import seaborn as sns
import sklearn
import matplotlib.pyplot as plt

# Let's hide warning messages in the cells
import warnings
warnings.filterwarnings('ignore')

[2]: elec_df = pd.read_csv('data/electricity_data.csv')

Let’s inspect the dataset. The date column does not show the actual date correctly, but we will use it as is, because the
date has already been encoded into an adequate numerical format.

The class column contains the target labels for the classification task, where we would like to predict whether the
electricity price will go UP or DOWN.

[3]: elec_df.head(10)

[3]: date day period nswprice nswdemand vicprice vicdemand transfer \
0 0.0 2 0.000000 0.056443 0.439155 0.003467 0.422915 0.414912
1 0.0 2 0.021277 0.051699 0.415055 0.003467 0.422915 0.414912
2 0.0 2 0.042553 0.051489 0.385004 0.003467 0.422915 0.414912
3 0.0 2 0.063830 0.045485 0.314639 0.003467 0.422915 0.414912
4 0.0 2 0.085106 0.042482 0.251116 0.003467 0.422915 0.414912
5 0.0 2 0.106383 0.041161 0.207528 0.003467 0.422915 0.414912
6 0.0 2 0.127660 0.041161 0.171824 0.003467 0.422915 0.414912

(continues on next page)
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7 0.0 2 0.148936 0.041161 0.152782 0.003467 0.422915 0.414912
8 0.0 2 0.170213 0.041161 0.134930 0.003467 0.422915 0.414912
9 0.0 2 0.191489 0.041161 0.140583 0.003467 0.422915 0.414912

class
0 UP
1 UP
2 UP
3 UP
4 DOWN
5 DOWN
6 DOWN
7 DOWN
8 DOWN
9 DOWN

Exploratory Data Analysis

[4]: elec_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45312 entries, 0 to 45311
Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 45312 non-null float64
1 day 45312 non-null int64
2 period 45312 non-null float64
3 nswprice 45312 non-null float64
4 nswdemand 45312 non-null float64
5 vicprice 45312 non-null float64
6 vicdemand 45312 non-null float64
7 transfer 45312 non-null float64
8 class 45312 non-null object
dtypes: float64(7), int64(1), object(1)
memory usage: 3.1+ MB

From the summary statistics below, we can tell that the maximum value in each column is 1 and the minimum is 0,
meaning that the features are already normalized, so we don’t need to apply data scaling. This does not apply to the
day column that has values between 1 and 7 (i.e., Monday to Sunday), but we can leave that column as is.

[5]: # summary statistics
elec_df.describe()

[5]: date day period nswprice nswdemand \
count 45312.000000 45312.000000 45312.000000 45312.000000 45312.000000
mean 0.499080 4.003178 0.500000 0.057868 0.425418
std 0.340308 1.998695 0.294756 0.039991 0.163323
min 0.000000 1.000000 0.000000 0.000000 0.000000
25% 0.031934 2.000000 0.250000 0.035127 0.309134
50% 0.456329 4.000000 0.500000 0.048652 0.443693

(continues on next page)
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75% 0.880547 6.000000 0.750000 0.074336 0.536001
max 1.000000 7.000000 1.000000 1.000000 1.000000

vicprice vicdemand transfer
count 45312.000000 45312.000000 45312.000000
mean 0.003467 0.422915 0.500526
std 0.010213 0.120965 0.153373
min 0.000000 0.000000 0.000000
25% 0.002277 0.372346 0.414912
50% 0.003467 0.422915 0.414912
75% 0.003467 0.469252 0.605702
max 1.000000 1.000000 1.000000

[6]: # Checking missing values
elec_df.isnull().sum()

[6]: date 0
day 0
period 0
nswprice 0
nswdemand 0
vicprice 0
vicdemand 0
transfer 0
class 0
dtype: int64

Let’s see how many UPs and DOWNs are in the class column.

[7]: plt.figure(figsize=(4,4))
sns.countplot(data=elec_df, x='class')

[7]: <Axes: xlabel='class', ylabel='count'>
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Let’s also inspect the UPs and DOWNs of the electricity price for each day of the week.

[8]: plt.figure(figsize=(12,4))
sns.countplot(data=elec_df, x='day', hue='class')
plt.show()

We can also plot all histograms of the numerical features, and quickly check the plots.

[9]: elec_df.hist(bins=50, figsize=(15,10))
plt.show()
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Data Preprocessing

We will assign the data to the variable X and the targets (the column class) to y.

Recall again from the lecture on Data Exploration and Preprocessing that if the dataset contained an index column it
would be important to remove that column from the training dataset X, to avoid associating the target labels with the
indices of the rows by the model. This dataset does not have an index column, therefore we don’t need to worry about
that.

[10]: X = elec_df.drop('class', axis=1)
y = elec_df['class']

Since the target feature class is categorical, let’s encode it to numerical values using Label Encoder.

[11]: from sklearn.preprocessing import LabelEncoder

label_enc = LabelEncoder()
y = label_enc.fit_transform(y)

[12]: y

[12]: array([1, 1, 1, ..., 0, 1, 0])

And let’s split the data into training and test sets.
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[13]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_
→˓state=20)

[14]: print('Training data inputs', X_train.shape)
print('Training labels', y_train.shape)
print('Testing data inputs', X_test.shape)
print('Testing labels', y_test.shape)

Training data inputs (33984, 8)
Training labels (33984,)
Testing data inputs (11328, 8)
Testing labels (11328,)

As we mentioned previously, the data values are already scaled to the range [0, 1], therefore we don’t need to apply
feature scaling. If that was not the case, we would have applied one of the Scaler functions in scikit-learn.

7.14.2 14.2 Voting Ensemble

Voting ensemble is the simplest ensemble technique, which aggregates the predictions of several individual classifiers
and assigns the predicted class labels based on the majority votes of the single classifiers.

For example, if we have a dataset with two classes A and B, and we train three classifiers. Then, for one particular test
sample:

• Classifier 1 predicts class A

• Classifier 2 predicts class B

• Classifier 3 predicts class B

• Ensemble majority voting is: class B (2 votes), class A (1 vote). The prediction by the Ensemble Method is:
class B.

Let’s first train 3 classifiers on the training data for electricity_data, including: Logistic Regression, Support
Vector Machines, and SGD. Afterward, we will apply a voting ensemble that uses their results to make predictions.

[15]: from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

lr_model = LogisticRegression()

# train
lr_model.fit(X_train, y_train)

# evaluate
lr_preds = lr_model.predict(X_test)
lr_acc = accuracy_score(y_test, lr_preds)
print('Logistic Regression accuracy is {0:7.4f} %'.format(lr_acc*100))

Logistic Regression accuracy is 75.5297 %

[16]: from sklearn.svm import SVC

(continues on next page)
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svm_model = SVC(random_state=1)

# train
svm_model.fit(X_train, y_train)

# evaluate
svm_preds = svm_model.predict(X_test)
svm_acc = accuracy_score(y_test, svm_preds)
print('SVM accuracy is {0:7.4f} %'.format(svm_acc*100))

SVM accuracy is 73.6935 %

[17]: from sklearn.linear_model import SGDClassifier

sgd_model = SGDClassifier(random_state=1)

# train
sgd_model.fit(X_train, y_train)

# evaluate
sgd_preds = sgd_model.predict(X_test)
sgd_acc = accuracy_score(y_test, sgd_preds)
print('SGD accuracy is {0:7.4f} %'.format(sgd_acc*100))

SGD accuracy is 75.3708 %

[18]: print('Accuracy: Logistic Regression {0:7.4f}; SVM {1:7.4f}; SGD {2:7.4f}'.format(lr_
→˓acc*100, svm_acc*100, sgd_acc*100))

Accuracy: Logistic Regression 75.5297; SVM 73.6935; SGD 75.3708

In scikit-learn we will import Voting Classifier to aggregate the results of those 3 classifiers. In the cell below, the
models are listed in the estimators argument of the Voting Classifier, and afterward the Voting Classifier
model is fit on the training data. The voting argument hard means that the ensemble algorithm uses the predicted class
labels for majority voting.

[19]: from sklearn.ensemble import VotingClassifier

voting_classifier = VotingClassifier(

estimators=[('log_reg', lr_model),
('svc', svm_model),
('sgd', sgd_model)],

voting='hard')

voting_classifier.fit(X_train, y_train)

[19]: VotingClassifier(estimators=[('log_reg', LogisticRegression()),
('svc', SVC(random_state=1)),
('sgd', SGDClassifier(random_state=1))])

[20]: # evaluate
voting_preds = voting_classifier.predict(X_test)

(continues on next page)
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voting_acc = accuracy_score(y_test, voting_preds)
print('Voting Ensemble accuracy is {0:7.4f} %'.format(voting_acc*100))

Voting Ensemble accuracy is 75.6532 %

The Voting Ensemble achieved slightly higher accuracy than the three models.

Beside hard voting, another alternative for the voting ensemble classifier is to change the argument to voting='soft'.
In this case, the decision by the ensemble is made based on the average of the predicted class with the highest proba-
bilities of all individual classifiers.

Example of soft voting:

• Classifier 1 predicts class A with probability 90%, class B with probability 10%

• Classifier 2 predicts class A with probability 45%, class B with probability 55%

• Classifier 3 predicts class A with probability 45%, class B with probability 55%

• Ensemble probabilities: class A ((90% + 45% + 45%) / 3 = 60%), class B ((10% + 55% + 55%) / 3 = 40%).
Prediction: class A.

Note in the above example that if hard voting based on the class labels was applied, the prediction would have been
class B, because both Classifiers 2 and 3 predicted higher probabilities for class B.

Soft voting generally achieves better performance than hard voting, because it assigns higher weight to the predictions
with high confidence by the individual models.

In the cell below, to apply soft voting with SVC we need to change the argument probability=True, as well as this
approach requires to modify the outputs of the SGD model, and instead of SGD we will use a k-Nearest Neighbors
model.

[21]: from sklearn import neighbors

knn_model = neighbors.KNeighborsClassifier()
svm_classifier = SVC(gamma="auto", probability=True)

voting_classifier_soft = VotingClassifier(

estimators=[('log_reg', lr_model),
('svc', svm_classifier),
('knn', knn_model)],

voting='soft')

voting_classifier_soft.fit(X_train, y_train)

[21]: VotingClassifier(estimators=[('log_reg', LogisticRegression()),
('svc', SVC(gamma='auto', probability=True)),
('knn', KNeighborsClassifier())],

voting='soft')

[22]: # evaluate
voting_preds = voting_classifier_soft.predict(X_test)
voting_acc = accuracy_score(y_test, voting_preds)
print('Voting Ensemble accuracy is {0:7.4f} %'.format(voting_acc*100))

Voting Ensemble accuracy is 80.7998 %
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Ensemble Methods are generally well-performing. Even in the cases when the individual models are weak learners
(which means that they predict slightly better than random guessing), ensemble learning can result in a strong learner
(meaning that it has high prediction accuracy), as long as a large number of diverse individual models are used.

In general, ensemble methods produce the best results when the individual models are independent of each other, e.g.,
they use different types of learning algorithms. This way, the individual models can produce diverse results, which can
increase the chance that the ensembling will be more successful. Conversely, if the individual models use the same
learning algorithm, they will probably make the same type of errors, which will reduce the accuracy when an ensemble
method is used.

Diversity in individual learners can be achieved by selecting models that use different learning algorithms, or by training
models on different subsets of the training data, or different data features, etc. Also, many ensemble methods employ
Decision Trees as individual models, where diversity can be achieved by varying the strategies for trees spliting, by
varying the different hyperparameters, or by using techniques based on data diversity, feature diversity, and other
techniques. Specific approaches are explained next.

7.14.3 14.3 Bagging Ensemble

As we mentioned, one way to create diverse base models is to train them on different portions of the training data.
Hence, instead of training different models on the same data and averaging their results with a Voting Ensemble,
Bagging Ensemble method trains the base models on different subsets of the training data and aggregates the results.

The term bagging is short for bootstrap aggregating, where bootstrapping refers to sampling subsets from the training
data with replacement. In other words, the subsets of the training data used by different models can contain the same
data points. When the subsets are sampled without replacement, it is called pasting.

The aggregation of the predictions by the individual models is typically based on the most frequent prediction, similar
to hard voting. The individual models used with bagging are typically Decision Trees.

In scikit-learn we can import a Bagging Classifier, and fit it to the training data as any other model. Let’s use
bagging to train Decision Trees on different subsets of the data and then average the predictions. In the cell be-
low, max_samples=0.5 means that each model will use a random subset containing 50% of the training data, and
max_features=0.5 means that each model will use a random subset of 50% of the input features. If bootstrap is
True the training samples will be sampled with replacement, and if it is False there is no replacement (i.e., pasting).

[23]: from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

bagging_classifier = BaggingClassifier(
DecisionTreeClassifier(class_weight='balanced'),

max_samples=0.5, max_features=0.5, bootstrap=True
)

bagging_classifier.fit(X_train, y_train)

[23]: BaggingClassifier(estimator=DecisionTreeClassifier(class_weight='balanced'),
max_features=0.5, max_samples=0.5)

[24]: # evaluate
bagging_preds = bagging_classifier.predict(X_test)
bagging_acc = accuracy_score(y_test, bagging_preds)
print('Bagging Ensemble accuracy is {0:7.4f} %'.format(bagging_acc*100))

Bagging Ensemble accuracy is 83.6335 %
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Bagging Ensembles often outperform Voting Ensembles, and they can decrease the overfitting of Decision Trees (which
tend to overfit easily). As well as, Bagging Ensembles can be trained in parallel using different CPU cores, which can
reduce the processing time.

Random Forest can be considered a Bagging Ensemble with the max_samples set to 1, that is, it uses the entire training
set to train the based learners.

7.14.4 14.4 Boosting Ensemble

Boosting Ensemble trains the individual models sequentially, where each next model has access to the predictions of
the previous models and attempts to improve the performance. The term boosting refers to incremental improvement
by reducing the errors of the predecessors, in order to gradually improve the performance.

The most popular boosting ensembles are Gradient Boosting, XGBoost, LightGBM, CatBoost, and AdaBoost.

14.4.1 Gradient Boosting Ensemble

Gradient Boosting Ensemble fits the individual models sequentially, where each new model is fit to minimize a loss
function based on the error (gradient) of a loss function made by the previous models. The individual models in gradient
boosting are Decision Trees.

Specifically, the initial model is trained on the full dataset, and the errors (gradients) of the loss function are obtained
based on the difference between the predicted class of the model and the target label. The next model is trained by using
the negative gradient of the loss function in an attempt to correct the mistakes made by the previous model. These steps
are repeated for each single model. Ideally, as more models are trained the errors should become smaller, that is, the
predictions by the models should better match the target labels.

The residual errors represent the gradient of the loss function with respect to the predicted values. This is the reason
why the method is called Gradient Boosting.

In scikit-learn, Gradient Boosting Classifier has hyperparameters related to the number of estimators i.e. Decision
Trees (n_estimators), learning rate (learning_rate), maximum depth of the trees (max_depth), and others. The
learning rate is typically set to values between 0.01 and 1, and it defines how quickly the models are updated. If the
learning rate is too high, the models will be updated more quickly, which can cause overfitting.

Decison Trees are often used as based models in Ensemble Methods. The reasons are because they are easily diversified
by varying the splitting of the trees or by other means, they can capture complex nonlinear relationships in the data,
they are fast and simple to implement, and can also provide information about the feature importance.

[25]: from sklearn.ensemble import GradientBoostingClassifier

grad_boost_classifier = GradientBoostingClassifier(
n_estimators=500,
learning_rate=0.8,
random_state=42,
max_depth=2)

grad_boost_classifier.fit(X_train, y_train)

[25]: GradientBoostingClassifier(learning_rate=0.8, max_depth=2, n_estimators=500,
random_state=42)

[26]: # evaluate
gboost_preds = grad_boost_classifier.predict(X_test)

(continues on next page)
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gboost_acc = accuracy_score(y_test, gboost_preds)
print('Gradient Boosting Ensemble accuracy is {0:7.4f} %'.format(gboost_acc*100))

Gradient Boosting Ensemble accuracy is 89.6893 %

14.4.2 Recent Gradient Boosting Methods: XGBoost, LightGBM, CatBoost

There are several optimized variants of Gradient Boosting Ensembles, which include XGBoost, LightGBM, and Cat-
Boost. These three ensemble methods are among the most powerful and robust Machine Learning models for tabular
data at present time. Their performance is often superior to other conventional ML methods, including other ensemble
methods. Also, they are very fast and scalable to large datasets. Because of these properties, XGBoost, LightGBM,
and CatBoost are often the winning algorithms in many Kaggle competitions and other ML competitions where the
datasets are in tabular format.

Note that XGBoost, LightGBM, and Catboost are not implemented in Scikit-Learn, and they need to be installed as
separate libraries, e.g., via:

pip install xgboost catboost lightgbm

On the other hand, the API for working with these methods is the same as scikit-learn, and they use the fit and
predict methods for model training and evaluation.

14.4.2.1 XGBoost (Extreme Gradient Boosting)

XGBoost or eXtreme Gradient Boosting Ensemble introduces several modifications and optimizations in the original
Gradient Boosting algorithm, which speed up the training process and improve the predictive performance. The main
modifications in XGBoost encompass the introduction of L1 and L2 regularization terms into the objective function
to reduce overfitting, and using a more efficient tree-building algorithm that relies on histogram-based methods and
pruning techniques to optimize the tree splitting. XGBoost can also handle missing data, either by treating the data
samples with missing values as a separate category, or it can apply techniques for filling in the missing values. Therefore,
it can work without significant exploratory data analysis and preprocessing.

As shown in the next cells, applying these variants of Gradient Boosting is as simple as fitting and evaluating other
scikit-learn models.

[27]: import xgboost as xgb

xgb_classifier = xgb.XGBClassifier()
xgb_classifier.fit(X_train, y_train)

[27]: XGBClassifier(base_score=None, booster=None, callbacks=None,
colsample_bylevel=None, colsample_bynode=None,
colsample_bytree=None, device=None, early_stopping_rounds=None,
enable_categorical=False, eval_metric=None, feature_types=None,
gamma=None, grow_policy=None, importance_type=None,
interaction_constraints=None, learning_rate=None, max_bin=None,
max_cat_threshold=None, max_cat_to_onehot=None,
max_delta_step=None, max_depth=None, max_leaves=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
multi_strategy=None, n_estimators=None, n_jobs=None,
num_parallel_tree=None, random_state=None, ...)
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[28]: # evaluate
xgboost_preds = xgb_classifier.predict(X_test)
xgboost_acc = accuracy_score(y_test, xgboost_preds)
print('XGBoost Ensemble accuracy is {0:7.4f} %'.format(xgboost_acc*100))

XGBoost Ensemble accuracy is 90.1660 %

14.4.2.2 LightGBM (Light Gradient Boosting Machine)

LightGBM or Light Gradient Boosting Machine is another optimized version of Gradient Boosting Ensemble, which
was developed by Microsoft. It uses a histogram-based approach for finding optimal splitting of the decision trees. As
well as, LightGBM employs a leaf-wise tree growth strategy that can result in deeper trees compared to other ensemble
algorithms. LightGBM focuses on efficiency and scalability of the approach.

[29]: import lightgbm
from lightgbm.sklearn import LGBMClassifier

lightgbm_classifier = LGBMClassifier()
lightgbm_classifier.fit(X_train, y_train)

[LightGBM] [Info] Number of positive: 14443, number of negative: 19541
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.
→˓001957 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 1586
[LightGBM] [Info] Number of data points in the train set: 33984, number of used features:
→˓ 8
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.424994 -> initscore=-0.302305
[LightGBM] [Info] Start training from score -0.302305

[29]: LGBMClassifier()

[30]: # evaluate
lightgbm_preds = lightgbm_classifier.predict(X_test)
lightgbm_acc = accuracy_score(y_test, lightgbm_preds)
print('XGBoost Ensemble accuracy is {0:7.4f} %'.format(lightgbm_acc*100))

XGBoost Ensemble accuracy is 87.9237 %

Optimizing the hyperparameters of ensemble methods can result in significant improvement in performance. The next
cells demonstrate this, by training another LightGBM model with different hyperparameters.

[31]: lightgbm_classifier_2 = LGBMClassifier(num_leaves=100, learning_rate=0.1, n_
→˓estimators=100)
lightgbm_classifier_2.fit(X_train, y_train)

[LightGBM] [Info] Number of positive: 14443, number of negative: 19541
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.
→˓002078 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 1586
[LightGBM] [Info] Number of data points in the train set: 33984, number of used features:
→˓ 8
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.424994 -> initscore=-0.302305

(continues on next page)
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[LightGBM] [Info] Start training from score -0.302305

[31]: LGBMClassifier(num_leaves=100)

[32]: # evaluate
lightgbm_2_preds = lightgbm_classifier_2.predict(X_test)
lightgbm_2_acc = accuracy_score(y_test, lightgbm_2_preds)
print('XGBoost Ensemble accuracy is {0:7.4f} %'.format(lightgbm_2_acc*100))

XGBoost Ensemble accuracy is 91.6314 %

In general, tuning the hyperparameters of Gradient Boosting variants can be non-trivial, and requires to get familiar
with the various hyperparameters and understand their impact on the performance.

14.4.2.3 CatBoost (Categorical Boosting)

CatBoost or Categorical Boosting is specifically designed for handling categorical features, and it can operate directly
on data with categorical features, without the requirement for applying ordinal or label encoding or other preprocessing
techniques. It uses an ordered gradient boosting technique for direct processing of categorical features. Other modifi-
cations in CatBoost include the use of specialized regularization techniques (such as depth regularization and feature
permutation-based regularization) and implementation of specialized symmetric trees structure to prevent overfitting.

Similar to XGBoost, CatBoost has also support for dealing with missing data values, which simplifies the data prepro-
cessing.

[33]: import catboost
from catboost import CatBoostClassifier

catboost_classifier = CatBoostClassifier(verbose=False)
catboost_classifier.fit(X_train, y_train)

[33]: <catboost.core.CatBoostClassifier at 0x1bf39c82450>

[34]: # evaluate
catboost_preds = catboost_classifier.predict(X_test)
catboost_acc = accuracy_score(y_test, catboost_preds)
print('XGBoost Ensemble accuracy is {0:7.4f} %'.format(catboost_acc*100))

XGBoost Ensemble accuracy is 89.2744 %

The decision on which variant of Gradient Boosting to select depends on the specific characteristics of a dataset, the
available computational resources, the type of features in the dataset, and other factors. All three methods are high-
performing, fast, and robust, and they are continuously developed and improved.
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14.4.3 AdaBoost Ensemble

AdaBoost Ensemble is another class of Boosting Ensembles, however, instead of minimizing the gradient of a loss
function as in Gradient Boosting models, it assigns weights to the training data instances based on the difficulty to be
classified. The main idea of AdaBoost is to focus the individual models on the training instances that are difficult to
classify. AdaBoost is short of adaptive boosting.

AdaBoost begins by training a base model (which by default is a Decision Tree) on the full training dataset. After that,
higher weights are assigned to the data instances that were misclassified by the previous model. Therefore, the second
model will put more attention on correctly predicting the class of the misclassified data instances. By training many
models sequentially, the algorithm will try harder to predict the difficult data instances.

The aggregated prediction by all single models is done by averaging the predictions and using weights for each model
based on their accuracy on the training set.

The main parameters in the AdaBoost Classifier are the type of base estimators and the number of estimators.

[35]: from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

adaboost_classifier = AdaBoostClassifier(
base_estimator=DecisionTreeClassifier(max_depth=3, class_weight='balanced'),
n_estimators=300,
learning_rate=0.5

)

adaboost_classifier.fit(X_train, y_train)

[35]: AdaBoostClassifier(base_estimator=DecisionTreeClassifier(class_weight='balanced',
max_depth=3),

learning_rate=0.5, n_estimators=300)

[36]: # evaluate
adaboost_preds = adaboost_classifier.predict(X_test)
adaboost_acc = accuracy_score(y_test, adaboost_preds)
print('AdaBoost Ensemble accuracy is {0:7.4f} %'.format(adaboost_acc*100))

AdaBoost Ensemble accuracy is 89.9100 %

7.14.5 14.5 Stacking Ensemble

Stacking Ensemble is also referred to as stacked generalization, where instead of using hard or soft voting for aggre-
gating the results from multiple models, another model (referred to as a blender or meta-learner) is trained to perform
the aggregation.

In the example below, we train two base estimators: SVM classifier and a Random Forest classifier. Afterward, we use
Logistic Regression model as a final estimator, which is trained by using the predictions by the two base estimators as
inputs. The final estimator aggregates the predictions of the individual models and outputs the final predictions.

[37]: from sklearn.ensemble import StackingClassifier
from sklearn.ensemble import RandomForestClassifier

base_estimators = [
('rand', RandomForestClassifier(random_state=42)),
('svc', SVC(random_state=42))]

(continues on next page)
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final_estimator = LogisticRegression()

stack_classifier = StackingClassifier(estimators = base_estimators,
final_estimator = final_estimator)

stack_classifier.fit(X_train, y_train)

[37]: StackingClassifier(estimators=[('rand',
RandomForestClassifier(random_state=42)),
('svc', SVC(random_state=42))],

final_estimator=LogisticRegression())

[38]: # evaluate
stack_preds = stack_classifier.predict(X_test)
stack_acc = accuracy_score(y_test, stack_preds)
print('Stacking Ensemble accuracy is {0:7.4f} %'.format(stack_acc*100))

Stacking Ensemble accuracy is 90.2189 %

In conclusion, Ensemble Methods are among the best performing Machine Learning models. Whereas they may not be
competitive with Neural Networks for datasets containing images, text, audio, or other data formats, for datasets with
tabular data Ensemble Methods may outperform Neural Network-based approaches. In addition, Ensemble Methods
can achieve good performance even without hyperparameter finetuning, in comparison to Neural Networks that typi-
cally require significant hyperparameter finetuning. As well as, Ensemble Methods can outperform Neural Networks
for tasks with smaller dataset sizes, are robust to outliers, and can handle imbalanced datasets.

7.14.6 References

1. Complete Machine Learning Package, Jean de Dieu Nyandwi, available at: https://github.com/Nyandwi/
machine_learning_complete.

2. Hands-on Machine Learning with Scikit-learn, Keras & TensorFlow, Aurelien Geron, available at: https://github.
com/ageron/handson-ml/blob/master/07_ensemble_learning_and_random_forests.ipynb.

3. Python Machine Learning (2nd Ed.) Code Repository, Sebastian Raschka, available at: https://github.com/rasbt/
python-machine-learning-book-2nd-edition.
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7.15.1 15.1 Introduction to Artificial Neural Networks

Artificial Neural Networks (ANNs) are a class of machine learning algorithms that employ a network of connected
computational units for information processing. ANNs are organized in layers, where each layer is made up of inter-
connected nodes (or computational units). The concept of ANNs is motivated by biological neural networks, and the
development of ANNs is the result of an attempt to replicate the workings of the human brain. Hence, the nodes in
ANNs are commonly referred to as neurons.

A simple ANN with one single layer is depicted in the following figure. The main layers in the ANN are:

• Input layer, takes the input data in numerical format, where inputs to ANNs can be tabular data, images, texts,
audio, etc.

• Hidden layer, connects the input and the output layers. The neurons in the hidden layer process the input data
and extract relevant patterns in the data.

• Output layer, is the output of the network, which can be a continuous numeric value as in regression problems,
or discrete class values as in classification problems.

Figure: One-layer ANN. Figure source: Wikipedia.

In general, ANNs can have multiple input layers, multiple hidden layers, and multiple output layers.

ANNs having more than one layer are commonly referred to as a Deep Neural Network (DNNs). Similarly, applying
DNNs for solving a task is referred to as Deep Learning (DL).

Most current ANNs that are implemented for solving real-world tasks have multiple hidden layers. The number of
hidden layers depends on the specific task, and typically ranges from 10 to 100. For solving complex tasks, ANNs with
hundreds of hidden layers are used.
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15.1.1 Elements of ANNs

The values of the connections between the neurons in ANNs are learned during a training phase. By using a training
dataset, the values of the connections are updated with a goal of correctly predicting the outputs for given inputs.

The following figure depicts the operation of a single neuron in an ANN. The neuron is connected to other neurons
in the previous layer via a set of inputs 𝑥1, 𝑥2, ..., 𝑥𝑚 and weights 𝑤1, 𝑤2, ..., 𝑤𝑚. Each neuron calculates the sum of
products of the inputs and weights and a bias value, i.e., 𝑣 = 𝑥1 ·𝑤1+𝑥2 ·𝑤2+ ...+𝑥𝑚 ·𝑤𝑚+ 𝑏. The obtained value
𝑣 is then passed through an activation function and the output 𝑦 = 𝜙(𝑣) is transferred to the next layer in the network.

The weights and biases in an ANN are called network parameters. And very often the term weights is used to refer
to both weights and biases as network parameters.

Figure: Artificial Neuron.

15.1.2 Common Activation Functions

Activation functions are applied to each neuron in ANNs to introduce non-linearities into the outputs of the neurons.
Without non-linear activation functions, ANNs will simply learn linear mappings between the inputs and outputs.
Calculating non-linear mappings between inputs and outputs gives ANNs the capabilities to learn complex tasks.

The most common activation functions in ANNs are:

• Sigmoid activation function (logistic activation function): For a real-valued input, it outputs a value between 0
and 1. Sigmoid activation is used in the output layer for binary classification problems.

• Tanh activation function (tangent hyperbolic activation function): It is similar to sigmoid activation function,
but it outputs a value between -1 and 1. Tanh is rarely used in modern ANNs.

• Softmax activation function: It is an extension of the sigmoid activation function for multiclass classification
tasks, and it is used in the output layer for multiclass classification problems.

• ReLU (Rectified Linear Unit) activation function: It outputs the input value if it is positive, and it outputs 0 if
the input value is negative. In other words, this activation function just penalizes the negative inputs. ReLU is
the most used activation function in the hidden layers of modern ANNs.

• Leaky ReLU (Rectified Linear Unit) activation function: It is a modification of ReLU, where instead of out-
putting 0 for negative values, Leaky ReLU has a small negative slope. Some networks use Leaky ReLU instead
of ReLU.

There are also several other modifications of ReLU activations such as GeLU (Gaussian error Linear Unit) and SeLU
(Scaled exponential Linear Unit). Overall, ReLU is still the most common activation function.
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Figure: Activation functions in ANNs. Figure source: link

15.1.3 Training ANNs

ANNs are trained by iteratively updating the network parameters (weights and biases) to minimize the difference be-
tween the network predictions and target labels.

Each iteration in the training phase includes the following 4 steps:

1. Forward pass (forward propagation)

2. Loss calculation

3. Error backpropagation (backward pass)

4. Model parameters update

Forward propagation is also known as forward pass, because the input data is passed through all hidden layers of the
neural network toward the output layer to obtain the network predictions. For instance, if the input data is an image,
the image is transformed through the layers of the network, and for classification problems, the output is a vector of
predicted class probabilities.

Loss calculation is the second step, in which the loss of the network is calculated as a difference between the network
output (predictions for each class) and the target ground-truth label for an image image. Common loss function for
classification tasks is crossentropy loss, calculated as −

∑︀
𝑦 · 𝑙𝑜𝑔(𝑦), where 𝑦 is the ground-truth label and 𝑦 is the

network prediction. For regression tasks commonly used loss functions include mean-squared error (calculated as∑︀
(𝑦 − 𝑦)2) and mean-absolution error (calculated as

∑︀
|𝑦 − 𝑦|) between the network predictions and target ground-

truth values.

Error backpropagation is also called backward pass or backward propagation (where the term backpropagation is
short for backward propagation). In this step, the predicted outputs are traversed back through the network, from the last
(output) layer backward toward the first (input) layer. During the backward step, the gradients of the loss with respect
to the model parameters ∇ℒ() are calculated. If you recall from calculus, gradient is the vector of partial derivatives
of a function, or for a loss function ℒ and network parameters , the gradient is the vector ∇ℒ = [𝜕ℒ/𝜕𝑖]. The gradients
quantify the impact of changing the parameters in the network to the predicted outputs. Automatic calculation of the
gradients (automatic differentiation) is available in all current deep learning libraries, which significantly simplifies the
implementation of deep learning algorithms.

Model parameters update is the last step in which new values for the model parameters are calculated and updated,
typically using the Gradient Descent algorithm.
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Figure: Steps in training ANNs.

A simple depiction of the Gradient Descent algorithm is shown in the next figure. The blue curve is a loss function
ℒ, and the gradient of the loss function ∇ℒ gives the slope of the function. By updating the parameters in the opposite
direction of the gradient of the loss ∇ℒ, the algorithm finds parameters for which the loss ℒ has a minimal value.

Figure: Steps in training ANNs.

Almost all modern neural networks are trained by applying a modified version of the Gradient Descent algorithm. Ex-
amples of such advanced Gradient Descent algorithms include Adam, SGD (Stochastic Gradient Descent), RMSprop,
Adagrad, Nadam, and others. The deep learning libraries typically refer to the used algorithms for minimizing the loss
of the model as optimizers.

Unlike the model training phase, predicting on test data (also known as inference) requires only a forward pass through
the model, where for a given input instance the model outputs the prediction. For instance, in the above figure the
output is a vector of class probabilities.
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15.1.4 Types of ANN Architectures

The main types of ANN architectures are:

• Fully-connected neural networks (FCNNs) (a.k.a. densely-connected neural networks, or multi-layer percep-
trons)

• Convolutional neural networks (CNNs)

• Recurrent neural networks (RNNs)

• Transformer neural networks (TNNs)

• Graph neural networks (GNNs)

In this lecture, we will study Fully-connected NNs, and in the following lecture we will explore the other ANN archi-
tectures.

15.1.5 Fully-connected NNs

Fully-connected NNs are made of layers in which the neurons of any layer are connected to all other neurons of the
preceding and succeeding layer. They are also called Densely-connected NNs, as well they are often referred to as
Multi-Layer Perceptrons (MLPs).

Figure: Fully-connected NNs.

Fully-connected NNs are mostly used in simple tasks, such as for classification or regression tasks with tabular data.
Their performance for tasks with images, text data, or other data formats is often inferior in comparison to CNNs,
RNNs, TNNs, and GNNs.
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7.15.2 15.2 Classification with ANNs

In calssification tasks, the goal is to predict the category, i.e., class label of the data samples.

Classification tasks can be divided into two main types:

• Binary classification is classification with two classes. An example is to classify a tweet as positive or negative
depending on its content. In the output layer, we need to use a single output neuron with a sigmoid activation
function to output a value between 0 and 1. A threshold value (by default set to 0.5) can be used to differentiate
between positive and negative classes. For example, if the value of the output neuron is 0.7, the tweet can be
assigned as positive (since the value is greater than 0.5). The common loss function in binary classification is
binary crossentropy.

• Multiclass classification: is classification with three or more classes. An example is to classify a tweet into
several classes, such as news, tech, sports, or weather. In the output layer, we need to use a number of output
neurons equal to the number of classes, with a softmax activation function. E.g., for the above tweet example, we
will use 4 output neurons. Consequently, the output of the network will be a vector of class probabilities whose
dimension is equivalent to the number of classes, such as [0.2 0.5 0.1 0.2] for the tweet example. The category
with the maximum value is assigned as a class label to the tweet. In this case, if the four categories were news,
tech, sports, or weather, the tweet will be assigned the class tech, since the network output of 0.5 for this class is
the greatest. The commonly used loss functions in multiclass classification are categorical crossentropy
(when the target labels are in one-hot matrix encoding format) and sparse categorical crossentropy
(when the target labels are in ordinal encoding format).

In both binary and multiclass classification problems, the hyperparameters of the ANN related to the number of input
neurons, activation functions in the hidden layers, number of hidden layers, etc. depend on the specific problem we are
solving.

Table: Typical values of hyperparameters in ANNs for classification

Hyperparameter Binary classifier Multiclass classifier
Neurons in input layer Number of input features Number of input features
Number of hidden
layer(s)

Depends on the problem, typically
from 1-10

Depends on the problem, typically from 1-10

Neurons per hidden
layer

Depends on the problem, typically
10-100

Depends on the problem, typically 10-100

Neurons in output
layer

1 Neurons equivalent to number of classes

Activation in hidden
layers

Mostly ReLU Mostly ReLU

Activation in output
layer

sigmoid softmax

Loss function binary cross entropy categorical crossentropy / sparse categorical
crossentropy

Optimizer Mostly Adam, SGD, RMSProp Mostly: Adam, SGD, RMSProp

ANNs have many hyperparameters, and selecting the best values of the hyperparameters can be challenging. In the
next lectures we will explore best practices for hyperparameter finetuning in ANNs.
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15.2.1 Binary Classification

We will first implement an ANN for binary classification.

For this purpose, we will use again the Breast Cancer dataset which we also used in the previous lecture. Recall that
the dataset has 569 samples, each having 30 features. The target labels are the benign or malignant class, hence it is a
binary classification problem.

[1]: # Import libraries
import numpy as np
import pandas as pd
import sklearn
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

import tensorflow as tf
from tensorflow import keras

# Print the version of tensorflow
print("TensorFlow version:{}".format(tf.__version__))

TensorFlow version:2.14.0

Loading the Dataset

The Breast Cancer dataset can be directly loaded from scikit-learn datasets. Let’s create a DataFrame df having the
features and the target column as the last column to the right.

[2]: # Load the dataset
from sklearn.datasets import load_breast_cancer

bc = load_breast_cancer()
df = pd.DataFrame(data=bc.data, columns=bc.feature_names)
df["target"] = bc.target

[3]: # Check the shape of the dataset
df.shape

[3]: (569, 31)

[4]: # Show the first few rows
df.head()

[4]: mean radius mean texture mean perimeter mean area mean smoothness \
0 17.99 10.38 122.80 1001.0 0.11840
1 20.57 17.77 132.90 1326.0 0.08474
2 19.69 21.25 130.00 1203.0 0.10960
3 11.42 20.38 77.58 386.1 0.14250
4 20.29 14.34 135.10 1297.0 0.10030

mean compactness mean concavity mean concave points mean symmetry \
0 0.27760 0.3001 0.14710 0.2419

(continues on next page)
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(continued from previous page)

1 0.07864 0.0869 0.07017 0.1812
2 0.15990 0.1974 0.12790 0.2069
3 0.28390 0.2414 0.10520 0.2597
4 0.13280 0.1980 0.10430 0.1809

mean fractal dimension ... worst texture worst perimeter worst area \
0 0.07871 ... 17.33 184.60 2019.0
1 0.05667 ... 23.41 158.80 1956.0
2 0.05999 ... 25.53 152.50 1709.0
3 0.09744 ... 26.50 98.87 567.7
4 0.05883 ... 16.67 152.20 1575.0

worst smoothness worst compactness worst concavity worst concave points \
0 0.1622 0.6656 0.7119 0.2654
1 0.1238 0.1866 0.2416 0.1860
2 0.1444 0.4245 0.4504 0.2430
3 0.2098 0.8663 0.6869 0.2575
4 0.1374 0.2050 0.4000 0.1625

worst symmetry worst fractal dimension target
0 0.4601 0.11890 0
1 0.2750 0.08902 0
2 0.3613 0.08758 0
3 0.6638 0.17300 0
4 0.2364 0.07678 0

[5 rows x 31 columns]

Next, we will extract the features and the target labels, and we will split them into training and testing sets.

[5]: # Extract the data and the labels
X = df.drop('target', axis=1)
y = df['target']

[6]: from sklearn.model_selection import train_test_split

train_data, test_data, train_labels, test_labels = train_test_split(X, y, test_size=0.2,␣
→˓random_state=42, stratify=y)

[7]: print('Training data inputs', train_data.shape)
print('Training labels', train_labels.shape)
print('Testing data inputs', test_data.shape)
print('Testing labels', test_labels.shape)

Training data inputs (455, 30)
Training labels (455,)
Testing data inputs (114, 30)
Testing labels (114,)

We will also scale the data with the MinMaxScaler. Recall again that we do not fit the scaler on the test dataset, but
we only transform it.
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[8]: # Scaling the features to be between 0 and 1.
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)

Create the ANN

To create ANNs in this lectue we will use the Tensorflow-Keras library. Keras is part of TensorFlow, and if you notice
in the above cell Keras is imported from TensorFlow.

To define the network architecture in Keras, we will use the data structures layers and models.

In the cell below we imported the needed layers and model classes and afterward we will create layers and model objects
as instances of these classes.

For the ANN for this case we will use Input and Dense layers, as explained below. Model is a general class in Keras
that is used to create new ANN models.

[9]: # Import the layers and the model
from keras.layers import Input
from keras.layers import Dense
from keras.models import Model

TensorFlow-Keras requires the first layer in an ANN to be an Input layer, which will provide the shape of the input data
in the form of a tuple. For the Breast Cancer dataset, there are 30 input features for training the model, and therefore,
we will set the shape of the input data to (30,).

Note also that to create and train an ANN, we don’t need to provide information about the number of samples that are
available for training or testing the model.

Let’s add two hidden layers. In Keras, Dense layers are fully-connected layers. Therefore, the layers dense1 and
dense2 below are fully-connected layers, of which, the first layer has 30 units (or neurons), and the second layer has
15 neurons. The second argument in the Dense layers activation defines the activation function that is applied at
each layer, and in this case we selected ReLU activations as the most common activation function. For each layer in
Keras, we need to also define the previous layer to which it connects. In this case, for dense1 the previous layer is the
inputs layer, and dense2 follows the dense1 layer.

Finally, we added an output layer which is also a Dense layer. As we mentioned, for binary classification problems, the
output layer has 1 neuron and it uses a sigmoid activation function. Preceding layer to the outputs layer is dense2
layer.

[10]: # Define the layers in the network
inputs = Input(shape=(30,))
dense1 = Dense(units=30, activation='relu')(inputs)
dense2 = Dense(units=15, activation='relu')(dense1)
outputs = Dense(units=1, activation='sigmoid')(dense2)

After we define the layers, we will create a new model as an instance of the Model class. Let’s name the new instance
model_1. The arguments in Model are the input and output layers, which we named in the above cell inputs and
outputs.
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[11]: # Define the model by providing the inputs and outputs
model_1 = Model(inputs, outputs)

Now that we have created a model, we can inspect its architecture with the .summary() method. It provides a table
with all layers in the network, the shape of the tensors that are output by each layer, and the number of parameters in
each layer.

We can see that the first layer in the model expects the passed data to be of shape (None, 30). Here None is a
placeholder, and specifies that the model can accept any number of samples that have 30 elements.

The output of the model is of shape (None, 1), meaning that it will output one single value for each data sample.

Also, we can see in the information under the table that this model has 1,411 trainable parameters, of which 930 are
in the first hidden layer, 465 are in the second hidden layer, and 16 are in the output layer. During the model training,
we will try to find optimal values of the network parameters that minimize the misclassification of the samples in the
training dataset.

[12]: # Model summary
model_1.summary()

Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 30)] 0

dense (Dense) (None, 30) 930

dense_1 (Dense) (None, 15) 465

dense_2 (Dense) (None, 1) 16

=================================================================
Total params: 1411 (5.51 KB)
Trainable params: 1411 (5.51 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

The graph of the network is also shown in the following figure. We can see the layers with all 1,411 connections in the
network.
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Figure: Graphical depiction of the network.

Compile the ANN

To be able to train the ANN model, first we need to compile it. During the compiling step, we will specify the loss
function, optimizer, and metric.

The loss function (cost function) calculates the difference between the predicted class label by the model and the
ground-truth target class label for each sample. If the difference is high, this means a higher loss.

In Keras and TensorFlow, there are three main crossentropy losses:

• binary_crosssentropy used for binary classification with two classes.

• categorical_crossentropy used for multiclass classification with three and more classes, and the target
labels are encoded in one-hot matrix format.

• sparse_categorical_crossentropy used for multiclass classification with three and more classes, and the
target labels are encoded in ordinal format.

The optimizer is the optimization algorithm that is used to reduce the loss function. As we explained earlier, several
different optimization algorithms are used with ANNs. In this case we will use Adam optimizer (which stands for
Adaptive Moment Estimation). It is one of the fastest and most commonly used optimizers at present.

We will use accuracy as a metric, but we can also use AUC-ROC, or F1 score, or other metrics.
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[13]: model_1.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])

Train the ANN

To train the model, Keras uses the fitmethod as in scikit-learn. Required arguments in fit include the training dataset
and training labels, and additional arguments can include the number of epochs, batch size, verbose, and others.

The batch size below means that the fit method will repeatedly randomly select 64 samples from the training dataset,
and use the batch of samples to train the model and update the model parameters. Therefore, for the training dataset
of 455 samples, the updates will be repeated 455/64 = 7.1 times (i.e., the model will be updated 8 times to process the
entire dataset). When all 455 samples in the training dataset are used, that is considered one epoch. In this case, the
training will continue for 100 epochs. Therefore, the parameters in the model will be updated 800 times in total (100
epoch x 8 steps per epoch = 800). Or, we can say that there are 800 training steps.

The verbose argument is set to 0, and the results from the training will not be displayed after the cell. Setting verbose
to 1 will display a progress bar, and the default value of 2 will display the training loss and accuracy for each epoch.

Also, in the next cell we assign the output of the fit method to history, that is, we will save the training results in
this variable, and later we will use it to plot the learning curves and analyze the model training.

[14]: history = model_1.fit(train_data, train_labels, epochs=100, batch_size=64, verbose=0)

Evaluate the ANN on Test Data

Keras has a method evaluate that we can use for calculating the accuracy of the model. The arguments are test_data
and test_labels. Note that evaluate() returns two values: the loss and accuracy of the model. Therefore, to print
the accuracy we used the element with index 1 in evals_test.

[15]: # Evaluate on test dataset
evals_test = model_1.evaluate(test_data, test_labels)
print("Classification Accuracy: ", evals_test[1])

4/4 [==============================] - 0s 3ms/step - loss: 0.0708 - accuracy: 0.9649
Classification Accuracy: 0.9649122953414917

[16]: # evals_test contains the loss and accuracy of the model
evals_test

[16]: [0.0707874745130539, 0.9649122953414917]

To obtain the predictions by the model on data samples, we will use the predict method in Keras, which works
similarly to the predict method in scikit-learn.

[17]: predictions = model_1.predict(test_data)

4/4 [==============================] - 0s 0s/step

Let’s check the shape of predictions to understand the output of the model, and compare it to the shape of test_data
that we used in predict(). The test dataset has 114 samples, each with 30 features. Therefore, for each sample the
model made a prediction and outputted one single value.
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[18]: predictions.shape

[18]: (114, 1)

[19]: # Compare to the shape of test_data
test_data.shape

[19]: (114, 30)

Let’s inspect the output for the first 6 samples in test_data in the next cell. The shown values are difficult to interpret
because they are displayed in scientific notation, therefore, in the following cell the values are shown rounded to 3
decimal places.

[20]: predictions[:6]

[20]: array([[1.8629966e-04],
[9.9987435e-01],
[7.2749399e-02],
[7.1462798e-01],
[1.4644288e-04],
[9.5147675e-01]], dtype=float32)

[21]: np.around(predictions[:6], 3)

[21]: array([[0. ],
[1. ],
[0.073],
[0.715],
[0. ],
[0.951]], dtype=float32)

Now we can notice that the predictions by the model have values between 0 and 1, and they can be considered as the
probability of each sample to be either benign (0) or malignant (1).

This form of the outputs is expected, because we used a sigmoid activation function in the output layer, which restricts
the outputs to be in the range between 0 and 1.

To assign the class label 0 or 1 to the predicted values, we can round the predictions with np.round() or tf.math.
round() to return the closest integer. For example, for the prediction of 0.016, the class label is 0. For the prediction
of 0.64, the class label is 1.

[22]: # Class labels for the first predicted values
np.round(predictions[:6])

[22]: array([[0.],
[1.],
[0.],
[1.],
[0.],
[1.]], dtype=float32)

We can also calculate the accuracy in the same way as did with scikit-learn models, by using the accuracy_score
function. As expected, the calculated value for the accuracy is the same as the one calculated in the Keras evaluate
method.
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[23]: from sklearn.metrics import accuracy_score

predictions = model_1.predict(test_data)

accuracy = accuracy_score(test_labels, np.round(predictions))
print('The test accuracy is {0:6.4f} %'.format(accuracy*100))

4/4 [==============================] - 0s 1ms/step
The test accuracy is 96.4912 %

To better understand the model performance, we can also display the confusion matrix.

[24]: # Getting the confusion matrix
from sklearn.metrics import confusion_matrix

confmat = confusion_matrix(test_labels, np.round(predictions), labels=[1,0])
print(confmat)

[[70 2]
[ 2 40]]

As well as, we can use the function classification_report from scikit-learn, to display the precision, recall, F1-
score, macro average accuracy, and weighted average accuracy per class.

[25]: # Classification report: F1 score, Recall, Precision
from sklearn.metrics import classification_report

print(classification_report(test_labels, np.round(predictions)))

precision recall f1-score support

0 0.95 0.95 0.95 42
1 0.97 0.97 0.97 72

accuracy 0.96 114
macro avg 0.96 0.96 0.96 114

weighted avg 0.96 0.96 0.96 114

Visualize the Training Loss and Accuracy

The following figure visualizes the history of model training, and shows the training accuracy and loss of the model
for each of the 100 training epochs. For this purpose, we used the history variable that we assigned to fit when
training the model. It contains an attribute history.history which is a dictionary that stores the loss and accuracy
of the model for each epoch.

These plots are called learning curves and are important for understanding the model performance. It is a good practice
to always create a plot after training a model and analyze the learning curves.

For instance, we can notice that at the end of the 100th epoch, the training loss is still decreasing. Thus, we could have
trained the model for longer than 100 epochs, and this could have resulted in higher accuracy. In the next lectures we
will describe best practices for determining the number of epochs.
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[26]: # plot the accuracy and loss
train_loss = history.history['loss']
acc = history.history['accuracy']

epochsn = np.arange(1, len(train_loss)+1,1)
plt.figure(figsize=(12, 4))

plt.subplot(1,2,1)
plt.plot(epochsn, acc, 'b')
plt.grid(color='gray', linestyle='--')
plt.title('TRAINING ACCURACY')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

plt.subplot(1,2,2)
plt.plot(epochsn,train_loss, 'b')
plt.grid(color='gray', linestyle='--')
plt.title('TRAINING LOSS')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()

15.2.2 Multiclass Classification

In this section, we will consider a multiclass classification problem. Our goal will be to train an ANN model for
classifying the images in the Fashion MNIST dataset into 10 classes.
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Loading the Dataset

Fashion MNIST dataset has 70,000 images, of which 60,000 are allocated for the training set and 10,000 for the test
set. Examples of images in the dataset are shown in the next figure. Each is a grayscale images with 28 x 28 pixels.

The images are classified into the following 10 categories:
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Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

The dataset can be imported directly from Keras datasets.

[27]: # Load the Fashion MNIST dataset
fashion_mnist = tf.keras.datasets.fashion_mnist

(fashion_train, fashion_train_label), (fashion_test, fashion_test_label) = fashion_mnist.
→˓load_data()

[28]: print('Training data inputs', fashion_train.shape)
print('Training labels', fashion_train_label.shape)
print('Testing data inputs', fashion_test.shape)
print('Testing labels', fashion_test_label.shape)

Training data inputs (60000, 28, 28)
Training labels (60000,)
Testing data inputs (10000, 28, 28)
Testing labels (10000,)

Let’s check the shape of the training data and the values in the first image.

[29]: # Shape of each sample
fashion_train[0].shape

[29]: (28, 28)

[30]: # Pixels in the first train image
fashion_train[0]

[30]: array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 13, 73, 0, 0, 1, 4, 0, 0, 0, 0, 1,
1, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
(continues on next page)
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(continued from previous page)

0, 36, 136, 127, 62, 54, 0, 0, 0, 1, 3, 4, 0,
0, 3],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
0, 102, 204, 176, 134, 144, 123, 23, 0, 0, 0, 0, 12,

10, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 155, 236, 207, 178, 107, 156, 161, 109, 64, 23, 77, 130,
72, 15],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
69, 207, 223, 218, 216, 216, 163, 127, 121, 122, 146, 141, 88,
172, 66],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
200, 232, 232, 233, 229, 223, 223, 215, 213, 164, 127, 123, 196,
229, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
183, 225, 216, 223, 228, 235, 227, 224, 222, 224, 221, 223, 245,
173, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
193, 228, 218, 213, 198, 180, 212, 210, 211, 213, 223, 220, 243,
202, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 12,
219, 220, 212, 218, 192, 169, 227, 208, 218, 224, 212, 226, 197,
209, 52],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 99,
244, 222, 220, 218, 203, 198, 221, 215, 213, 222, 220, 245, 119,
167, 56],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 55,
236, 228, 230, 228, 240, 232, 213, 218, 223, 234, 217, 217, 209,
92, 0],

[ 0, 0, 1, 4, 6, 7, 2, 0, 0, 0, 0, 0, 237,
226, 217, 223, 222, 219, 222, 221, 216, 223, 229, 215, 218, 255,
77, 0],

[ 0, 3, 0, 0, 0, 0, 0, 0, 0, 62, 145, 204, 228,
207, 213, 221, 218, 208, 211, 218, 224, 223, 219, 215, 224, 244,
159, 0],
[ 0, 0, 0, 0, 18, 44, 82, 107, 189, 228, 220, 222, 217,
226, 200, 205, 211, 230, 224, 234, 176, 188, 250, 248, 233, 238,
215, 0],
[ 0, 57, 187, 208, 224, 221, 224, 208, 204, 214, 208, 209, 200,
159, 245, 193, 206, 223, 255, 255, 221, 234, 221, 211, 220, 232,
246, 0],
[ 3, 202, 228, 224, 221, 211, 211, 214, 205, 205, 205, 220, 240,
80, 150, 255, 229, 221, 188, 154, 191, 210, 204, 209, 222, 228,
225, 0],
[ 98, 233, 198, 210, 222, 229, 229, 234, 249, 220, 194, 215, 217,
241, 65, 73, 106, 117, 168, 219, 221, 215, 217, 223, 223, 224,
229, 29],
[ 75, 204, 212, 204, 193, 205, 211, 225, 216, 185, 197, 206, 198,
213, 240, 195, 227, 245, 239, 223, 218, 212, 209, 222, 220, 221,
230, 67],
[ 48, 203, 183, 194, 213, 197, 185, 190, 194, 192, 202, 214, 219,
221, 220, 236, 225, 216, 199, 206, 186, 181, 177, 172, 181, 205,

(continues on next page)
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206, 115],
[ 0, 122, 219, 193, 179, 171, 183, 196, 204, 210, 213, 207, 211,
210, 200, 196, 194, 191, 195, 191, 198, 192, 176, 156, 167, 177,
210, 92],
[ 0, 0, 74, 189, 212, 191, 175, 172, 175, 181, 185, 188, 189,
188, 193, 198, 204, 209, 210, 210, 211, 188, 188, 194, 192, 216,
170, 0],
[ 2, 0, 0, 0, 66, 200, 222, 237, 239, 242, 246, 243, 244,
221, 220, 193, 191, 179, 182, 182, 181, 176, 166, 168, 99, 58,
0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 40, 61, 44, 72, 41, 35,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]], dtype=uint8)

[31]: # A list of label names
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',

'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

[32]: # Show the first image
index = 0
plt.figure(figsize=(4,4))
plt.imshow(fashion_train[index], cmap='gray')
# Display the label
image_label = fashion_train_label[index]
print('This type of image is: {}({})'.format(class_names[image_label], image_label))

This type of image is: Ankle boot(9)
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We can also visualize several random images, to ensure that the labels match the images.

[33]: import random

plt.figure(figsize=(6,6))

for index in range(6):
ax = plt.subplot(2, 3, index+1)
random_index = random.choice(range(len(fashion_train)))
plt.imshow(fashion_train[random_index], cmap='gray')
plt.title(class_names[fashion_train_label[random_index]])
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Data Preprocessing

As expected, the pixel values in the images range from 0 to 255. To scale the values to the range from 0 to 1, we can
just divide the training and test sets by 255.0.

[34]: # Scaling the image pixels to be between 0 and 1
fashion_train = fashion_train/255.0
fashion_test = fashion_test/255.0

In addition, to create an ANN with fully-connected layers, we will need to reshape the images into one-dimensional
arrays. Since each image has 28 x 28 = 784 pixels, let’s use reshape to flatten the images.

In the next lecture we will study Convolutional Neural Networks which are particularly suitable for processing image
data, and they can work with 2-dimensional images without the need to flatten the arrays.

[35]: fashion_train = fashion_train.reshape(-1, 784)

[36]: fashion_test = fashion_test.reshape(-1, 784)

[37]: # Check the shape
fashion_train.shape
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[37]: (60000, 784)

Create the ANN

In the next cell, we define the layers in the ANN. The architecture of the model is similar to the model we used in the
previous example. Note that in the arguments for Dense layers we don’t need to specify the units keyword, as the first
positional argument is the number of units (neurons).

Since this is a multiclass classification problem, notice that the number of neurons in output layer is 10, as it needs to
match the number of class labels in the dataset. Also, we need to use softmax activation in the output layer.

[38]: # Define the layers in the network
inputs = Input(shape=(784,))
dense1 = Dense(64, activation='relu')(inputs)
dense2 = Dense(32, activation='relu')(dense1)
outputs = Dense(10, activation='softmax')(dense2)

[39]: fashion_classifier = Model(inputs, outputs)

Compile the ANN

To compile the model, we used the loss sparse_categorical_crossentropy because the labels are integers in ordi-
nal encoding format. If the labels were in one-hot encoding format, we would have used categorical_crossentropy
loss.

[40]: # Compile the model
fashion_classifier.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

Train the ANN

To train the model, we pass the training data and labels. In this case, let’s train the model for 10 epochs, and use a
batch_size of 32 images. Also, we used the default verbose, and the training results are displayed at the end of each
epoch.

[41]: history = fashion_classifier.fit(fashion_train, fashion_train_label, epochs=10, batch_
→˓size=32)

Epoch 1/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.5234 - accuracy: 0.
→˓8152
Epoch 2/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3838 - accuracy: 0.
→˓8618
Epoch 3/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3481 - accuracy: 0.
→˓8727
Epoch 4/10

(continues on next page)
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(continued from previous page)

1875/1875 [==============================] - 3s 2ms/step - loss: 0.3262 - accuracy: 0.
→˓8802
Epoch 5/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3093 - accuracy: 0.
→˓8869
Epoch 6/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2945 - accuracy: 0.
→˓8914
Epoch 7/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2857 - accuracy: 0.
→˓8942
Epoch 8/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2746 - accuracy: 0.
→˓8977
Epoch 9/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2669 - accuracy: 0.
→˓9016
Epoch 10/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2586 - accuracy: 0.
→˓9028

Evaluate the ANN on Test Dataset

By using the evaluate method in Keras, we can see that the classification accuracy on test data is 88.4%.

[42]: # Evaluate on test dataset
evals_test = fashion_classifier.evaluate(fashion_test, fashion_test_label)
print("Classification Accuracy: ", evals_test[1])

313/313 [==============================] - 1s 2ms/step - loss: 0.3391 - accuracy: 0.8843
Classification Accuracy: 0.8842999935150146

We can also use predict() to obtain the model’s predictions.

[43]: predictions = fashion_classifier.predict(fashion_test)

313/313 [==============================] - 0s 1ms/step

In the next call, we checked the shape of the predicted outputs, and since there are 10,000 test images and 10 classes,
the output is (10000, 10).

[44]: # check the shape of the predictions
predictions.shape

[44]: (10000, 10)

Also, we displayed the predictions for the first 5 test images in the next cell. For each image, the model outputs
probabilities for each of the 10 classes. The probabilities sum to 1. For instance, for the first test image, the model
assigned the highest probability to the class with index 9.

[45]: # Display the predictions for the first 5 test images
np.around(predictions[:5],3)
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[45]: array([[0. , 0. , 0. , 0. , 0. , 0.015, 0. , 0.031, 0. ,
0.954],
[0. , 0. , 0.996, 0. , 0.002, 0. , 0.002, 0. , 0. ,
0. ],
[0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. ],
[0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. ],
[0.087, 0. , 0.002, 0. , 0. , 0. , 0.91 , 0. , 0. ,
0. ]], dtype=float32)

To output the indices with the highest probability for each image we can use np.argmax.

[46]: # Display the index with the highest probability for the first 5 test images
np.argmax(predictions[:5], axis=1)

[46]: array([9, 2, 1, 1, 6], dtype=int64)

The ground-truth labels are also shown in the next cell, and they match correctly the predictions for the first 5 test
images.

[47]: # print the ground-truth label for the first 5 test images
fashion_test_label[:5]

[47]: array([9, 2, 1, 1, 6], dtype=uint8)

Visualize the Training Loss and Accuracy

The learning curves are shown in the figure below. It becomes obvious that if we train the model for longer than 10
epochs, we can improve the classification performance.

[48]: # plot the accuracy and loss
train_loss = history.history['loss']
acc = history.history['accuracy']

epochsn = np.arange(1, len(train_loss)+1,1)
plt.figure(figsize=(12, 4))

plt.subplot(1,2,1)
plt.plot(epochsn, acc, 'b')
plt.grid(color='gray', linestyle='--')
plt.title('TRAINING ACCURACY')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

plt.subplot(1,2,2)
plt.plot(epochsn,train_loss, 'b')
plt.grid(color='gray', linestyle='--')
plt.title('TRAINING LOSS')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
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Re-train and Evaluate the ANN

Note that if we re-train the same model on the same training data and evaluate it on the same testing data, in most cases
we will obtain similar, but different values for the accuracy!!!

The reason for this is because every time a model is trained, the values of the network parameters are randomly initial-
ized to small values close to 0 (but not 0 though). Because of the random initialization, the model will converge to a
different solution every time we train it.

Consequently, ANNs have a stochastic nature, meaning that every time we train a model we obtain a different output.

If the repeatability of the results is important, we can use a random seed to initialize the model parameters, and in that
case, the accuracy will be the same if we re-train the model.

[49]: fashion_classifier_2 = Model(inputs, outputs)

# Compile the model
fashion_classifier_2.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# Train the model
fashion_classifier_2.fit(fashion_train, fashion_train_label, epochs=10, batch_size=32,␣
→˓verbose=0)

# Evaluate on test dataset
evals_test = fashion_classifier_2.evaluate(fashion_test, fashion_test_label)
print("Classification Accuracy: ", evals_test[1])

313/313 [==============================] - 1s 2ms/step - loss: 0.3802 - accuracy: 0.8761
Classification Accuracy: 0.8761000037193298
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7.15.3 15.3 Regression with ANNs

In regression tasks, we are interested in predicting single or multiple continuous values. The ANN architectures for
regression tasks are similar to the architectures for classification tasks. The listed recommendations for the input and
hidden layers are the same as for classification tasks. The number of neurons in the output layer depends on the problem.
If we are predicting a single value it will be 1, and if we are predicting multiple values, the number of output neurons
will be set to the number of predicted values.

The choice of activation functions depends on the problem, but in most cases, ReLU will work well in the hidden layers.
Unlike ANNs for classification, ANNs for regression don’t need to have an activation function in the output layer, since
the ANN outputs are continuous value(s).

We stated earlier that the loss function used in regression is usually Mean Squared Error(MSE), or if the dataset
contains outliers, Mean Absolute Error (MAE) loss may be preferred.

A suitable choice for an optimizer is Adam. Other optimizers to try include SGD, RMSProp, Nadam, and others.

Table: Typical values of hyperparameters in ANNs for regression

Hyperparameter Typical value
Neurons in input layer Same as the number of input features
Number of hidden layer(s) Depends on the problem, typically from 1 to 10
Neurons per hidden layer Depends on the problem, typically from 10 to 100
Activation in hidden layers Mostly ReLU
Activation in output layer None in most cases
Loss function MSE or MAE
Optimizer Mostly Adam, SGD, RMSProp

Next, we will present an example of regression with ANNs, and for this purpose, we will use the California Housing
Dataset that is available in scikit-learn.

We will load the California Housing Dataset from scikit-learn as a pandas DataFrame named housing. The objective
of the regression task is to predict the median house value, shown in the column to the right.

[50]: from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing(as_frame=True).frame
housing.head()

[50]: MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
0 8.3252 41.0 6.984127 1.023810 322.0 2.555556 37.88
1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86
2 7.2574 52.0 8.288136 1.073446 496.0 2.802260 37.85
3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85
4 3.8462 52.0 6.281853 1.081081 565.0 2.181467 37.85

Longitude MedHouseVal
0 -122.23 4.526
1 -122.22 3.585
2 -122.24 3.521
3 -122.25 3.413
4 -122.25 3.422

[51]: # Check the shape of the dataset
housing.shape
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[51]: (20640, 9)

We can check if there are missing values, and visualize the histograms of the features.

[52]: housing.isnull().sum()

[52]: MedInc 0
HouseAge 0
AveRooms 0
AveBedrms 0
Population 0
AveOccup 0
Latitude 0
Longitude 0
MedHouseVal 0
dtype: int64

[53]: housing.hist(bins=20, figsize=(8,6))
plt.show()

In the next cell we will check if there are correlated features. We can notice high correlation between the house value
and the number of bedrooms, which is expected. We can also notice high negative correlation between the price and
longitude and latitude. In the following cell we plotted the house value versus longitude and latitude. The plot looks
like the map of California, and we can see that houses that are closer to the coast are more expensive.
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[54]: correlation = housing.corr()
sns.heatmap(correlation, annot=True);
# plt.show()

[55]: housing.plot(kind="scatter", x="Longitude", y="Latitude", c="MedHouseVal", cmap="jet",␣
→˓colorbar=True, legend=True, sharex=False, figsize=(6,6),)
plt.show()
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And, if we check the median house value column, we can see that the values are in the range from 0 to 5.

[56]: plt.plot(housing['MedHouseVal'], 'bo')
plt.show()
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Let’s get the features and the target values, and create training and testing datasets.

[57]: X = housing.drop('MedHouseVal', axis=1)
y = housing['MedHouseVal']

[58]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

[59]: print('Training data inputs', X_train.shape)
print('Training labels', y_train.shape)
print('Testing data inputs', X_test.shape)
print('Testing labels', y_test.shape)

Training data inputs (16512, 8)
Training labels (16512,)
Testing data inputs (4128, 8)
Testing labels (4128,)

[60]: # Scaling the features to be between 0 and 1
scaler = MinMaxScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Let’s use a similar ANN architecture as in the classification tasks, with two Dense layers with ReLU activations, having
32 neurons each.

Since we would like to predict a single value, we will use 1 neuron in the output layer, without activation function.
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[61]: # Define the layers in the network
inputs = Input(shape=(8,))
dense1 = Dense(32, activation='relu')(inputs)
dense2 = Dense(32, activation='relu')(dense1)
outputs = Dense(1)(dense2)

[62]: # Define the model by providing the inputs and outputs
model_2 = Model(inputs, outputs)

We can inspect the architecture of the ANN with the summary() method.

[63]: model_2.summary()

Model: "model_3"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) [(None, 8)] 0

dense_6 (Dense) (None, 32) 288

dense_7 (Dense) (None, 32) 1056

dense_8 (Dense) (None, 1) 33

=================================================================
Total params: 1377 (5.38 KB)
Trainable params: 1377 (5.38 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

In this case, we will use mean_squared_error loss function. During training, the loss function will calculate the
squared difference between the target value 𝑦 and the predicted value 𝑦, calculated as

∑︀
(𝑦 − 𝑦)2.

We can use the Adam optimizer for regression tasks as well. Note that we cannot measure accuracy as in classification
tasks, therefore we don’t need to specify a performance metric. Alternatively, we can use mean-squared error, mean-
absolute error, or R2 score as metrics.

[64]: # Compile the model
model_2.compile(loss='mean_squared_error', optimizer='adam')

Similarly to classification tasks, to fit the model we will provide the training data and the target values. Let’s fit the
model for 200 epochs.

[65]: history = model_2.fit(X_train_scaled, y_train, epochs=200, verbose=0)

[66]: # plot the loss
train_loss = history.history['loss']

epochsn = np.arange(1, len(train_loss)+1,1)
plt.figure(figsize=(4, 3))

plt.plot(epochsn,train_loss, 'b')
plt.grid(color='gray', linestyle='--')

(continues on next page)
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plt.title('TRAINING LOSS')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()

We will again use predict to obtain the outputs of the model. Let’s check the predicted values for the first 10 test
samples.

[67]: predictions = model_2.predict(X_test_scaled[:10])
predictions

1/1 [==============================] - 0s 52ms/step

[67]: array([[0.5398234],
[0.9367044],
[4.2926064],
[2.5250819],
[2.730356 ],
[1.5289242],
[2.1832035],
[1.4888892],
[2.338513 ],
[4.607725 ]], dtype=float32)

And we can compare the predicted values by the model to the target ground-truth values. It would be easier to create a
plot of the predicted and target values, as in the following cell. We can see that for most values, the model predictions
are close to the target values.

[68]: # Ground-truth values
np.array(y_test[:10])

[68]: array([0.477 , 0.458 , 5.00001, 2.186 , 2.78 , 1.587 , 1.982 ,
1.575 , 3.4 , 4.466 ])
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[69]: plt. figure(figsize=(8, 4))
plt.plot(predictions, 'rx', label='Predicted values')
plt.plot(np.array(y_test[:10]), 'go', label='Target values')
plt.legend()
plt.xlabel('Index')
plt.ylabel('Median House Value')
plt.show()

As we mentioned, metrics that we can use to evaluate the performance of regression models include mean-squared error
(MSE), mean-absolute error (MAE), or R2 score. R2 score (or 𝑅2 pronounced ‘R squared’) is also called coefficient
of determination, and evaluates the goodness of fit of regression models, by measuring the proportion of the variation
in the target variable that is contained in the predicted variable.

In the next cell we imported these metrics from scikit-learn and calculated their values. Note that for MSE and MAE
lower values indicate better performance, and for R2 score greater values indicate better performance.

[70]: from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

all_preds = model_2.predict(X_test_scaled)

print(f'MSE: {mean_squared_error(y_test, all_preds):7.4f}')
print(f'MAE: {mean_absolute_error(y_test, all_preds):7.4f}')
print(f'R2 score: {r2_score(y_test, all_preds):7.4f}')

129/129 [==============================] - 0s 1ms/step
MSE: 0.3119
MAE: 0.3678
R2 score: 0.7620
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7.15.4 15.4 Saving and Loading Models in Keras

To save a model in Keras, we simply use the save() method, and provide the path to the directory.

The saved model contains the architecture with the layers, the weights for all layers in the model, and other information
related to the used optimizer, loss, and metrics.

There are two possible formats to save the models into: HDF5 and Keras-TensorFlow SavedModel. If we provide the
.h5 extension, then the saved model format is HDF5. If we provide the .keras extension, or if we don’t provide any
extension, the model will be saved into Keras-TensorFlow SavedModel format.

Keras-TensorFlow SavedModel is the default, and it is recommended, since it is a newer format, and it saves additional
information that is not included in the h5 file, such as losses and metrics (e.g., they can be useful if we wish to resume
training).

Let’s use the Keras-TensorFlow SavedModel format to save the first classification model model_1 from Section 15.2.1
in the current working directory under the name classification_model.

[71]: # Saving a model
model_1.save('classification_model.keras')

To load a saved model we will use the load_model method. It returns the architecture and weights of the saved model.

Let’s load the save model as model_3.

[72]: # Loading a saved model
from keras.models import load_model

model_3 = load_model('classification_model.keras')

Afterward, we can use the loaded model as we would use any other model.

Let’s evaluate the model on the test dataset, just to check whether the returned value would be as expected.

[73]: # Evaluate on test dataset
evals_test = model_3.evaluate(test_data, test_labels)
print("Classification Accuracy: ", evals_test[1])

4/4 [==============================] - 0s 0s/step - loss: 0.0708 - accuracy: 0.9649
Classification Accuracy: 0.9649122953414917

The summary of the model is displayed below.

[74]: model_3.summary()

Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 30)] 0

dense (Dense) (None, 30) 930

dense_1 (Dense) (None, 15) 465

dense_2 (Dense) (None, 1) 16

=================================================================
(continues on next page)
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Total params: 1411 (5.51 KB)
Trainable params: 1411 (5.51 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

7.15.5 Appendix

The material in the Appendix is not required for quizzes and assignments.

Keras-TensorFlow Model APIs

In Keras-TensorFlow, there are three ways to build ANNs:

• Functional API

• Sequential API

• Subclassing API

Functional API in Keras

In the above examples, we used Functional API to build our models. Repeated again in the next cell is the first model
example for classification which we used in Section 5.2.1.

[75]: # Define the layers in the network
inputs = Input(shape=(30,))
dense1 = Dense(units=30, activation='relu')(inputs)
dense2 = Dense(units=15, activation='relu')(dense1)
outputs = Dense(units=1, activation='sigmoid')(dense2)

# Define the model by providing the inputs and outputs
model_1 = Model(inputs, outputs)

Functional API is the recommended API, because it is a more recent and advanced API in comparison to Sequential
API, but it is simpler than the Subclassing API.

Functional API allows to build models with multiple inputs and outputs, or with custom connections between the
hidden layers (examples are residual or skip connections, which we will study in the following lectures). Because of
these characteristics, Functional API is well suited for creating networks for advanced tasks, such as object detection,
segmentation, and others.

Sequential API in Keras

Sequential API is the initial option in Keras for model building, as well as it is the simplest.

The corresponding sequential model to the above model_1 is shown in the next cell. To create the model, we just add
the layers in a sequence, one after another.

[76]: from keras.models import Sequential

# Define the model and the layers in the network
(continues on next page)
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(continued from previous page)

model_1_seq = Sequential([
Dense(30, activation='relu'),
Dense(15, activation='relu'),
Dense(1, activation='sigmoid')])

After the model is created, the steps of compiling, training, and evaluation are the same, as shown in the next cell. As
we explained above, the reason that the accuracy of model_1_seq is different than the accuracy of model_1 is not
because of the API used, but because of the stochastic nature of ANNs.

[77]: # Compile the model
model_1_seq.compile(optimizer='adam',

loss='binary_crossentropy',
metrics=['accuracy'])

# Train the model
model_1_seq.fit(train_data, train_labels, epochs=100, batch_size=64, verbose=0)

# Evaluate on test dataset
evals_test_seq = model_1_seq.evaluate(test_data, test_labels)
print("Classification Accuracy: ", evals_test_seq[1])

4/4 [==============================] - 0s 0s/step - loss: 0.0672 - accuracy: 0.9825
Classification Accuracy: 0.9824561476707458

Sequential API is suitable for simple classification or regression tasks. However, this API is not suited for tasks with
multiple inputs or outputs, or for networks with advanced architectures.

Subclassing API in Keras

Subclassing API is designed for building custom models and having full control of every step in the model building
and training. It is the most suitable for building models with complex or custom architectures.

[78]: # # Define the layers in the network
class Model1Subclass(Model):

def __init__(self, **kwargs):
super().__init__()
self.dense_1 = Dense(30, activation='relu')
self.dense_2 = Dense(15, activation='relu')
self.dense_3 = Dense(1, activation='sigmoid')

def call(self, inputs):
x = self.dense_1(inputs)
x = self.dense_2(x)
x = self.dense_3(x)

return x

# Instantiate the model
model_1_subclass = Model1Subclass()
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[79]: # Compile the model
model_1_subclass.compile(optimizer='adam',

loss='binary_crossentropy',
metrics=['accuracy'])

# Train the model
model_1_subclass.fit(train_data, train_labels, epochs=100, batch_size=64, verbose=0)

# Evaluate on test dataset
evals_test_subclass = model_1_subclass.evaluate(test_data, test_labels)
print("Classification Accuracy: ", evals_test_subclass[1])

4/4 [==============================] - 0s 2ms/step - loss: 0.0725 - accuracy: 0.9825
Classification Accuracy: 0.9824561476707458

The Subclassing API in Keras is also similar to the model building in PyTorch. We will learn about PyTorch in an
upcoming lecture.

7.15.6 References

1. Complete Machine Learning Package, Jean de Dieu Nyandwi, available at: https://github.com/Nyandwi/
machine_learning_complete.

2. Implementing Linear Regression on California Housing Dataset, Debarshi Raj Basumatary, available at: https:
//medium.com/mlearning-ai/implementing-linear-regression-on-california-housing-dataset-378e14e421b7.
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7.16.1 16.1 Introduction to Convolutional Neural Networks

Convolutional Neural Networks (CNNs), also known as ConvNets have accelerated various computer vision tasks,
such as image recognition and classification, image segmentation, and object detection. CNNs have been used in related
applications, including autonomous vehicles, medical image diagnosis, intelligent robots, and others.

A typical architecture of CNN is shown below and consists of 3 main types of layers: convolutional layers, pooling
layers, and fully-connected (dense) layers. CNNs typically have multiple blocks of convolutional and pooling layers,
followed by fully-connected layers. The optimal number of layers is task-dependent, and it is a hyperparameter that
needs to be tuned by the user during the training and model selection step.

Figure: Architecture of a CNN.

Each layer in CNNs transforms the input images into a higher-level representation. The initial layers in CNNs learn
low-level features (such as edges and lines), the middle layers learn mid-level features (e.g., textures and parts), and the
last layers learn high-level features (such as objects). The fully-connected layers use the high-level features to classify
the input image.

Figure: Extracted features in a CNN.
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Convolutional Layers

The process of convolution is to pass a convolutional filter to each pixel in an image, multiply the corresponding pixels,
and calculate the sum. This process is repeated until the filter is slid over all image pixels.

Figure: Convolution process.

Modern deep learning libraries, such as TensorFlow and PyTorch, allow to create convolutional layers in one line of
code, as follows.

tf.keras.layers.Conv2D(. . . ..)

Beside 2D convolutional filters that are used for processing images, 3D convolutional layers are used for analyzing
videos, and 1D convolutional layers are used for analyzing time-series data.

The output of a convolutional layer is high-dimensional feature maps, and its dimension depends on the number of
convolutional filters used in the layer. For example, if the layer has 32 filters, then we will have 32 feature maps at the
output.

Pooling layers

Pooling layers are used to reduce the size of the feature maps output by convolutional layers, which reduces the number
of network parameters and the computational cost for training the model. Pooling layers are also helpful for selecting
more imporant information from the feature maps in the previous layer, they reduce the sensitivity of the model to the
exact location of objects in inputs images, and they reduce the impact of noise in input data.

There are different pooling options, although the most common is the Maxpooling layer, which reduces the image sizes
by keeping the pixels with the maximum intensity.

Implementing a pooling layer in most frameworks is very simple. The following figure depicts Maxpooling with a
pool_size=2, which means that the output is the maximum value for each square of 2x2 pixels.

tf.keras.layers.MaxPooling2D(. . . )

Figure: Pooling layer with a pool_size=2.

The portion of the network that consists of convolutional and pooling layers is often called an encoder, since it is used
for encoding the information in input data into a representation that is more useful for the task at hand. Similarly, the
portion of the network that consists of fully-connected layers is referred to as classifier (head, top) of the network.
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Fully-connected Layers (Densely-connected Layers)

The last layers in ConvNets are fully-connected layers, that match the produced feature maps from the previous layers
to the labels of the original image.

tf.keras.layers.Dense(....)

7.16.2 16.2 Loading the Dataset

In this notebook, we are going to use one of the most well-known datasets for image classification called CIFAR-10.

CIFAR-10 consists of 60,000 color images in 10 categories. The 10 classes are: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, truck.

Each class contains 6,000 images. In the dataset, 50,000 images are allocated for training, and 10,000 for testing. The
top accuracy on the test dataset is about 90%.

You can learn more about the dataset here.

Note that there is a larger version with 100 classes called CIFAR-100.

CIFAR-10 is available in Keras built-in datasets, so we can simply load the data by using the helper function keras.
datasets.cifar10.load_data().

[ ]: # import required libraries
import tensorflow as tf
from tensorflow import keras

import numpy as np
import matplotlib.pyplot as plt

[ ]: # Print the version of tf
print("TensorFlow version:{}".format(tf.__version__))

TensorFlow version:2.13.0

[ ]: # Load the train and test images and labels
(train_data, train_label), (test_data, test_label) = keras.datasets.cifar10.load_data()

Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170498071/170498071 [==============================] - 3s 0us/step

As usual, we can inspect the shapes of the training and testing datasets.

Note that each image is a 32x32x3 tensor, having a size of 32x32 pixels and 3 channels corresponding to the RGB
(red-green-blue) channels.

[ ]: print('Training images', train_data.shape)
print('Training labels', train_label.shape)
print('Testing images', test_data.shape)
print('Testing labels', test_label.shape)

Training images (50000, 32, 32, 3)
Training labels (50000, 1)
Testing images (10000, 32, 32, 3)
Testing labels (10000, 1)
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Data Preprocessing

The values for the pixel intensities in the images are in the range between 0 and 255. The type is uint8which stands for
unsigned integer with 8 bits, that is, the possible values are between 20 = 1 and 28 = 256. This means that each pixel
has an intensity value in that range, where 0 is a black pixel, 255 is a white pixel, and all other colors are in between.

[ ]: # Display the range of images
print('Max pixel value', np.max(train_data))
print('Min pixel value', np.min(train_data))
print('Average pixel value', np.mean(train_data))
print('Data type', train_data[0].dtype)

Max pixel value 255
Min pixel value 0
Average pixel value 120.70756512369792
Data type uint8

When processing image data with neural networks, the pixel values are commonly normalized to the [0, 1] range. This
allows the networks to train faster and it usually leads to better results. Let’s normalize the images by dividing them
with the maximum intensity of 255, and check again if the scaled data look correct. Note that the data type after the
normalization is float64.

[ ]: # Normalize the images
train_data = train_data / 255
test_data = test_data / 255

[ ]: # Display the range of images (to make sure they are in the [0, 1] range)
print('Max pixel value', np.max(train_data))
print('Min pixel value', np.min(train_data))
print('Average pixel value', np.mean(train_data))
print('Data type', train_data[0].dtype)

Max pixel value 1.0
Min pixel value 0.0
Average pixel value 0.4733630004850874
Data type float64

The labels for the 10 classes in CIFAR-10 are shown below.

Label Description
0 airplane
1 automobile
2 bird
3 cat
4 deer
5 dog
6 frog
7 horse
8 ship
9 truck

Let’s inspect the first 10 values in the labels. We can see that each label corresponds to one of the 10 categories.

Also, in the next cell we plotted the first 100 labels, and we can notice that they have values between 0 and 9, so
everything looks good.
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[ ]: print(train_label[:10])

[[6]
[9]
[9]
[4]
[1]
[1]
[2]
[7]
[8]
[3]]

[ ]: plt.plot(train_label[:100], 'o')
plt.show()

We can convert the labels to one-hot encoded values, by using the Keras function to_categorical. This transforms
each label into a row of 10 values, since there are 10 classes. Note that for the first row now only the column with index
6 is 1, for the second row the last column is 1, etc., and all other values are 0.

[ ]: # Convert the labels to one-hot encoding format
train_label_onehot = keras.utils.to_categorical(train_label, 10)
test_label_onehot = keras.utils.to_categorical(test_label, 10)

print('Labels train shape: {}'.format(train_label_onehot.shape))

Labels train shape: (50000, 10)
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[ ]: # Check the labels
train_label_onehot[:5]

array([[0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)

Let’s visualize some images to see what they look like. We can notice that the resolution is quite low, since they are
32x32 pixels.

[ ]: label_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
→˓'ship', 'truck']

# Plot a few images to check if the labels are correct
plt.figure(figsize=(12, 9))
for n in range(9):

i = np.random.randint(0, len(train_data), 1)
ax = plt.subplot(3, 3, n+1)
plt.imshow(train_data[i[0]])
plt.title('Label: ' + str(label_names[train_label[i[0]][0]]))
plt.axis('off')
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7.16.3 16.3 Creating, Training, and Evaluating a CNN Model

Create the CNN

Next, we are going to define the network architecture with the Keras library, which is a high-level API developed on
top of TensorFlow. Recall from the previous lecture that the main data structures in Keras are layers and models.

In the first cell below we imported the layers, and afterward we defined the layers.

We need to first introduce an Input layer to provide the size of the data, and in this case, the shape of the input data is
set to (32,32,3). This is because the images are arrays with shape 32x32x3.

Next, we will include a convolutional layer Conv2D. The arguments of Conv2D layer in Keras are:

• filters: define the number of filters in the layer.

• kernel_size: the height and width of each filter, defined as an integer such as kernel_size=3, or a tuple such
as kernel_size=(3,3).

• padding: it is not a very important argument, when it is equal to 'same' it means that the output images are the
same size as input images; otherwise, the output images can be slightly smaller.
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Next, we will include a pooling layer MaxPooling2D. We can specify the pooling size with the pool_size argument,
such as pool_size=3. Otherwise, the default pool size is 2.

ConvNets typically consist of several blocks of convolutional and pooling layers.

And Fully Connected Layers are used for matching the compressed feature maps to their labels.

And there is one more layer that is used called Flatten. This layer is needed because the outputs of the convolutional
and maxpooling layers are 3-dimensional tensors, but the dense layers require one-dimensional data (vectors). The
Flatten layer just concatenates (flattens) all dimensions of a tensor into an 1D array.

For example, the following layer that we defined below,

conv1b = Conv2D(filters=32, kernel_size=3, padding='same')(conv1a)

is a convolutional layer, which takes as input the previous layer named conv1a. The layer conv1b has 32 convolutional
filters of size 3, and padding is applied to preserve the size of the images.

[ ]: # import the layers and the model
from keras.models import Model
from keras.layers import Input
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten

[ ]: # Define the layers in the model
inputs = Input(shape=(32, 32, 3))
conv1a = Conv2D(filters=32, kernel_size=3, padding='same')(inputs)
conv1b = Conv2D(filters=32, kernel_size=3, padding='same')(conv1a)
pool1 = MaxPooling2D()(conv1b)
conv2a = Conv2D(filters=64, kernel_size=3, padding='same')(pool1)
conv2b = Conv2D(filters=64, kernel_size=3, padding='same')(conv2a)
pool2 = MaxPooling2D()(conv2b)
conv3a = Conv2D(filters=128, kernel_size=3, padding='same')(pool2)
conv3b = Conv2D(filters=128, kernel_size=3, padding='same')(conv3a)
pool3 = MaxPooling2D()(conv3b)
flat = Flatten()(pool3)
dense1 = Dense(128, activation='relu')(flat)
dense2 = Dense(64, activation='relu')(dense1)
outputs = Dense(10, activation='softmax')(dense2)

# Define the model with inputs and outputs
cifar_cnn = Model(inputs, outputs)

Also note that in multi-class classification problems, the last Dense layer has softmax activation function. Softmax
activation outputs a multiclass probability distribution, that is, it computes the probability that an image belongs to one
of the 10 classes.

After we define the layers, we create the model as an instance of the Model class, for which the arguments are the input
and output layers.

We can inspect the architecture of the CNN with cifar_cnn.summary().

[ ]: # Model summary
cifar_cnn.summary()
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Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 32, 32, 3)] 0

conv2d (Conv2D) (None, 32, 32, 32) 896

conv2d_1 (Conv2D) (None, 32, 32, 32) 9248

max_pooling2d (MaxPooling2 (None, 16, 16, 32) 0
D)

conv2d_2 (Conv2D) (None, 16, 16, 64) 18496

conv2d_3 (Conv2D) (None, 16, 16, 64) 36928

max_pooling2d_1 (MaxPoolin (None, 8, 8, 64) 0
g2D)

conv2d_4 (Conv2D) (None, 8, 8, 128) 73856

conv2d_5 (Conv2D) (None, 8, 8, 128) 147584

max_pooling2d_2 (MaxPoolin (None, 4, 4, 128) 0
g2D)

flatten (Flatten) (None, 2048) 0

dense (Dense) (None, 128) 262272

dense_1 (Dense) (None, 64) 8256

dense_2 (Dense) (None, 10) 650

=================================================================
Total params: 558186 (2.13 MB)
Trainable params: 558186 (2.13 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

Compile the CNN

Next, we need to compile the model, and provide the loss function, optimizer, and metric.

From the previous lecture, we know that the following three crossentropy losses are commonly used in Keras:

• binary_crosssentropy used for binary classification (i.e., there are only 2 classes).

• categorical_crossentropy used for multiclass classification (3 and more classes) and the target labels are
encoded in one-hot matrix format.

• sparse_categorical_crossentropy used for multiclass classification (3 and more classes) and the target
labels are encoded in ordinal format.
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Since we converted the target labels into one-hot encoding format, we will use categorical crossentropy.

Let’s use the Adam optimizer, and accuracy metric.

[ ]: cifar_cnn.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])

Train the CNN

Training CNNs is similar to training Fully-connected NNs. We use the fit function and list the train data and labels,
number of epochs, and batch size. Here we used a batch size of 128 images, hence, since the training dataset has 50,000
images, the updates of the model parameters will be repeated 50,000/128 = 391 times (notice this number under the
Epoch in the cell output below). Since we selected 10 epochs, this means there will be 3,910 training steps in total.

[ ]: cifar_cnn.fit(train_data, train_label_onehot, epochs=10, batch_size=128)

Epoch 1/10
391/391 [==============================] - 17s 13ms/step - loss: 1.4524 - accuracy: 0.
→˓4773
Epoch 2/10
391/391 [==============================] - 5s 12ms/step - loss: 0.9526 - accuracy: 0.6673
Epoch 3/10
391/391 [==============================] - 5s 12ms/step - loss: 0.7646 - accuracy: 0.7346
Epoch 4/10
391/391 [==============================] - 6s 14ms/step - loss: 0.6408 - accuracy: 0.7783
Epoch 5/10
391/391 [==============================] - 6s 14ms/step - loss: 0.5399 - accuracy: 0.8123
Epoch 6/10
391/391 [==============================] - 5s 12ms/step - loss: 0.4562 - accuracy: 0.8411
Epoch 7/10
391/391 [==============================] - 7s 17ms/step - loss: 0.3865 - accuracy: 0.8641
Epoch 8/10
391/391 [==============================] - 5s 13ms/step - loss: 0.3291 - accuracy: 0.8851
Epoch 9/10
391/391 [==============================] - 5s 12ms/step - loss: 0.2797 - accuracy: 0.9020
Epoch 10/10
391/391 [==============================] - 5s 12ms/step - loss: 0.2475 - accuracy: 0.9130

<keras.src.callbacks.History at 0x78fa92328b20>

Evaluate on Test Data

We can first use the predict function to output the class for each image in the test dataset, and afterward use
accuracy_score to calculate the accuracy.

[ ]: from sklearn.metrics import accuracy_score

preds = cifar_cnn.predict(test_data)

accuracy = accuracy_score(test_label, np.argmax(preds, axis=1))
print('The test accuracy is {0:5.2f} %'.format(accuracy*100))
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313/313 [==============================] - 1s 3ms/step
The test accuracy is 73.00 %

We can check that the shape of the predicted outputs is (10000,10), since there are 10,000 test images and 10 classes,

Let’s also display the predictions for the first 5 test images in the following cell. The model outputs probabilities for
each of the 10 classes. The probabilities sum to 1. For instance, for the first test image, the model assigned the highest
probability of 0.99 to the class with index 3.

[ ]: # check the shape of the predictions
preds.shape

(10000, 10)

[ ]: # display the predictions for the first 5 test images
print('Predictions for first 5 test images:\n', np.around(preds[:5],3))

Predictions for first 5 test images:
[[0. 0. 0. 0.99 0. 0.01 0. 0. 0. 0. ]
[0.004 0.754 0. 0. 0. 0. 0. 0. 0.241 0.002]
[0. 0. 0. 0. 0. 0. 0. 0. 0.993 0.006]
[0.825 0. 0. 0. 0. 0. 0. 0. 0.174 0. ]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. ]]

Next, let’s output the indices with the highest probability for each image with np.argmax, and compare them to the
ground-truth labels.

[ ]: # print the index with highest probability for the first 5 test images
np.argmax(preds[:5], axis=1)

array([3, 1, 8, 0, 6])

[ ]: # print the ground-truth label for the first 5 test images
test_label[:5]

array([[3],
[8],
[8],
[0],
[6]], dtype=uint8)

And, a simpler way to calculate only the accuracy is with evaluate.

[ ]: # Evaluate on test dataset
evals_test = cifar_cnn.evaluate(test_data, test_label_onehot)
print("Classification Accuracy: ", evals_test[1])

313/313 [==============================] - 1s 3ms/step - loss: 1.1302 - accuracy: 0.7300
Classification Accuracy: 0.7300000190734863

The important thing to notice is that the accuracy on the training dataset reached about 90%, while the accuracy on the
test dataset is 73%. This means that the model overfits the training data. That is, the model begins to memorize the
training data, and it learns to predict on the training dataset very well, but the generalization ability on unseen images
is quite low. In the next sections we will learn how to deal with that.
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Plot the Predictions

But first, let’s plot a few images and the predicted class labels by the model.

[ ]: # Plot a few images to check them
plt.figure(figsize=(12, 6))
for n in range(9):

i = np.random.randint(0, len(test_data), 1)
ax = plt.subplot(3, 3, n+1)
plt.imshow(test_data[i[0]])
plt.title('Label: ' + str(label_names[test_label[i[0]][0]]) + ' Predicted: ' +␣

→˓str(label_names[np.argmax(preds[i[0]])]))
plt.axis('off')

7.16.4 16.4 Introduce a Validation Dataset

To be able to observe if the model overfits, one more dataset is introduced, referred to as a validation dataset. The
original training dataset is typically randomly split, and approximately 70-80% is used as a training dataset, and 20-30%
is used as a validation dataset.

This way, at the end of every epoch, we will calculate the accuracy of the model on the validation dataset. As the model
is trained, if the training accuracy increases, but the validation accuracy decreases, it means that the model begins to
overfit.

In Keras, the fit function has a validation_split argument, which allows us to use a percent of the training data
for validation. In the next cell, we will use 20%, meaning that out of the 50,000 training images, the model will use
40,000 for training, and 10,000 for validation. An alternative way to introduce validation dataset is to first manually
split the training dataset into two subsets of data, and in the fit function to pass the validation features and labels
as a tuple named validation_data. However, the first option with using a validation_split argument is much
simpler, and therefore preferred.

Note also that in the cell below we will just continue training the same model. If we re-defined and re-compiled the
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model, we would have begun the training from scratch.

Now we can notice the overfitting, because the training accuracy continues to increase, but the validation accuracy
decreases.

[ ]: cifar_cnn.fit(train_data, train_label_onehot,
epochs=10, batch_size=128,
validation_split=0.2)

Epoch 1/10
313/313 [==============================] - 5s 17ms/step - loss: 0.2223 - accuracy: 0.
→˓9208 - val_loss: 0.2551 - val_accuracy: 0.9123
Epoch 2/10
313/313 [==============================] - 4s 14ms/step - loss: 0.1890 - accuracy: 0.
→˓9344 - val_loss: 0.3026 - val_accuracy: 0.8928
Epoch 3/10
313/313 [==============================] - 4s 13ms/step - loss: 0.1653 - accuracy: 0.
→˓9440 - val_loss: 0.3451 - val_accuracy: 0.8859
Epoch 4/10
313/313 [==============================] - 4s 14ms/step - loss: 0.1461 - accuracy: 0.
→˓9494 - val_loss: 0.3874 - val_accuracy: 0.8771
Epoch 5/10
313/313 [==============================] - 4s 13ms/step - loss: 0.1552 - accuracy: 0.
→˓9463 - val_loss: 0.4818 - val_accuracy: 0.8587
Epoch 6/10
313/313 [==============================] - 4s 14ms/step - loss: 0.1367 - accuracy: 0.
→˓9533 - val_loss: 0.4675 - val_accuracy: 0.8638
Epoch 7/10
313/313 [==============================] - 4s 14ms/step - loss: 0.1320 - accuracy: 0.
→˓9553 - val_loss: 0.5117 - val_accuracy: 0.8595
Epoch 8/10
313/313 [==============================] - 4s 14ms/step - loss: 0.1268 - accuracy: 0.
→˓9568 - val_loss: 0.6008 - val_accuracy: 0.8423
Epoch 9/10
313/313 [==============================] - 5s 14ms/step - loss: 0.1170 - accuracy: 0.
→˓9603 - val_loss: 0.6020 - val_accuracy: 0.8495
Epoch 10/10
313/313 [==============================] - 4s 14ms/step - loss: 0.1050 - accuracy: 0.
→˓9664 - val_loss: 0.6615 - val_accuracy: 0.8443

<keras.src.callbacks.History at 0x78f9ac92dfc0>

[ ]: # Evaluate on test dataset
evals_test = cifar_cnn.evaluate(test_data, test_label_onehot)
print("Classification Accuracy: ", evals_test[1])

313/313 [==============================] - 1s 3ms/step - loss: 1.7219 - accuracy: 0.7239
Classification Accuracy: 0.7239000201225281
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7.16.5 16.5 Dropout Layers

One way to deal with overfitting in neural networks is to introduce Dropout layers. The idea of dropout is very simple:
during the training, at each step of processing a batch of images, a portion of the neurons in a layer are randomly
disabled. This introduces randomness in the network, and it helps to improve model performance and reduce overfitting.

Dropout can be considered to be similar to the ensemble methods, where during each iteration, a slightly different
model is trained, which uses only a portion of all neurons.

In the next cell, we add several dropout layers, where for instance, dropout of 0.2 means that 20% of the neurons in that
layer are randomly dropped.

[ ]: from keras.layers import Dropout

# Define the layers
inputs = Input(shape=(32, 32, 3))
conv1a = Conv2D(filters=32, kernel_size=3, padding='same')(inputs)
conv1b = Conv2D(filters=32, kernel_size=3, padding='same')(conv1a)
pool1 = MaxPooling2D()(conv1b)
dropout1 = Dropout(0.2)(pool1)
conv2a = Conv2D(filters=64, kernel_size=3, padding='same')(dropout1)
conv2b = Conv2D(filters=64, kernel_size=3, padding='same')(conv2a)
pool2 = MaxPooling2D()(conv2b)
dropout2 = Dropout(0.2)(pool2)
conv3a = Conv2D(filters=256, kernel_size=3, padding='same')(dropout2)
conv3b = Conv2D(filters=256, kernel_size=3, padding='same')(conv3a)
pool3 = MaxPooling2D()(conv3b)
flat = Flatten()(pool3)
dense1 = Dense(128, activation='relu')(flat)
dropout3 = Dropout(0.2)(dense1)
dense2 = Dense(64, activation='relu')(dropout3)
dropout4 = Dropout(0.2)(dense2)
outputs = Dense(10, activation='softmax')(dropout4)

# Define the model with inputs and outputs
cifar_cnn_2 = Model(inputs, outputs)

[ ]: # compile model
cifar_cnn_2.compile(optimizer='adam',

loss='categorical_crossentropy',
metrics=['accuracy'])

# fit model
history = cifar_cnn_2.fit(train_data, train_label_onehot,

epochs=40, batch_size=128,
validation_split=0.2, verbose=0)

[ ]: # Evaluate on test dataset
evals_test = cifar_cnn_2.evaluate(test_data, test_label_onehot)
print("Classification Accuracy: ", evals_test[1])

313/313 [==============================] - 1s 4ms/step - loss: 1.0808 - accuracy: 0.7516
Classification Accuracy: 0.7516000270843506

The performance was increased to about 75.1% from the initial 73% for the model without dropout layers.
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Let’s create a figure with the learning curves, to show the accuracy and loss of the model. The blue lines indicate the
model performance on the training dataset and the red lines indicate the performance on the validation dataset.

We can notice that overfitting begins around epoch 15, when the training accuracy increases, but the validation accuracy
stays about the same. Similarly, the training loss decreases, but the validation loss increases after epoch 15. The plots
of the accuracy and loss are fairly correlated, however as we can see the accuracy can stay constant when the loss is
changing.

[ ]: # plot the accuracy and loss
train_loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

epochsn = np.arange(1, len(train_loss)+1,1)
plt.figure(figsize=(12, 4))

plt.subplot(1,2,1)
plt.plot(epochsn, acc, 'b', label='Training Accuracy')
plt.plot(epochsn, val_acc, 'r', label='Validation Accuracy')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('ACCURACY')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

plt.subplot(1,2,2)
plt.plot(epochsn,train_loss, 'b', label='Training Loss')
plt.plot(epochsn,val_loss, 'r', label='Validation Loss')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('LOSS')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()

560 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

7.16.6 16.6 Batch Normalization

Another type of layers that are used to reduce overfitting are Batch Normalization layers.

Similarly to scaling the input features to range [0,1] or to a Gaussian distribution with 0 mean and 1 standard deviation,
Batch Normalization layers scale a batch of data to have 0 mean and 1 standard deviation. This reduces the instability
in training the network due to differences among batches of data, and also reduces the overfitting.

[ ]: from keras.layers import BatchNormalization

# Define the layers
inputs = Input(shape=(32, 32, 3))
conv1a = Conv2D(filters=32, kernel_size=3, padding='same')(inputs)
conv1b = Conv2D(filters=32, kernel_size=3, padding='same')(conv1a)
bn1 = BatchNormalization()(conv1b)
pool1 = MaxPooling2D()(bn1)
dropout1 = Dropout(0.2)(pool1)
conv2a = Conv2D(filters=64, kernel_size=3, padding='same')(dropout1)
conv2b = Conv2D(filters=64, kernel_size=3, padding='same')(conv2a)
bn2 = BatchNormalization()(conv2b)
pool2 = MaxPooling2D()(bn2)
dropout2 = Dropout(0.2)(pool2)
conv3a = Conv2D(filters=256, kernel_size=3, padding='same')(dropout2)
conv3b = Conv2D(filters=256, kernel_size=3, padding='same')(conv3a)
bn3 = BatchNormalization()(conv3b)
pool3 = MaxPooling2D()(bn3)
flat = Flatten()(pool3)
dense1 = Dense(128, activation='relu')(flat)
dropout3 = Dropout(0.2)(dense1)
dense2 = Dense(64, activation='relu')(dropout3)
dropout4 = Dropout(0.2)(dense2)
outputs = Dense(10, activation='softmax')(dropout4)

# Define the model with inputs and outputs
cifar_cnn_3 = Model(inputs, outputs)

[ ]: # compile model
cifar_cnn_3.compile(optimizer='adam',

loss='categorical_crossentropy',
metrics=['accuracy'])

Also, let’s use the argument verbose=0 to not display the loss and accuracy after every epoch. Instead, after the
training is complete, we will display the learning curves to observe the performance of the model. We increased the
number of epochs to 60 for this model.

And, we will use the datatime python library to measure and display the training time of the model.

[ ]: import datetime
now = datetime.datetime.now

t = now()
# fit model
history = cifar_cnn_3.fit(train_data, train_label_onehot,

epochs=60, batch_size=128,
(continues on next page)
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(continued from previous page)

validation_split=0.2, verbose=0)

print('Training time: %s' % (now() - t))

Training time: 0:07:25.850362

[ ]: # plot the accuracy and loss
train_loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

epochsn = np.arange(1, len(train_loss)+1,1)
plt.figure(figsize=(12, 4))

plt.subplot(1,2,1)
plt.plot(epochsn, acc, 'b', label='Training Accuracy')
plt.plot(epochsn, val_acc, 'r', label='Validation Accuracy')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('ACCURACY')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

plt.subplot(1,2,2)
plt.plot(epochsn,train_loss, 'b', label='Training Loss')
plt.plot(epochsn,val_loss, 'r', label='Validation Loss')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('LOSS')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()

[ ]: # Evaluate on test dataset
evals_test = cifar_cnn_3.evaluate(test_data, test_label_onehot)

(continues on next page)
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(continued from previous page)

print("Classification Accuracy: ", evals_test[1])

313/313 [==============================] - 1s 4ms/step - loss: 0.9479 - accuracy: 0.7658
Classification Accuracy: 0.7657999992370605

With the Batch Normalization layers in the model, the test accuracy increased to 76.6%.

7.16.7 16.7 Data Augmentation

One of the main reasons for overfitting is the lack of sufficient training samples, or lack of diversity in the training
samples, for training a model.

To deal with overfitting we can use data augmentation, which refers to expanding the existing dataset by applying
different image transformation operations. Examples are flipping the image vertically or horizontally, cropping the
image, changing the contrast and color of the image, adding noise to the image, rotating the image at a given degree,
and similar.

By doing data augmentation, we are synthesizing new images from existing data, as well as introducing some diversity
in the images.

Keras provides the function ImageDataGenerator for data augmentation. Among the available operations for data
augmentation are:

• rotation_range is a value in degrees (0–180) to randomly rotate images.
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• width_shift and height_shift are ranges of fraction of total width or height within which to translate pictures,
either vertically or horizontally.

• shear_range is for applying shearing randomly.

• zoom_range is for zooming in pictures randomly.

• horizontal_flip and vertical_flip are for flipping images.

In the example below we applied width shift, height shift, and horizontal flip.

[ ]: from keras.preprocessing.image import ImageDataGenerator

# create data generator
datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, horizontal_
→˓flip=True)

ImageDataGenerator returns both the augmented images and their labels for each batch of images.

Let’s plot a few images to see what they look like. They don’t look much different, but that is because the applied shift
and flip are not very large, and we didn’t use other operations.

[ ]: # Get images in batch of 20
aug_iterator = datagen.flow(train_data, train_label, batch_size=1)

plt.figure(figsize=(12,4))
for i in range(6):

ax = plt.subplot(2, 3, i + 1)
plt.imshow(aug_iterator[i][0][0])
plt.title(str(label_names[aug_iterator[i][1][0][0]]))
plt.axis("off")

When we use data augmentation, the arguments in the fit function are slightly different. First, we need to provide
the name of our defined generator with flow to yield a batch of augmented images. In this case, we will need to use
datagen.flow, since we assigned the image generator to the name datagen.

We also need to specify steps_per_epoch, which oftentimes is just the number of training images divided by the
batch size.

Also, the generator in Keras does not accept a validation_split argument, and therefore we need to manually create
a validation dataset, and then use it. This has been done in the next cells.
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[ ]: # Define the model with inputs and outputs
cifar_cnn_4 = Model(inputs, outputs)

# compile model
cifar_cnn_4.compile(optimizer='adam',

loss='categorical_crossentropy',
metrics=['accuracy'])

[ ]: # fit model
history = cifar_cnn_4.fit(datagen.flow(train_data, train_label, batch_size=128),

steps_per_epoch=len(train_data)/128, epochs=120,
validation_split=0.2, verbose=0)

# note that the generator does not work with validation split

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-40-843b623e8eaf> in <cell line: 2>()

1 # fit model
----> 2 history = cifar_cnn_4.fit_generator(datagen.flow(train_data, train_label, batch_
→˓size=128),

3 steps_per_epoch=len(train_data)/128, epochs=120,
4 validation_split=0.2, verbose=0)
5

TypeError: Model.fit_generator() got an unexpected keyword argument 'validation_split'

[ ]: from sklearn.model_selection import train_test_split

train_data_1, validation_data_1, train_label_1, validation_label_1 = train_test_
→˓split(train_data, train_label_onehot, test_size=0.2, random_state=20, stratify=train_
→˓label_onehot)

[ ]: print('Training images', train_data_1.shape)
print('Training labels', train_label_1.shape)
print('Validation_images', validation_data_1.shape)
print('Validation labels', validation_label_1.shape)

Training images (40000, 32, 32, 3)
Training labels (40000, 10)
Validation_images (10000, 32, 32, 3)
Validation labels (10000, 10)

[ ]: t = now()
# fit model
history= cifar_cnn_4.fit(datagen.flow(train_data_1, train_label_1, batch_size=128),

steps_per_epoch=len(train_data_1)/128, epochs=100,
validation_data=(validation_data_1, validation_label_1), verbose=0)

print('Training time: %s' % (now() - t))

Training time: 0:48:39.114947
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[ ]: # plot the accuracy and loss
train_loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

epochsn = np.arange(1, len(train_loss)+1,1)
plt.figure(figsize=(12, 4))

plt.subplot(1,2,1)
plt.plot(epochsn, acc, 'b', label='Training Accuracy')
plt.plot(epochsn, val_acc, 'r', label='Validation Accuracy')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('ACCURACY')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

plt.subplot(1,2,2)
plt.plot(epochsn,train_loss, 'b', label='Training Loss')
plt.plot(epochsn,val_loss, 'r', label='Validation Loss')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('LOSS')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()

[ ]: # Evaluate on test dataset
evals_test = cifar_cnn_4.evaluate(test_data, test_label_onehot)
print("Classification Accuracy: ", evals_test[1])

313/313 [==============================] - 1s 4ms/step - loss: 0.5681 - accuracy: 0.8155
Classification Accuracy: 0.815500020980835

The data augmentation was helpful to further improve the performance of the model to about 81.5% accuracy. We
trained the model for 100 epochs, which took about 48 minutes. From the learning curves we can conclude that the
accuracy was still increasing at epoch 100, therefore we could continue training the model, or we could have selected
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a higher number of epochs initially.

7.16.8 16.8 Transfer Learning

Transfer learning uses pretrained models that are trained on very large datasets to improve the performance on smaller
datasets.

There are many pretrained models available in Keras Applications.

Typical steps in transfer learning include:

• Initialize the pretrained model (base model) and weights, and remove the top layers (fully-connected layers) of
the pretrained model.

• Create a new model by adding new trainable fully-connected layers on top of the primary model.

• Train the new model, and evaluate the performance.

In this case we will use the VGG16 model, which is popular for image classification. The model is imported with the
weights pretrained on ImageNet, which is a very large dataset with 1.2 million images in 1,000 classes. Since our task
has only 10 classes, we will remove the dense layers which are very specific to ImageNet’s 1,000 classes, and add our
own custom layers with 10 classes.

Transfer learning is also often referred to as model fine-tuning, because we start with a pretrained model and we
fine-tune its parameters to our custom dataset.

[ ]: from tensorflow.keras.applications import vgg16
from keras.layers import GlobalAveragePooling2D

base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(32,32,3))

# Add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)

x = Dense(128, activation='relu')(x)
x = Dropout(0.2)(x)
x = Dense(64, activation='relu')(x)
x = Dropout(0.2)(x)
predictions = Dense(10, activation='softmax')(x)

# The model we will train
cifar_cnn_5 = Model(inputs=base_model.input, outputs=predictions)

Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/
→˓vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5
58889256/58889256 [==============================] - 0s 0us/step

7.16. Lecture 16 - Convolutional Neural Networks 567



Fall 2023 Python Programming for Data Science, Release 0.1

Early Stopping

Keras has implemented several callbacks that allow to monitor the training process and have more control over it. We
will study the various callbacks in the next lecture, and in this lecture we we explain how the callback Early Stopping
works.

EarlyStopping monitors a metric (e.g., validation loss) and if the metric doesn’t improve for a certain number of epochs
(a.k.a. patience), terminates the training. By improve, we mean the decrease if the metric is loss, or increase if the
metric is accuracy.

[ ]: from keras.callbacks import EarlyStopping

cifar_cnn_5.compile(optimizer='adam', loss='categorical_crossentropy', metrics = [
→˓'accuracy'])

# fit model
t = now()
history = cifar_cnn_5.fit(train_data, train_label_onehot, validation_split=0.2, batch_
→˓size=128,

epochs=100, verbose=0, callbacks=[EarlyStopping(monitor='val_loss',␣
→˓patience = 10)])

print('Training time: %s' % (now() - t))

Training time: 0:04:40.541954

[ ]: # plot the accuracy and loss
train_loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

epochsn = np.arange(1, len(train_loss)+1,1)
plt.figure(figsize=(12, 4))

plt.subplot(1,2,1)
plt.plot(epochsn, acc, 'b', label='Training Accuracy')
plt.plot(epochsn, val_acc, 'r', label='Validation Accuracy')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('ACCURACY')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

plt.subplot(1,2,2)
plt.plot(epochsn,train_loss, 'b', label='Training Loss')
plt.plot(epochsn,val_loss, 'r', label='Validation Loss')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('LOSS')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
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[ ]: # Evaluate on test dataset
evals_test = cifar_cnn_5.evaluate(test_data, test_label_onehot)
print("Classification Accuracy: ", evals_test[1])

313/313 [==============================] - 3s 9ms/step - loss: 0.9085 - accuracy: 0.7865
Classification Accuracy: 0.7864999771118164

Although the accuracy is reduced, note that the model was trained in about 15 epochs, in comparison to 100 epochs or
more epochs when trained from scratch.

The following figure illustrates the early stopping callback. When the validation loss starts increasing, it terminates the
training. In our case, the validation loss reached minimum at epoch 6, and since we specified a 10 epochs patience, the
model stopped at epoch 16.
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Figure: Early stopping.

Let’s try to use a pretrained model and combine it with data augmentation and early stopping.

[ ]: # The model we will train
cifar_cnn_6 = Model(inputs=base_model.input, outputs=predictions)

[ ]: # compile model
cifar_cnn_6.compile(optimizer='adam',

loss='categorical_crossentropy',
metrics=['accuracy'])

[ ]: t = now()
# fit model
history= cifar_cnn_6.fit(datagen.flow(train_data_1, train_label_1, batch_size=128),

steps_per_epoch=len(train_data_1)/128, epochs=100,
validation_data=(validation_data_1, validation_label_1), verbose=0,
callbacks=[EarlyStopping(monitor='val_loss', patience = 10)])

print('Training time: %s' % (now() - t))

Training time: 0:16:44.402687

[ ]: # plot the accuracy and loss
train_loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

epochsn = np.arange(1, len(train_loss)+1,1)
plt.figure(figsize=(12, 4))

plt.subplot(1,2,1)
plt.plot(epochsn, acc, 'b', label='Training Accuracy')
plt.plot(epochsn, val_acc, 'r', label='Validation Accuracy')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('ACCURACY')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

plt.subplot(1,2,2)
plt.plot(epochsn,train_loss, 'b', label='Training Loss')
plt.plot(epochsn,val_loss, 'r', label='Validation Loss')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('LOSS')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
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[ ]: # Evaluate on test dataset
evals_test = cifar_cnn_6.evaluate(test_data, test_label_onehot)
print("Classification Accuracy: ", evals_test[1])

313/313 [==============================] - 3s 9ms/step - loss: 0.5882 - accuracy: 0.8575
Classification Accuracy: 0.8575000166893005

Combining transfer learning with data augmentation increased the accuracy to over 85%.

7.16.9 References

1. Complete Machine Learning Package, Jean de Dieu Nyandwi, available at: https://github.com/Nyandwi/
machine_learning_complete.

2. How to Develop a CNN from Scratch for CIFAR-10 Photo Classification, Jason Brownlee, available at: https:
//machinelearningmastery.com/how-to-develop-a-cnn-from-scratch-for-cifar-10-photo-classification/.

3. Python Machine Learning (2nd Ed.) Code Repository, Sebastian Raschka, available at: https://github.com/rasbt/
python-machine-learning-book-2nd-edition.
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7.17.1 17.1 Model Selection

Model selection in Machine Learning is selecting one final model for a given task, e.g., that will be deployed in produc-
tion. In general, selecting the “best” model should be based not only on the obtained values of relevant performance
metrics (accuracy, specificity, sensitivity), but also based on other considerations, such as computational expense,
available resources, model complexity, maintainability, and similar.

An important phase in selecting a candidate Machine Learning model is hyperparameter tuning. In the previous
lecture on scikit-learn, we mentioned that parameters (weights) of the model have values that are updated in an
iterative process during training, whereas hyperparameters (tuning parameters) are a set of parameters that control
the complexity and performance of the model, and are selected (tuned) by the user. The hyperparameters are not updated
during model training, and they stay constant. Hyperparameter tuning (also known as hypertuning) is the process
of selecting hyperparameter values to find a model that generalizes well to unseen data. In the previous lectures, we
explained that scikit-learn offers functions for Grid Search and Random Search, which search for solutions over different
values of the hyperparameters and select an optimal set of hyperparameters for a given performance metric.

Another important aspect for model selection is the evaluation of model performance. It is particularly important to
evaluate candidate models on unseen data during training, and this is typically achieved by splitting the available data
into training and test datasets. We also learned that k-fold cross-validation can be used to draw folds from the available
data, and evaluate the models on multiple different folds by resampling the available data. With k-fold cross-validation,
each data point can appear only in one of the folds when evaluating the model performance.

Model selection in general can involve various data preprocessing techniques, evaluating different feature engineering
strategies, applying Ensemble Methods to aggregate the predictions from several individual Machine Learning models,
etc.

In this lecture, we will focus on hyperparameter tuning with neural networks. Namely, neural networks are more
sensitive to hyperparameter tuning than conventional Machine Learning models (such as Liner Regression, k-Nearest
Neighbors, etc.). We saw in the previous lectures that even if we use default values for the models in scikit-learn without
any hyperparameter tuning, the models can still achieve solid performance. This is rarely the case with neural networks,
as they usually require at least some hyperparameter tuning.

One note is to not confuse hyperparameter tuning with model fine-tuning, which refers to using a pretrained model on
a large dataset and fine-tuning the model parameters on a smaller dataset.

Hyperparameters in Neural Networks

Let’s examine again the ConvNet that we used in a previous lecture to classify images in the CIFAR-10 dataset, and
let’s try to identify the hyperparameters of the model.

# define the layers in the model
inputs = Input(shape=(32, 32, 3))
conv1a = Conv2D(filters=32, kernel_size=3, padding='same')(inputs)
conv1b = Conv2D(filters=32, kernel_size=3, padding='same')(conv1a)
pool1 = MaxPooling2D()(conv1b)
conv2a = Conv2D(filters=64, kernel_size=3, padding='same')(pool1)

(continues on next page)
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(continued from previous page)

conv2b = Conv2D(filters=64, kernel_size=3, padding='same')(conv2a)
pool2 = MaxPooling2D()(conv2b)
conv3a = Conv2D(filters=128, kernel_size=3, padding='same')(pool2)
conv3b = Conv2D(filters=128, kernel_size=3, padding='same')(conv3a)
pool3 = MaxPooling2D()(conv3b)
flat = Flatten()(pool3)
dense1 = Dense(128, activation='relu')(flat)
dropout1 = Dropout(0.25)(dense1)
dense2 = Dense(64, activation='relu')(dropout1)
dropout2 = Dropout(0.25)(dense2)
outputs = Dense(10, activation='softmax')(dropout2)

# define the model with inputs and outputs
cifar_cnn = Model(inputs, outputs)

# compile the model
cifar_cnn.compile(optimizer=Adam(learning_rate=1e-3), loss='categorical_crossentropy', ␣
→˓metrics=['accuracy'])

# train the model
cifar_cnn.fit(train_data, train_label_onehot, epochs=10, batch_size=128)

Hyperparameters in the above model include:

• Learning rate of the optimizer

• Batch size

• Number of training epochs

• Number of Convolutional layers

• Number of convolutional filters in the Convolutional layers

• Kernel size of the convolutional filters

• Type of padding in the Convolutional layers

• Number of Dense layers

• Number of neurons in each Dense layer

• Type of activation functions used in the layers

• Number of Dropout layers

• Dropout rate in the Dropout layers

• Type of optimizer (e.g., Adam, SGD, Nadam, RMSProp)

• Other parameters used in the optimizer (e.g., momentum)

• Type of initialization for the parameters in the model

There can be other hyperparameters depending on the network, however, one immediate observation is that neural
networks have a large number of hyperparameters, and tuning all hyperparameters can be challenging as it may take
significant time and resources.

On the other hand, not all of the hyperparameters have significant impact on the performance of the model. Out of all
hyperparameters, probably the most important is the learning rate, and in most cases, some tuning of the learning rate
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is required. In this lecture we will present techniques for hyperparameter tuning of a ConvNet model built with Keras
and TensorFlow.

7.17.2 17.2 Evaluate the Impact of the Learning Rate

Loading a Custom Image Dataset in Keras

In previous lectures we worked with datasets that are built-in in Keras or scikit-learn and that can be directly loaded.
Let’s look at loading a custom dataset that is not part of the popular ML libraries. The dataset is saved in a folder on
my Google Drive, therefore I need to first mount the Google Drive in order to access the folder with the images.

For this lecture, we will use the LFW dataset (Labeled Faces in the Wild), which consists of about 5,000 images of 62
celebrities. The next cells load the dataset and plot a few images to make sure that the labels are correct.

[ ]: # mount the google drive
from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.
→˓mount("/content/drive", force_remount=True).

[ ]: # import packages
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from keras.utils import load_img, img_to_array
import os
from os import listdir
import csv
import natsort

# Print the version of tf
print("TensorFlow version:{}".format(tf.__version__))

TensorFlow version:2.14.0

[ ]: # Path to the directory containing the dataset
!unzip -uq 'drive/MyDrive/Data_Science_Course/Fall_2023/Lecture_17-Model_Selection,
→˓Tuning/data/LFW-dataset.zip' -d 'sample_data/'

[ ]: # Directories
train_dir = 'sample_data/LFW-dataset/Train/'
test_dir = 'sample_data/LFW-dataset/Test/'
val_dir = 'sample_data/LFW-dataset/Validation/'
labels_dir = 'sample_data/LFW-dataset/'

# Size of images (pixel width and height)
image_size = 100

# Function for loading the images
def load_imgs(path):

# List of all images in the folder
(continues on next page)
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(continued from previous page)

imgList = listdir(path)
# Make sure that the images are sorted in ascending order
imgList=natsort.natsorted(imgList)
# Number of images
number_imgs = len(imgList)
# Initialize numpy arrays for the images
images = np.zeros((number_imgs, image_size, image_size, 3))
# Read the images
for i in range(number_imgs):

tmp_img = load_img(path + imgList[i], target_size=(image_size, image_size, 3))
img = img_to_array(tmp_img)
images[i] = img/255.0

return images

# Call the above function to load the images as numpy arrays
imgs_train = load_imgs(train_dir)
imgs_test = load_imgs(test_dir)
imgs_val = load_imgs(val_dir)

[ ]: # Load the labels as numpy arrays
labels_train = np.genfromtxt(labels_dir + "train_labels.csv", delimiter=',', dtype=np.
→˓int32)
labels_test = np.genfromtxt(labels_dir + "test_labels.csv", delimiter=',', dtype=np.
→˓int32)
labels_val = np.genfromtxt(labels_dir + "val_labels.csv", delimiter=',', dtype=np.int32)

[ ]: # Display the shapes of train, validation, and test datasets
print('Images train shape: {} - Labels train shape: {}'.format(imgs_train.shape, labels_
→˓train.shape))
print('Images validation shape: {} - Labels validation shape: {}'.format(imgs_val.shape,␣
→˓labels_val.shape))
print('Images test shape: {} - Labels test shape: {}'.format(imgs_test.shape, labels_
→˓test.shape))

# Display the range of images (to make sure they are in the [0, 1] range)
print('\nMax pixel value', np.max(imgs_train))
print('Min pixel value', np.min(imgs_train))
print('Average pixel value', np.mean(imgs_train))
print('Data type', imgs_train[0].dtype)

Images train shape: (3043, 100, 100, 3) - Labels train shape: (3043,)
Images validation shape: (1021, 100, 100, 3) - Labels validation shape: (1021,)
Images test shape: (1049, 100, 100, 3) - Labels test shape: (1049,)

Max pixel value 1.0
Min pixel value 0.0
Average pixel value 0.47390351913451484
Data type float64

[ ]: # Read the names of the celebrities in the dataset (there are 62 celebrities)
name_list = []
with open(labels_dir+'name_list.csv', 'r') as f:

(continues on next page)
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reader = csv.reader(f)
for row in reader:

name_list.append(row[1])

# Plot a few images to check if the the labels are correct
# There are a few bad images in the dataset, it needs to be cleaned
plt.figure(figsize=(9, 6))
for n in range(9):

i = np.random.randint(0, len(imgs_train), 1)
ax = plt.subplot(3, 3, n+1)
plt.imshow(imgs_train[i[0]])
plt.title('Label:' + str(name_list[labels_train[i[0]]]))
plt.axis('off')
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Define the Model

We will use a pretrained VGG-16 model, and we will just add a classifier with 3 Dense layers on top of the model to
fine-tune it to the LFW dataset.

[ ]: from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D, Dropout
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau,␣
→˓LearningRateScheduler
from keras.applications import vgg16

import datetime
now = datetime.datetime.now

[ ]: def Network():

base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(image_
→˓size, image_size, 3))

# Add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# Add fully-connected layers
x = Dense(1024, activation='relu')(x)
x = Dropout(0.25)(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.25)(x)
# Add a softmax layer
predictions = Dense(62, activation='softmax')(x)

# The model
model = Model(inputs=base_model.input, outputs=predictions)

return model

Let’s define a function for plotting the accuracy and loss called plot_accuracy_loss, which we can call with different
models to examine the learning curves.

[ ]: def plot_accuracy_loss():
# plot the accuracy and loss
train_loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

epochsn = np.arange(1, len(train_loss)+1,1)
plt.figure(figsize=(12, 4))

plt.subplot(1,2,1)
plt.plot(epochsn, acc, 'b', label='Training Accuracy')
plt.plot(epochsn, val_acc, 'r', label='Validation Accuracy')
plt.grid(color='gray', linestyle='--')

(continues on next page)
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plt.legend()
plt.title('ACCURACY')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')

plt.subplot(1,2,2)
plt.plot(epochsn,train_loss, 'b', label='Training Loss')
plt.plot(epochsn,val_loss, 'r', label='Validation Loss')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('LOSS')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()

Learning rate = 1e-4, Epochs = 10

In Lecture 15, we explained that most NNs employ a version of the Gradient Descent algorithm for updating the network
parameters during training, depicted in the figure below. The learning rate determines the size of the updates at each
step, i.e., it controls how fast the network parameters are updated.

Figure: Gradient descent algorithm.

If the learning rate is too small, the algorithm will take many epochs to converge, and it may even get stuck into a local
minima. If the learning rate is too high, the algorithm may jump over the best solutions and may not be able to converge
to good solutions.

Figure: Impact of the learning rate. Source: https://www.bdhammel.com/learning-rates/

In the previous lectures, we used the following code to compile the models, which uses the Adam optimizer, but we
didn’t specify the learning rate of the optimizer. For the implementation of Adam in Keras, the default learning rate is
1e-3.

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
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If we would like to use another value for the learning rate, then we will need to import the Adam optimizer, and compile
the model with:

from keras.optimizers import Adam
model.compile(optimizer = Adam(learning_rate=VALUE),

loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

The following code trains a model for 10 epochs with a learning rate of 1e-4 = 0.0001. We have selected this learning
rate because we know that it works well for this combination of model and data.

We can see that the model achieved close to 90% accuracy on the test set, and the training took about 1 minute. From
the plots of the accuracy and loss curves, we can tell that 10 epochs are not sufficient for training the model, because
at the end of the 10th epoch, the accuracy was still increasing and the loss was decreasing.

[ ]: LEARNING_RATE = 1e-4
EPOCHS_NUM = 10

# create a model
model = Network()

# compile the model
model.compile(optimizer = Adam(learning_rate=LEARNING_RATE), loss='sparse_categorical_
→˓crossentropy', metrics=['accuracy'])

# fit model
t = now()
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0)
print('\nTraining time: %s' % (now() - t))

# evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Training time: 0:00:44.932419
33/33 [==============================] - 1s 21ms/step - loss: 0.3862 - accuracy: 0.8990
Classification Accuracy: 89.89514112472534
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Learning rate = 1e-4, Epochs = 30

Let’s train the model for 30 epochs using the same learning rate to see if this number of epochs would be sufficient.

From the results we can see that the model achieved 94% accuracy, and the training took about 2 minutes.

Based on the learning curves, at epoch 30 the validation accuracy and loss were converging to a plateau level, and it
was unclear if training the model for more than 30 epochs would improve the performance. An alternative is to use
Early Stopping callback, so that the training is stopped automatically (e.g., when the validation loss stops decreasing).
Such case is shown in a subsequent section.

[ ]: LEARNING_RATE = 1e-4
EPOCHS_NUM = 30

model = Network()
model.compile(optimizer = Adam(learning_rate=LEARNING_RATE), loss='sparse_categorical_
→˓crossentropy', metrics=['accuracy'])

# fit model
t = now()
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Training time: 0:01:49.333017
33/33 [==============================] - 0s 12ms/step - loss: 0.3438 - accuracy: 0.9428
Classification Accuracy: 94.28026676177979
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Learning rate = 1e-3, Epochs = 20

Next, let’s try to train the model using different learning rates, for instance, by increasing the learning rate to 1e-3 =
0.001.

Increasing the learning rate will cause the model to apply larger values for the update of the parameters during the
training. We can expect that the training will converge faster, and we can use a smaller number of epochs.

However, large learning rates can cause the model to update the parameters too fast, as in this case. As we can see, the
model achieved only 16.87% accuracy, and the accuracy curves did not improve after that level.

[ ]: LEARNING_RATE = 1e-3
EPOCHS_NUM = 20

model = Network()
model.compile(optimizer = Adam(learning_rate=LEARNING_RATE), loss='sparse_categorical_
→˓crossentropy', metrics=['accuracy'])

# fit model
t = now()
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Training time: 0:01:13.950914
33/33 [==============================] - 0s 11ms/step - loss: 3.7229 - accuracy: 0.1687
Classification Accuracy: 16.873212158679962
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Learning rate = 1e-2, Epochs = 10

If we increase the learning rate even further to 0.01, we can expect that training will fail, since we saw that even a
learning rate of 0.001 was too high. Based on the learning curves, we can tell that the learning is too fast and too
aggressive.

[ ]: LEARNING_RATE = 1e-2
EPOCHS_NUM = 10

model = Network()
model.compile(optimizer = Adam(learning_rate=LEARNING_RATE), loss='sparse_categorical_
→˓crossentropy', metrics=['accuracy'])

# fit model
t = now()
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Training time: 0:00:39.685677
33/33 [==============================] - 0s 12ms/step - loss: 3.7224 - accuracy: 0.1687
Classification Accuracy: 16.873212158679962
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Learning rate = 1e-5, Epochs = 50

Let’s try the opposite case, and reduce the learning rate to 1e-5 = 0.00001. Smaller learning rates produce smaller
updates of the model parameters, and slower learning. This may avoid the problems of learning too fast when large
learning rates are used.

This model achieved similar accuracy as with the 1e-4 learning rate. Also, the learning curves look good, because the
accuracy and loss gradually change, and the validation curves follow the training curves.

[ ]: LEARNING_RATE = 1e-5
EPOCHS_NUM = 50

model = Network()
model.compile(optimizer = Adam(learning_rate=LEARNING_RATE), loss='sparse_categorical_
→˓crossentropy', metrics=['accuracy'])

# fit model
t = now()
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Training time: 0:02:58.985777
33/33 [==============================] - 0s 12ms/step - loss: 0.2841 - accuracy: 0.9409
Classification Accuracy: 94.08960938453674
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Learning rate = 1e-6, Epochs = 50

Next, let’s reduce the learning rate even further to 1e-6.

Although smaller learning rates avoid training failure when we use overly large learning rates, using very small learning
rates does not necessarily lead to improved performance, since the learning can be too slow.

Based on the learning curves, we can tell that at the end of epoch 50 the model parameters were gradually being updated,
and that with this learning rate we would need to train the model for at least 200 or 300 epochs to reach convergence,
or maybe even more.

[ ]: LEARNING_RATE = 1e-6
EPOCHS_NUM = 50

model = Network()
model.compile(optimizer = Adam(learning_rate=LEARNING_RATE), loss='sparse_categorical_
→˓crossentropy', metrics=['accuracy'])

# fit model
t = now()
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Training time: 0:02:58.017459
33/33 [==============================] - 0s 12ms/step - loss: 1.3921 - accuracy: 0.6969
Classification Accuracy: 69.68541741371155
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17.2.1 Learning Rate Finder

There are several tools for estimating the learning rate, such as LRFinder in Keras. This function changes the learning
rate in a range of values, typically starting with a very small learning rate and increasing it to a high learning rate.
The model is trained and evaluated only for a few epochs using different learning rates. Based on a plot of the loss for
different learning rates, this function can help to find a suitable learning rate, that can afterward be used to fully train
the model.

For the task at hand, the plot of loss versus learning rate is shown below. The best learning rate is the one when the
loss is reducing the fastest, and has the largest slope. From the graph, this value is about 10−4.

Although such tools can identify a range of suitable values for the learning rate, they should be used with caution, and
the users should still run candidate models in the suggested range to fully evaluate the model performance.

[ ]: !git clone https://github.com/WittmannF/LRFinder.git

Cloning into 'LRFinder'...
remote: Enumerating objects: 71, done.
remote: Total 71 (delta 0), reused 0 (delta 0), pack-reused 71
Receiving objects: 100% (71/71), 447.02 KiB | 12.08 MiB/s, done.
Resolving deltas: 100% (24/24), done.

[ ]: from LRFinder.keras_callback import LRFinder

[ ]: model = Network()
model.compile(optimizer='Adam', loss='sparse_categorical_crossentropy', metrics=[
→˓'accuracy'])

# Perform the Learning Rate Range Test
lr_finder = LRFinder(min_lr=1e-6, max_lr=1e-2)

model.fit(imgs_train, labels_train, batch_size=32, callbacks=[lr_finder], epochs=2)

Epoch 1/2
6/96 [>...] - ETA: 11s - loss: 4.1732 - accuracy: 0.0000e+00

WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch␣
→˓time (batch time: 0.0407s vs `on_train_batch_end` time: 0.0935s). Check your callbacks.
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96/96 [==============================] - 36s 122ms/step - loss: 4.1457 - accuracy: 0.0214
Epoch 2/2
96/96 [==============================] - 12s 120ms/step - loss: 3660.4465 - accuracy: 0.
→˓0796

<keras.callbacks.History at 0x7f5c50298650>

7.17.3 17.3 Callbacks

Callbacks in programming languages are functions that allow for conditional processing within another function. I.e.,
they allow to perform some operations during the execution of another function, based on some conditions.

In ML, callbacks are used to monitor the model performance at various stages of training and take certain actions (e.g.,
at the start or end of an epoch, before or after processing a single batch, etc.). Such actions can include saving the
model to the disk after a certain number of epochs, obtaining a view of the internal states of the model and relevant
statistics during training, writing logs after every batch of training data to monitor performance metrics, etc. Most ML
libraries provide a callback class which allows users to create custom callbacks.

So far we worked with the history callback in Keras, which stores the values of the loss and the metric at each epoch,
and its atribute history.history allows to plot the learning curves of a model. Also, in the lecture on ConvNets
we explained how the EarlyStopping callback works. The next section provides additional examples of applying
callbacks in Keras.
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17.3.1 Early Stopping

As we know, using Early Stopping callback is often beneficial, since we don’t need to guess the optimal number of
epochs to train the model. Instead, the callback will terminate the training when a selected metric is not improving.
In the next cell, we specified to stop the training when the validation loss does not improve for 20 epochs (patience
argument). We set the EPOCH_NUM argument to 1000, although we know that the model will terminate after about 50-60
epochs. Therefore, the number of epochs is not very important when we use this callback, it only needs to be large
enough so that the training is not stopped prematurely.

This model achieved 91.13% accuracy. However, from the accuracy curve it seems that the accuracy was higher in the
previous epoch, and it just dropped in the last epoch. We will see next how to avoid this by using CheckPoint callback.

[ ]: LEARNING_RATE = 1e-4
EPOCHS_NUM = 1000

model = Network()
model.compile(optimizer=Adam(learning_rate=LEARNING_RATE), loss='sparse_categorical_
→˓crossentropy', metrics=['accuracy'])

# fit model
t = now()
callbacks = [EarlyStopping(monitor='val_loss', patience=20)]
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0,␣
→˓callbacks=callbacks)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Training time: 0:04:01.178825
33/33 [==============================] - 0s 12ms/step - loss: 0.4387 - accuracy: 0.9256
Classification Accuracy: 92.56434440612793
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17.3.2 Save CheckPoint

CheckPoint callback saves a checkpoint of the model (i.e., the model parameters) after every epoch when a monitored
metric does not improve. We set the metrics to be the validation loss, and the values of the model parameters will be
saved at the specified filepath. This can be useful if training the model takes hours, where if something goes wrong,
we can just resume the training from a checkpoint.

We choose to set verbose=1 for the callback, to output the epochs at which a checkpoint is saved.

At the beginning of the training, the checkpoint will be saved after every epoch, and after the model reaches a plateau,
a new checkpoint will be saved only when there is an improvement in the performance, by overwriting the latest check-
point.

[ ]: LEARNING_RATE = 1e-4
EPOCHS_NUM = 50

model = Network()
model.compile(optimizer=Adam(learning_rate=LEARNING_RATE), loss='sparse_categorical_
→˓crossentropy', metrics=['accuracy'])

# fit model
t = now()
callbacks = ModelCheckpoint(filepath='sample_data/model_celeb.h5', monitor='val_loss',␣
→˓mode='min',

save_weights_only=True, save_best_only=True, verbose=1)
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0,␣
→˓callbacks=[callbacks])
print('Training time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Epoch 1: val_loss improved from inf to 3.32760, saving model to sample_data/model_celeb.
→˓h5

Epoch 2: val_loss improved from 3.32760 to 3.08174, saving model to sample_data/model_
→˓celeb.h5

Epoch 3: val_loss improved from 3.08174 to 2.40263, saving model to sample_data/model_
→˓celeb.h5

Epoch 4: val_loss improved from 2.40263 to 1.87908, saving model to sample_data/model_
→˓celeb.h5

Epoch 5: val_loss improved from 1.87908 to 1.77787, saving model to sample_data/model_
→˓celeb.h5

Epoch 6: val_loss improved from 1.77787 to 1.03076, saving model to sample_data/model_
→˓celeb.h5

(continues on next page)
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Epoch 7: val_loss improved from 1.03076 to 0.86254, saving model to sample_data/model_
→˓celeb.h5

Epoch 8: val_loss improved from 0.86254 to 0.83952, saving model to sample_data/model_
→˓celeb.h5

Epoch 9: val_loss improved from 0.83952 to 0.76099, saving model to sample_data/model_
→˓celeb.h5

Epoch 10: val_loss improved from 0.76099 to 0.45982, saving model to sample_data/model_
→˓celeb.h5

Epoch 11: val_loss improved from 0.45982 to 0.39744, saving model to sample_data/model_
→˓celeb.h5

Epoch 12: val_loss improved from 0.39744 to 0.36517, saving model to sample_data/model_
→˓celeb.h5

Epoch 13: val_loss improved from 0.36517 to 0.35960, saving model to sample_data/model_
→˓celeb.h5

Epoch 14: val_loss did not improve from 0.35960

Epoch 15: val_loss did not improve from 0.35960

Epoch 16: val_loss did not improve from 0.35960

Epoch 17: val_loss improved from 0.35960 to 0.33312, saving model to sample_data/model_
→˓celeb.h5

Epoch 18: val_loss did not improve from 0.33312

Epoch 19: val_loss did not improve from 0.33312

Epoch 20: val_loss improved from 0.33312 to 0.31346, saving model to sample_data/model_
→˓celeb.h5

Epoch 21: val_loss did not improve from 0.31346

Epoch 22: val_loss did not improve from 0.31346

Epoch 23: val_loss did not improve from 0.31346

Epoch 24: val_loss improved from 0.31346 to 0.30755, saving model to sample_data/model_
→˓celeb.h5

Epoch 25: val_loss did not improve from 0.30755

Epoch 26: val_loss did not improve from 0.30755

Epoch 27: val_loss did not improve from 0.30755

(continues on next page)

7.17. Lecture 17 - Model Selection, Hyperparameter Tuning 589



Fall 2023 Python Programming for Data Science, Release 0.1

(continued from previous page)

Epoch 28: val_loss did not improve from 0.30755

Epoch 29: val_loss did not improve from 0.30755

Epoch 30: val_loss did not improve from 0.30755

Epoch 31: val_loss improved from 0.30755 to 0.28651, saving model to sample_data/model_
→˓celeb.h5

Epoch 32: val_loss did not improve from 0.28651

Epoch 33: val_loss did not improve from 0.28651

Epoch 34: val_loss did not improve from 0.28651

Epoch 35: val_loss did not improve from 0.28651

Epoch 36: val_loss did not improve from 0.28651

Epoch 37: val_loss improved from 0.28651 to 0.26158, saving model to sample_data/model_
→˓celeb.h5

Epoch 38: val_loss did not improve from 0.26158

Epoch 39: val_loss did not improve from 0.26158

Epoch 40: val_loss did not improve from 0.26158

Epoch 41: val_loss improved from 0.26158 to 0.25302, saving model to sample_data/model_
→˓celeb.h5

Epoch 42: val_loss did not improve from 0.25302

Epoch 43: val_loss did not improve from 0.25302

Epoch 44: val_loss did not improve from 0.25302

Epoch 45: val_loss did not improve from 0.25302

Epoch 46: val_loss did not improve from 0.25302

Epoch 47: val_loss did not improve from 0.25302

Epoch 48: val_loss improved from 0.25302 to 0.23428, saving model to sample_data/model_
→˓celeb.h5

Epoch 49: val_loss improved from 0.23428 to 0.22223, saving model to sample_data/model_
→˓celeb.h5

Epoch 50: val_loss did not improve from 0.22223
Training time: 0:03:01.450305

(continues on next page)
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33/33 [==============================] - 0s 11ms/step - loss: 0.2903 - accuracy: 0.9561
Classification Accuracy: 95.61486840248108

17.3.3 Reduce Learning Rate On Plateau

ReduceLROnPlateau stands for Reduce Learning Rate on Plateau. It is another very useful callback, since prior works
have reported that training models generally benefits from using larger learning rate at the beginning of the training,
and gradually reducing the learning rate when the training does not improve.

This is exactly what this callback does. In the next call, the learning rate is initially set to 1e-4=0.0001. ReduceL-
ROnPlateau has a patience of 10 epochs, factor of 0.1, and minimum learning rate of 1e-6. This means that when the
monitored metric (in this case, the validation loss) does not reduce for 10 epochs, the learning rate will be multiplied
by the factor and become 1e-5. When the model stops improving again, the learning rate will be again multiplied
by the factor and become 1e-6. Since this is the minimum value for the learning rate, we will combine this callback
with Early Stopping to terminate the training. Note that the patience value for Early Stopping was set longer than the
patience for ReduceLROnPlateau.

[ ]: LEARNING_RATE = 1e-4
EPOCHS_NUM = 1000

model = Network()
model.compile(optimizer=Adam(learning_rate = LEARNING_RATE), loss='sparse_categorical_
→˓crossentropy', metrics=['accuracy'])

# fit model
t = now()
callbacks = [EarlyStopping(monitor='val_loss', patience = 20),

ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, min_lr=1e-6,␣
→˓verbose=1)]
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0,␣
→˓callbacks=callbacks)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)

(continues on next page)
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print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Epoch 28: ReduceLROnPlateau reducing learning rate to 9.999999747378752e-06.

Epoch 39: ReduceLROnPlateau reducing learning rate to 1e-06.

Training time: 0:02:54.702996
33/33 [==============================] - 0s 12ms/step - loss: 0.3021 - accuracy: 0.9466
Classification Accuracy: 94.66158151626587

17.3.4 Learning Rate Scheduler

Learning Rate Scheduler allows to define custom schedulers for adjusting the learning rate during training. Popular
learning rate schedules include:

• Time-based decay

• Step decay

• Exponential decay

Time-based Decay

This scheduler decreases the learning rate in each epoch by a given fixed amount. An example is shown in the next
figure, where a model is trained for 100 epochs, and the learning rate is gradually reduced from 0.01 in the first epoch
to 0.006 in the last epoch.
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Figure: Time-based decay.

The implementation is shown below, where the Learning Rate Scheduler callback accepts a function which defines the
schedule for the learning rate. The function lr_time_based_decay applies the decay amount at each epoch, where
lr is the learning rate from the previous epoch. The value of the decay is usually set as the quotient of the initial
learning rate and the number of epochs.

[ ]: INITIAL_LEARNING_RATE = 1e-4
EPOCHS_NUM = 50
decay = INITIAL_LEARNING_RATE / EPOCHS_NUM

def lr_time_based_decay(epoch, lr):
return lr * 1 / (1 + decay * epoch)

model = Network()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=[
→˓'accuracy'])

# fit model
t = now()
callbacks = [LearningRateScheduler(lr_time_based_decay, verbose=0)]
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0,␣
→˓callbacks=callbacks)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()
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Training time: 0:02:57.472491
33/33 [==============================] - 0s 12ms/step - loss: 1.1274 - accuracy: 0.7750
Classification Accuracy: 77.50238180160522

In this case, it seems that the learning rate was reduced too fast, because the performance decreased.

Step Decay

Step decay scheduler decreases the learning rate for a fixed amount after a number of training epochs. An example is
shown in the figure, where the learning rate is reduced by half every 10 epochs.

Figure: Step decay.

In the next cell, step decay is applied with the function lr_step_decay, where drop_rate is the reduced ratio of the
initial learning rate at each step, and epochs_drop is set to 15 epochs.
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[ ]: import math

INITIAL_LEARNING_RATE = 1e-4
EPOCHS_NUM = 50

def lr_step_decay(epoch):
drop_rate = 0.5
epochs_drop = 15
return INITIAL_LEARNING_RATE * math.pow(drop_rate, math.floor(epoch/epochs_drop))

model = Network()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=[
→˓'accuracy'])

# fit model
t = now()
callbacks = [LearningRateScheduler(lr_step_decay, verbose=0)]
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0,␣
→˓callbacks=callbacks)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()

Training time: 0:02:58.313695
33/33 [==============================] - 0s 12ms/step - loss: 0.3283 - accuracy: 0.9523
Classification Accuracy: 95.233553647995
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Exponential Decay

The scheduler decreases the learning rate at an exponential rate. In the cell below k is the rate of exponential decay.

Figure: Exponential decay.

[ ]: INITIAL_LEARNING_RATE = 1e-4
EPOCHS_NUM = 50

def lr_exp_decay(epoch):
k = 0.1
return INITIAL_LEARNING_RATE * math.exp(-k*epoch)

model = Network()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=[
→˓'accuracy'])

# fit model
t = now()
callbacks = [LearningRateScheduler(lr_exp_decay, verbose=0)]
history = model.fit(imgs_train, labels_train, batch_size=32, epochs=EPOCHS_NUM,

validation_data=(imgs_val, labels_val), verbose=0,␣
→˓callbacks=callbacks)
print('\nTraining time: %s' % (now() - t))

# Evaluate on test data
evals_test = model.evaluate(imgs_test, labels_test)
print("Classification Accuracy: ", 100*evals_test[1])

# plot the accuracy and loss
plot_accuracy_loss()
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Training time: 0:02:58.286062
33/33 [==============================] - 0s 12ms/step - loss: 0.4014 - accuracy: 0.9447
Classification Accuracy: 94.47092413902283

7.17.4 17.4 Grid Search

Applying Grid Search over the hyperparameters of neural networks that have long training times can be prohibitively
computationally expensive. On the other hand, when working with smaller datasets and models, applying Grid Search
for some of the hyperparameters can be an option.

This section presents a simple Grid Search over two hyperparameters in the model: number of neurons in the first
Dense layer, and the batch size. We can simply write a function that takes as arguments these two hyperparameters, as
in the next cell. Afterward, we can create a for-loop and train and evaluate a model for each combination of the values
for the selected hyperparameters.

We examined 3 values for the number of neurons and 3 values for the batch size, resulting in 9 models. The results in-
dicate that the model with 1,024 neurons and 128 batch size achieved the best performance. Consider that training each
model took about 10 minutes, and evaluating 9 models took about 1.5 hours. Tuning a large number of hyperparameters
over several different values can take long time.

[ ]: def Network(neurons_per_layer, batch_size):

base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(image_
→˓size, image_size, 3))

# Add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)

# Add dense layers
x = Dense(neurons_per_layer, activation='relu')(x)
x = Dropout(0.25)(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.25)(x)
# Add a softmax layer
predictions = Dense(62, activation='softmax')(x)

(continues on next page)
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# The model
model = Model(inputs=base_model.input, outputs=predictions)

# Compile
model.compile(optimizer=Adam(learning_rate=1e-4), loss = 'sparse_categorical_

→˓crossentropy', metrics = ['accuracy'])

# Fit
model.fit(imgs_train, labels_train, batch_size=batch_size, epochs=30,

validation_data=(imgs_val, labels_val), verbose=0)

# Evaluate on test data
_, test_acc = model.evaluate(imgs_test, labels_test)

return test_acc

[ ]: neurons_per_layers = [512, 1024, 2048]
batch_sizes = [32, 64, 128]

for number_neurons in neurons_per_layers:
for batch_size in batch_sizes:

acc = Network(number_neurons, batch_size)
print('\nNumber of neurons', number_neurons,

'\tBath size', batch_size,
'\tTest accuracy', acc)

33/33 [==============================] - 1s 38ms/step - loss: 0.3991 - accuracy: 0.9218

Number of neurons 512 Bath size 32 Test accuracy 0.9218302965164185
33/33 [==============================] - 1s 38ms/step - loss: 0.4094 - accuracy: 0.9171

Number of neurons 512 Bath size 64 Test accuracy 0.9170638918876648
33/33 [==============================] - 1s 38ms/step - loss: 0.3639 - accuracy: 0.9399

Number of neurons 512 Bath size 128 Test accuracy 0.9399427771568298
33/33 [==============================] - 1s 38ms/step - loss: 0.3111 - accuracy: 0.9352

Number of neurons 1024 Bath size 32 Test accuracy 0.9351763725280762
33/33 [==============================] - 1s 38ms/step - loss: 0.3525 - accuracy: 0.9342

Number of neurons 1024 Bath size 64 Test accuracy 0.9342230558395386
33/33 [==============================] - 1s 38ms/step - loss: 0.3102 - accuracy: 0.9466

Number of neurons 1024 Bath size 128 Test accuracy 0.9466158151626587
33/33 [==============================] - 1s 38ms/step - loss: 0.5164 - accuracy: 0.9142

Number of neurons 2048 Bath size 32 Test accuracy 0.9142040014266968
33/33 [==============================] - 1s 38ms/step - loss: 0.4070 - accuracy: 0.9066

Number of neurons 2048 Bath size 64 Test accuracy 0.9065777063369751
33/33 [==============================] - 1s 38ms/step - loss: 0.3813 - accuracy: 0.9314

(continues on next page)
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Number of neurons 2048 Bath size 128 Test accuracy 0.9313632249832153

7.17.5 17.5 Keras Tuner

There are several libraries developed for tuning the hyperparameters of neural networks. One is the Keras Tuner for
tuning Keras models.

The Keras Tuner is somewhat similar to the Grid Search and Random Search in scikit-learn, and allows to define the
search space for the hyperparameters over which the model will be fit, and it returns an optimal set of hyperparameters.

Keras Tuner is not part of the Keras package and it needs to be installed and imported.

[ ]: pip install -q -U keras-tuner

129.5/129.5 kB 3.2 MB/s eta 0:00:00
950.8/950.8 kB 9.0 MB/s eta 0:00:00

[ ]: import keras_tuner as kt

Using TensorFlow backend

Load Fashion MNIST Dataset

To demonstrate the use of the Keras Tuner we will work with the Fashion MNIST dataset.

[ ]: (img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_
→˓data()

# Normalize pixel values between 0 and 1
img_train = img_train.astype('float32') / 255.0
img_test = img_test.astype('float32') / 255.0

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-
→˓labels-idx1-ubyte.gz
29515/29515 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-
→˓images-idx3-ubyte.gz
26421880/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-
→˓labels-idx1-ubyte.gz
5148/5148 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-
→˓images-idx3-ubyte.gz
4422102/4422102 [==============================] - 0s 0us/step
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Model Builder

In the cell below, a function called model_biilder is created, which performs search over two hyperparameters:

• Number of neurons in the first Dense layer,

• Learning rate.

In the code, hp is an instance of the HyperParameterss class provided by Keras Tuner. The line hp_units = hp.
Int('units', min_value=32, max_value=512, step=32) defines a grid search for the number of neurons in
the Dense layer in the range [32, 64, 96, . . . , 512].

Next, a grid search for the learning rate is defined in the range [1e-2, 1e-3, 1e-4].

[ ]: from keras.models import Sequential
from keras.layers import Flatten
from keras.losses import SparseCategoricalCrossentropy

def model_builder(hp):
model = Sequential()
model.add(Flatten(input_shape=(28, 28)))

# Tune the number of units in the first Dense layer
# Choose an optimal value between 32-512
hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
model.add(Dense(units=hp_units, activation='relu'))
model.add(Dense(10))

# Tune the learning rate for the optimizer
# Choose an optimal value from 0.01, 0.001, or 0.0001
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])

model.compile(optimizer=Adam(learning_rate=hp_learning_rate),
loss=SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

return model

Hyperparameter Tuning

The Keras Tuner has four tuning algorithms available:

• RandomSearch Tuner, similar to the Random Grid in scikit-learn performs a random search over a distribution
of values for the hyperparameters.

• Hyperband Tuner, trains a large number of models for a few epochs and carries forward only the top-performing
half of models to the next round, to converge to a high-performing model.

• BayesianOptimization Tuner, performs BayesianOptimization by creating a probabilistic mapping of the model
to the loss function, and iteratively evaluating promising sets of hyperparameters.

• Sklearn Tuner, designed for use with scikit-learn models.

In the next cell, the Hyperband tuner is used, which has as the arguments the model, objective (metric to monitor), max-
imum number of epochs for each configuration of hyperparameters (training will be stopped for the worst-performing
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configurations after this number of epochs), and factor (used to search for top-performing models, e.g., a reduction fac-
tor of 3 means that one third of the configurations will be kept for the next iteration, and the rest of the configurations
will be eliminated).

[ ]: tuner = kt.Hyperband(model_builder,
objective='val_accuracy',
max_epochs=10,
factor=3)

[ ]: tuner.search(img_train, label_train, epochs=50, validation_split=0.2,␣
→˓callbacks=[EarlyStopping(monitor='val_loss', patience=5)])

Trial 30 Complete [00h 00m 41s]
val_accuracy: 0.8767499923706055

Best val_accuracy So Far: 0.8920833468437195
Total elapsed time: 00h 08m 42s

[ ]: # Get the optimal hyperparameters
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]

print(f"Optimal number of neuron in the Dense layer: {best_hps.get('units')}")
print (f"Optimal learning rate: {best_hps.get('learning_rate')}")

Optimal number of neuron in the Dense layer: 480
Optimal learning rate: 0.001

Train and Evaluate the Model

Next, we will use the optimal hyperparameters from the Keras Tuner to create a model, and afterward we will evaluate
the accuracy on the test dataset.

[ ]: # Build the model with the optimal hyperparameters and train it on the data for 50 epochs
model = tuner.hypermodel.build(best_hps)
model.fit(img_train, label_train, epochs=50, validation_split=0.2, verbose=0)

eval_result = model.evaluate(img_test, label_test)
print("[test loss, test accuracy]:", eval_result)

313/313 [==============================] - 1s 2ms/step - loss: 0.5827 - accuracy: 0.8874
[test loss, test accuracy]: [0.5827264189720154, 0.8873999714851379]

Other libraries that perform model selection, hyperparameter tuning, and neural architecture search include AutoKeras,
auto-sklearn, Auto-PyTorch and Ray Tune for PyTorch, AutoWEKA, and others.
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7.17.6 17.6 AutoML

AutoML or Automated Machine Learning refers to tools and libraries that are designed to allow non-ML experts to
build Machine Learning systems and solve Data Science tasks without extensive knowledge in these fields.

AutoML systems range from automated No Code ML solutions that allow the end-users to just drag-and-drop their data,
or Low Code systems that automate ML steps with minimal coding efforts, to systems that require coding experience
and are designed to increase the efficiency of data scientists by automating hyperparameter tuning and architecture
search.

Most large providers of cloud computing and ML services typically provide some form of AutoML services. Examples
include GoogleAutoML, Microsoft Azure AutoML, Amazon SageMaker, etc.

In a subsequent lecture on training and deploying a model on the cloud, we will present examples of training ML models
using No Code and Low Code modes with Microsoft Azure ML.
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20tuning%20or%20hypertuning.

2. Keras Learning Rate Finder, available at https://github.com/surmenok/keras_lr_finder.

3. Learning Rate Schedule in Practice: an example with Keras and TensorFlow 2.0, B. Chen, available at https://
towardsdatascience.com/learning-rate-schedule-in-practice-an-example-with-keras-and-tensorflow-2-0-2f48b2888a0c.

4. AutoML.org Freiburg-Hannover, AutoML, available at https://www.automl.org/automl/.
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7.18.1 18.1 Introduction to PyTorch

PyTorch is currently one of the most popular deep learning frameworks. It is an open-source library built upon the
Torch library, and it was developed by Meta AI (previously Facebook AI). It is now part of the Linux Foundation.

As we learned in Tutorial 9, PyTorch provides tensor operations that can conveniently be performed using CPU or GPU
devices. It also provides automatic differentiation operations (auotgrad) with Neural Networks.

In this lecture we will explain how to train Neural Networks with PyTorch. PyTorch has similar functionality to Keras
and TensorFlow, as it allows to import neural network layers, offers loss functions and optimizers, etc. It has a slightly
lower-level of abstraction in comparison to Keras. On the other hand, there are high-level libraries for PyTorch, such
as PyTorch Lightning and fast.ai.

Let’s import the required libraries. In the next cell, we imported torch, several utility functions, and modules such as
torch.nn that provides functions and tools for building and training neural networks, and torchvision that provides
functions and tools for image processing and related computer vision tasks.

[ ]: # import libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
from PIL import Image

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, Subset
import torch.optim as optim
# trochvision is part of PyTorch consisting of models and datasets for computer vision
import torchvision
from torchvision import datasets, transforms
from torchvision.datasets import ImageFolder

7.18.2 18.2 Loading the Dataset

We will use one of the most common deep learning datasets - MNIST (Modified National Institute of Standards and
Technology database). MNIST is a dataset of handwritten digits from 0 to 9, containing 60,000 training images and
10,000 testing images. Each image has 28x28 pixels size.

PyTorch provides access to several datasets, and MNIST can be loaded conveniently by using the datasets.MNIST
function. In the used arguments, root is the directory where the dataset exists, and transform can be used to apply
data scaling, image resizing, or other transformation operations. Such operations are not required for this dataset.

[ ]: training_data = datasets.MNIST(
root="data",
train=True,
download=True,
transform=transforms.ToTensor()

)

test_data = datasets.MNIST(
root="data",
train=False,
download=True,

(continues on next page)
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(continued from previous page)

transform=transforms.ToTensor()
)

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to data/MNIST/
→˓raw/train-images-idx3-ubyte.gz

100%|| 9912422/9912422 [00:00<00:00, 90677866.79it/s]

Extracting data/MNIST/raw/train-images-idx3-ubyte.gz to data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to data/MNIST/
→˓raw/train-labels-idx1-ubyte.gz

100%|| 28881/28881 [00:00<00:00, 27148295.34it/s]

Extracting data/MNIST/raw/train-labels-idx1-ubyte.gz to data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to data/MNIST/raw/
→˓t10k-images-idx3-ubyte.gz

100%|| 1648877/1648877 [00:00<00:00, 23498662.62it/s]

Extracting data/MNIST/raw/t10k-images-idx3-ubyte.gz to data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to data/MNIST/raw/
→˓t10k-labels-idx1-ubyte.gz

100%|| 4542/4542 [00:00<00:00, 4444827.06it/s]

Extracting data/MNIST/raw/t10k-labels-idx1-ubyte.gz to data/MNIST/raw

[ ]: print(training_data)

Dataset MNIST
Number of datapoints: 60000
Root location: data
Split: Train
StandardTransform

Transform: ToTensor()

[ ]: print(test_data)

Dataset MNIST
Number of datapoints: 10000
Root location: data
Split: Test
StandardTransform

Transform: ToTensor()

The images in MNIST are gray images, and therefore, they have only one channel. To check the shape of the images
we can use size() in PyTorch which corresponds to shape in NumPy.
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[ ]: print(training_data.data.size())
print(test_data.data.size())

torch.Size([60000, 28, 28])
torch.Size([10000, 28, 28])

Let’s visualize several randomly selected images from the training dataset, and show their class labels.

[ ]: figure = plt.figure(figsize=(10, 6))
cols, rows = 4, 4
for i in range(1, cols * rows + 1):

sample_idx = torch.randint(len(training_data), size=(1,)).item()
img, label = training_data[sample_idx]
figure.add_subplot(rows, cols, i)
plt.title(label)
plt.axis("off")
plt.imshow(img.squeeze(), cmap="gray")

plt.show()
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DataLoader

In PyTorch, DataLoader is an iterable object used for passing a batch of input data at each iteration during the model
training. DataLoader takes as arguments the dataset that we are going to use, shuffle indicates if the data should be
shuffled, and batch_size is self-explanatory. While we always need to shuffle the data in the training dataset to avoid
correlated data (e.g., the training dataset can have first all 0 images, then 1 images, etc.), we don’t need to shuffle the
test or validation datasets because they are not used for training.

[ ]: train_dataloader = DataLoader(training_data, shuffle=True, batch_size=128)
test_dataloader = DataLoader(test_data, shuffle=False, batch_size=128)

The output of DataLoader is a batch of input images and the corresponding target labels. To inspect a batch of data we
need to use the iter method to obtain an iterator, and afterward we can use the next() function to iterate over the
batches. Note that DataLoader converted the images into a format (1, 28, 28) where 1 is the number of channels of
the images.

Note also that in PyTorch the default convention for representing the dimensions of images in tensors is the “channels
first” format as in (1, 28, 28), as opposed to Keras-TensorFlow where the default convention is the “channels last”
format as in (28, 28, 1).

[ ]: # check is train_dataloader is an iterator
iter(train_dataloader) is train_dataloader

False

[ ]: # Inspect a batch of images and labels
batch_images, batch_labels = next(iter(train_dataloader))
print("Batch images shape:", batch_images.size())
print("Batch labels shape:", batch_labels.size())

Batch images shape: torch.Size([128, 1, 28, 28])
Batch labels shape: torch.Size([128])

7.18.3 18.3 Training Neural Networks: Revisited

Before explaining how to create and train NNs with PyTorch, let’s briefly review the section of training NN from
Lecture 15, as it will be helpful to understand the PyTorch code.

Training NNs is performed by iterative updates of the model parameters with the goal to minimize the difference
between the model predictions and target labels.

Each iteration in the training phase includes the following 4 steps:

1. Forward pass (forward propagation)

2. Loss calculation

3. Error backpropagation (backward pass)

4. Model parameters update

Forward propagation or forward pass, involves passing the input data through all hidden layers of the neural network
toward the output layer to obtain the network predictions. If the input data is an image, the image is transformed through
the layers of the network, and for classification problems, the output is a vector of predicted class probabilities.

Loss calculation is the second step, in which the loss of the network is calculated as a difference between the network
predictions and the target labels. For classification tasks, standard loss function is crossentropy loss, and for regression
tasks loss functions include mean-squared deviation and mean absolution deviation.

606 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

Error backpropagation, also called backward pass or backward propagation involves propagating the predicted
outputs back through the network, from the last layer backward toward the first layer. During the backward step, the
gradients of the loss with respect to the model parameters ∇ℒ() are calculated. The gradients quantify the impact of
changing the parameters in the network to the predicted outputs. Automatic calculation of the gradients (automatic
differentiation) is available in all current deep learning libraries, which significantly simplifies the implementation of
deep learning algorithms.

Model parameters update is the last step in which new values for the model parameters are calculated and updated,
typically using the Gradient Descent algorithm.

Figure: Steps in training neural networks.

And to briefly review the Gradient Descent algorithm, it uses the gradient of the loss function to estimate the slope
of the loss function. By updating the parameters in the opposite direction of the gradient of the loss ∇ℒ, the algorithm
finds parameters for which the loss ℒ has a minimal value.

Figure: Gradient descent algorithm.

Almost all modern neural networks are trained by applying a modified version of the Gradient Descent algorithm. Ex-
amples of such advanced Gradient Descent algorithms include Adam, SGD (Stochastic Gradient Descent), RMSprop,
Adagrad, Nadam, and others.

To train a neural network, the steps of forward pass, loss calculation, backward pass, and parameter update are per-
formed iteratively for each batch of the input data. Each iteration through the input data constitutes one epoch. This is
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shown in the following simple pseudocode.

for epoch in number_of_epochs:
for batch in number_of_batches:

forward pass
calculate loss
backward pass (calculate the gradients)
update parameters

For predicting on test data (inference) only a forward pass through the model is needed, and it does not require to
calculate the loss, perform the backward pass, or update the model parameters.

7.18.4 18.4 Creating, Training, and Evaluating the Model

Model Definition

We will define a Convolution Neural Network using the nn.Module in PyTorch, which is a superclass for creating
neural networks in PyTorch. I.e., the CNN model will represent a subclass of the superclass nn.Module. Inheriting
from the nn.Module allows to use various PyTorch functionalities for our model. Let’s use the name CNN for the
subclass that we will use to instantiate our model.

In the __init__() constructor method of the CNN class, we will list the layers of the network as attributes of the
class. For this task, let’s use 2 convolutional layers that we will name conv1 and conv2, a max-pooling layer maxpool,
ReLU layer relu, and a dense layer named dense. The nn.Module also offers several other attributes and methods
which we will inherit via super().__init__() (or we can also use nn.Module.__init__(self) to achieve the
same result, as you may recall from the lecture on OOP).

Conv2d layers in PyTorch have similar arguments to the Keras library, as follows:

• in_channels (int), number of input channels to the layer, which for the first layer in the network is the number
of channels in input images, and for all other layers is the number of output channels from the preceding layer
(recall that the in_channels argument is not provided in the Keras layers and it is determined automatically,
however in PyTorch we need to specify it).

• out_channels (int), number of channels that are produced by the layer (i.e., the number of used convolutional
filters).

• kernel_size (int or tuple), size of the convolving kernel (it is typically 3, and sometimes can also be 5, 7, etc.).

• padding (int or tuple, optional), padding can be added to both sides of the input images; default value is 0, i.e.,
no padding.

Regarding the image padding, note that applying a convolutional filter to an image produces a convolved image with a
reduced size. To obtain a resulting feature map of the same size as the original image, padding is applied. For instance,
in the figure below, a filter with a kernel size 3x3 is applied to a padded image of size 7x7, and the output is a feature
with size 5x5. In this case, the original image of size 5x5 is padded with zeros on all four sides, and the size was
changed to 7x7. In PyTorch padding=1 means that one row or column is added on all sides of the image. This is
equivalent to padding='same' in Keras.
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Figure: Image padding.

Max pooling layers are defined the same as in Keras, and have as argument the kernel size for the pooling operation.
Most networks use kernel size of 2 for the pooling operation.

The outputs of convolutional layers are passed through a ReLU activation layer which is short for Rectified Linear
Unit activation function. As we explained, activation functions introduce non-linearity to the layers in the model, which
allows to learn complex relations between the inputs and outputs. Most modern neural networks apply ReLU activation
function, or some variants of it ReLU activation function is shown in the next figure, and it outputs 0 if the input is
negative, or outputs the input if it is positive.

Figure: ReLU activation function.

Fully-connected (dense) layers in PyTorch are defined with the nn.Linear layer, and they have as arguments:

• in_features (int), number of input features to the layer (this argument is not provided in the Keras Dense layer, it
is determined automatically).

• out_features (int), number of output features of the layer.

After we define the layers in the model, we will add the method forward to define the forward pass for the model.
For this model, we will use 2 blocks of convolutional, ReLU, and max-pooling layers, and a final dense layer to make
the predictions. Also recall that in the previous lecture we used the Flatten layer to convert the outputs from the
convolutional layers into one-dimensional vectors. Here, we use torch.flatten() to flatten the tensors.
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[ ]: class CNN(nn.Module):
def __init__(self):

super().__init__()

# convolutional layers
self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1)

# maxpooling layer
self.maxpool = nn.MaxPool2d(kernel_size=2)

# ReLU activation layer
self.relu = nn.ReLU()

# fully connected layer, output 10 classes
self.dense = nn.Linear(in_features=32 * 7 * 7, out_features=10)

def forward(self, x):
# sequence of layers
# first block
x = self.conv1(x)
x = self.relu(x)
x = self.maxpool(x)

# second block
x = self.conv2(x)
x = self.relu(x)
x = self.maxpool(x)

# flatten the output of the second block to 1D vector
x = torch.flatten(x, 1)

# output layer
output = self.dense(x)

return output

Next, we will create an instance of the model, here named cnn_model.

[ ]: cnn_model = CNN()

In PyTorch we need to specify the device on which the model will be trained, i.e., whether we will use CPU, GPU, or
TPU. We can do that with torch.device, as in the next cell.

I am using Google Colab with GPU available, therefore in the output of the cell the device type is 'cuda'.

CUDA (Compute Unified Device Architecture) is a library that allows using GPU computing for machine learning
tasks, which parallelizes the computations, and speeds up the model training.

[ ]: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device

device(type='cuda')

Using to(device) will transfer the ConvNet model to the device, which in our case is GPU. And later, we will also
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move the data for training the model to the GPU.

[ ]: cnn_model.to(device)

CNN(
(conv1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(maxpool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(relu): ReLU()
(dense): Linear(in_features=1568, out_features=10, bias=True)

)

Model Training

Before training the model, we need to define a loss function and an optimizer. As we mentioned in the previous
lecture, crossentropy loss is commonly used with classification problems, and Adam is a standardly used optimization
algorithm.

[ ]: # define loss function (cross-entropy)
criterion = nn.CrossEntropyLoss()
# define an optimizer (Adam)
optimizer = optim.Adam(cnn_model.parameters(), lr = 0.01)

The above loss is equivalent to the sparse_categorical_crossentropy in Keras-TensorFlow. Therefore, if the
target variable is in one-hot encoding format, we will need to first convert into 1D tensor containing the integer class
labels. Similarly, if we would like to perform binary classification in PyTorch we can specify a binary crossentropy
loss with nn.BCELoss.

The following cell trains the model, and it is similar to the fit function in scikit-learn or Keras. It contains a for-loop
over the epochs, and afterwards the variables running_loss, total, and sum_correct are initialized and will be
used to store the values of the training loss and accuracy at each epoch.

Next, a batch of images is loaded, and moved to the device (GPU in this case). And, the above four steps are performed:
forward pass, loss calculation, backward pass, and parameters update.

The remaining lines calculate the loss and accuracy and display their values after each epoch.

The item() method is used to convert the tensors to NumPy floats and bring them to the CPU. PyTorch uses GPU for
performing calculations, and CPU for displaying and plotting the variables.

Please read the comments in the next cell to better understand the code.

[ ]: # total number of training epochs
epoch_num = 10

# loop over the number of epochs
for epoch in range(epoch_num):

# the loss values for each epoch
running_loss = 0.0
# total images in each epoch
total = 0
# correctly predicted images in each epoch
sum_correct = 0

### training
(continues on next page)
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(continued from previous page)

# loop over the batches in the training dataset
for i, data in enumerate(train_dataloader):

# get a batch of images and labels
images, labels = data
# send the images and labels to the GPU
images, labels = images.to(device), labels.to(device)

# set the gradient to zero, to clear the values from the last iteration
optimizer.zero_grad()

# forward pass: propagate the inputs through the network to obtain output␣
→˓predictions

outputs = cnn_model(images)
# calculate the loss (crossentropy)
loss = criterion(outputs, labels)
# backward pass: propagate backward and calculate the gradients
loss.backward()
# update the model parameters (using the optimizer Adam)
optimizer.step()

# calculate the loss and accuracy for the current batch
# 'loss' of the current batch is added to the 'running_loss'
# '.item()' returns the value of the PyTorch tensor as Python float32
# and moves its value to the CPU
running_loss += loss.item()
# 'predicted' is the vector of class labels for images in the batch
# this is similar to np.argmax
_, predicted = torch.max(outputs.data, dim=1)
# correct is the number of correctly predicted images in the batch
sum_correct += (predicted==labels).sum().item()
# 'total' is the number of images (or labels) in the batch
total += labels.size(0)

# calculate the accuracy for each epoch
accuracy = sum_correct/total

# print the epoch number, training loss, and training accuracy
print(f'Epoch: {epoch + 1}/{epoch_num}\t Training loss: {running_loss:.3f}\t',

f'\t Training accuracy: {100*accuracy:2.3f}')

Epoch: 1/10 Training loss: 107.009 Training accuracy: 93.078
Epoch: 2/10 Training loss: 36.236 Training accuracy: 97.613
Epoch: 3/10 Training loss: 30.805 Training accuracy: 97.912
Epoch: 4/10 Training loss: 26.868 Training accuracy: 98.237
Epoch: 5/10 Training loss: 25.493 Training accuracy: 98.338
Epoch: 6/10 Training loss: 24.083 Training accuracy: 98.435
Epoch: 7/10 Training loss: 24.274 Training accuracy: 98.323
Epoch: 8/10 Training loss: 22.736 Training accuracy: 98.438
Epoch: 9/10 Training loss: 21.969 Training accuracy: 98.493
Epoch: 10/10 Training loss: 21.570 Training accuracy: 98.602
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Model Evaluation

The following cell evaluates the accuracy on the test dataset. For this step, we will use with torch.no_grad()
context manager, to indicate that there is no need to calculate the gradients, since the model parameters are not updated
during model evaluation. As we know, only the forward pass is required for evaluation on test images.

[ ]: ### testing

# these variables are similar to the variables for the training phase
test_running_loss = 0.0
test_total = 0
test_correct = 0

# torch.no_grad() specify not to update the model during testing
with torch.no_grad():
# loop over the batches in the test dataset
for i, data in enumerate(test_dataloader):

# get a batch of images and labels
images, labels = data
# send the images and labels to the GPU
images, labels = images.to(device), labels.to(device)

# forward pass
outputs = cnn_model(images)
# calculate the loss
loss = criterion(outputs, labels)
# there is no backward pass in the testing step

# these variables are the same as in the training setp
test_running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
test_total += labels.size(0)
test_correct += (predicted == labels).sum().item()

print(f'Accuracy of the model on the test images: {100*test_correct/test_total:2.3f}')

Accuracy of the model on the test images: 98.230

7.18.5 18.5 Using a Custom Dataset and a Pretrained Model

Loading the Dataset

In this section, we will study one more classification task with CNNs in PyTorch. We will use the image dataset
Imagenette, which is just a small subset of images from the large dataset ImageNet. There are a few versions of
the Imagenette dataset, and we will use a version that has 9,469 images, categorized into 10 classes. The classes
are: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, and
parachute.

We will explore two different cases for the organization of a custom dataset to be loaded:

• Case 1, the dataset consists of separate directories for each class, where each subdirectory contains the data
samples for one class

• Case 2, the dataset has one directory with all data samples and a spreadsheet (or text file) that contains the labels
for all samples
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Case 1: One Directory for Each Class

As we stated, in this case, the dataset is organized into multiple directories, and each directory contains the data samples
for one class.

Let’s first mount the Google Drive since the dataset is saved on the drive, and uncompress the file.

[ ]: from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

[ ]: # Uncompress the dataset
!unzip -uq "drive/MyDrive/Data_Science_Course/Fall_2023/Lecture_18-NNs_with_PyTorch/data/
→˓imagenette_folders.zip" -d "sample_data/"

To see the dataset, click on the icon that looks like a folder located in the left-side panel in Google Colab, and under
sample_data you will see the imagenette_folders directory. If we click on the arrow to expand it, we can see that
it has two main subdirectories train and val, each of which has 10 subdirectories that contain the images for each
class in the dataset.

in PyTorch, loading datasets that have such organization is very simple. The function ImageFolder is designed for
such datasets, and it automatically labels and organizes the data. In the cell below, we just provide the path to the
dataset, and transform for resizing the images to 128x128 pixel size and converting the data to PyTorch tensors.

After that, we use the DataLoader to create train and validation dataloader objects for iterating over the datasets.

[ ]: from torchvision.datasets import ImageFolder
from torchvision import transforms

transform = transforms.Compose([transforms.Resize((128, 128)), transforms.ToTensor()])

train_dataset = ImageFolder(root='sample_data/imagenette_folders/train/',␣
→˓transform=transform)
val_dataset = ImageFolder(root='sample_data/imagenette_folders/val', transform=transform)

train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=64)
val_dataloader = DataLoader(val_dataset, shuffle=False, batch_size=64)

Case 2: All Data Points in a Single Directory

In this case, all images are saved into one single directory. Let’s uncompress the file. Again, if we click on the folder
icon in the left-side panel in Google Colab, we can notice that the dataset has one directory images that contains all
images, and a file labels.csv that has the labels for all images.

[ ]: # Uncompress the dataset
!unzip -uq "drive/MyDrive/Data_Science_Course/Fall_2023/Lecture_18-NNs_with_PyTorch/data/
→˓imagenette_all.zip" -d "sample_data/"

Custom datasets in PyTorch are created as a subclass of the Dataset class, which is imported from torch.utils.
data. The custom datasets should inherit from Dataset and they are required to override the following two methods:

• __len__(), to return the number of instances in the dataset.

• __getitem__() to support indexing and return the instances with the specified index idx in the dataset.
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In the cell below, we used MyDataset as the name of the subclass. In the __init__()method we defined the root direc-
tory where the dataset is located, the subdirectory image_folderwhere the images are saved, we read the labels.csv
file as a Pandas DataFrame, and we defined transform that will apply transformation to the images.

The __len__() method returns the length of the dataset, which is the same as the number of rows in labels.csv.

In the __get_item__() method, idx is the index of the data point to load, img_name is the file path to the image
with index idx (where the image files are named ‘img_0001.jpg’, ‘img_0002.jpg’, etc.), image is the image file and
it is loaded with the Image.open() method in PIL (Python Imaging Library), and afterward transformations are
applied to the image. The label for each image is extracted from the Pandas DataFrame labels_file. Finally, the
__getitem__() method returns a tuple containing the transformed image and its corresponding label.

[ ]: class MyDataset(Dataset):
def __init__(self, root_dir, transform):

self.root_dir = root_dir
self.image_folder = os.path.join(root_dir, 'images')
self.labels_file = pd.read_csv(os.path.join(root_dir, 'labels.csv'), header=None)
self.transform = transform

def __len__(self):
return len(self.labels_file)

def __getitem__(self, idx):
img_name = os.path.join(self.image_folder, f'img_{idx + 1:04}.jpg')
image = Image.open(img_name)
image = self.transform(image)
label = self.labels_file.iloc[idx, 0]

return image, label

Now, let’s use the class MyDataset to instantiate the dataset. There are 9,469 images in total in the dataset.

[ ]: transform = transforms.Compose([transforms.Resize((128, 128)), transforms.ToTensor()])

dataset = MyDataset(root_dir='sample_data/imagenette_all', transform=transform)

[ ]: print(len(dataset))

9469

To create training, testing, and validation subsets, we will first use scikit-learn’s train_test_split to split the indices
into three groups.

Afterward, we will use the Subset class in PyTorch to partition the dataset into training, testing, and validation datasets
based on the indices.

And, as in the above examples, we will use DataLoader to enable iterating over batches of images and labels.

[ ]: from sklearn.model_selection import train_test_split

# Split the dataset into train and test subsets
train_indices_1, test_indices = train_test_split(range(len(dataset)), test_size=0.2,␣
→˓random_state=123)

# Split the dataset into train and validation subsets
train_indices, val_indices = train_test_split(train_indices_1, test_size=0.2, random_
→˓state=123) (continues on next page)
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[ ]: # Create training, testing, and validation subsets
train_dataset = Subset(dataset, train_indices)
test_dataset = Subset(dataset, test_indices)
val_dataset = Subset(dataset, val_indices)

[ ]: # Create training, testing, and validation dataloaders for iterating over the datasets
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=64)
test_dataloader = DataLoader(test_dataset, shuffle=False, batch_size=64)
val_dataloader = DataLoader(val_dataset, shuffle=False, batch_size=64)

[ ]: print(len(train_dataset))
print(len(test_dataset))
print(len(val_dataset))

6060
1894
1515

PyTorch has a function make_grid() which allows to plot a grid of images.

[ ]: # show several images
def imshow(img):

npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()

# get a batch of random training images and labels
images, labels = next(iter(train_dataloader))

# show images
plt.figure(figsize=(8,8))
imshow(torchvision.utils.make_grid(images))
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Model Loading

PyTorch has pretrained models that are easy to be loaded and used. Let’s import a VGG model pretrained on the
ImageNet dataset.

[ ]: from torchvision.models import vgg16

#VGG16
vgg_model = vgg16(pretrained=True)
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/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:208: UserWarning:␣
→˓The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future,␣
→˓please use 'weights' instead.
warnings.warn(

/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:223: UserWarning:␣
→˓Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13␣
→˓and may be removed in the future. The current behavior is equivalent to passing␣
→˓`weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.
→˓DEFAULT` to get the most up-to-date weights.
warnings.warn(msg)

Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /root/.cache/
→˓torch/hub/checkpoints/vgg16-397923af.pth
100%|| 528M/528M [00:07<00:00, 71.6MB/s]

To use the VGG model with our dataset, we will change the last layer in the model with a dense layer that will output
10 features, since there are 10 classes in the dataset. Notice in the following cell which shows the architecture of the
VGG model that the last layer is layer ‘6’ in the classifier (where the classifier refers to the Linear (dense), ReLU, and
Droput layers that follow the convolutional and maxpooling layers). In the original VGG model that was trained on
ImageNet, the last layer has 1,000 output neurons, since there are 1,000 classes in ImageNet.

[ ]: # replace the last layer in VGG with a dense layer to predict 10 classes
vgg_model.classifier._modules['6'] = nn.Linear(4096, 10)

[ ]: vgg_model.to(device)

VGG(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace=True)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace=True)
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace=True)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace=True)
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(18): ReLU(inplace=True)
(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace=True)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace=True)
(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(25): ReLU(inplace=True)

(continues on next page)
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(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(27): ReLU(inplace=True)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace=True)
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(
(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=10, bias=True)

)
)

Modular Code: Training and Validation for One Epoch

For this example, let’s write functions for training and validating the model which we will call train and validate.
These functions will group all required code for training and validation, and we can re-use such modular code in other
scripts.

The functions are almost identical to the code that we used above. They return the accuracy and loss for the epoch.
Note that we used the lines model.train() and model.eval() in these functions, which act as a switch for some
specific layers that behave differently during training and evaluation. For example, Dropout and Batch Normalization
layers are turned on during training and turned off during evaluation, which is controlled by these two lines.

[ ]: # train the model for one epoch on the given set
def train(model, train_loader, criterion, optimizer, epoch):

running_loss, total, sum_correct = 0.0, 0, 0

# indicate this is a training step
model.train()

for i, data in enumerate(train_loader):
images, labels = data
labels = labels.type(torch.LongTensor)
images, labels = images.to(device), labels.to(device)

# forward + loss + backward + update
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

# calculate loss and accuracy
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)

(continues on next page)
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sum_correct += (predicted == labels).sum().item()
total += labels.size(0)

# return the accuracy and loss
return sum_correct/total, running_loss

# evaluate the model on the given set
def validate(model, val_loader, criterion):

running_loss, total, sum_correct = 0.0, 0, 0

# indicate this is an evaluation step
model.eval()

with torch.no_grad():
for i, data in enumerate(val_loader):

images, labels = data
labels = labels.type(torch.LongTensor)
images, labels = images.to(device), labels.to(device)

# Compute the output: forward pass only
outputs = model(images)
loss = criterion(outputs, labels)

# calculate loss and accuracy
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
sum_correct += (predicted == labels).sum().item()

# return the accuracy and loss
return sum_correct/total, running_loss

Define Loss and Optimizer

[ ]: criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(vgg_model.parameters(), lr=1e-4)

Model Training

The next cell contains code for training the model. Now we can call the train and validate functions to perform
the training and validation steps for each epoch. The outputs are the average accuracy and loss, calculated at the end
of each epoch. We will append those values to lists, which we will use later to plot the learning curves.

[ ]: # total number of training epochs
epoch_num = 10

# initialize variables to save the training and validation loss and accuracy
training_loss_plot = []

(continues on next page)
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training_accuracy_plot = []
val_loss_plot = []
val_accuracy_plot = []

# loop over the number of epochs
for epoch in range(epoch_num):

# train for one epoch: return accuracy and loss
tr_accuracy, tr_loss = train(vgg_model, train_dataloader, criterion, optimizer,␣

→˓epoch)

# evaluate after each epoch: return accuracy and loss
val_accuracy, val_loss = validate(vgg_model, val_dataloader, criterion)

# append the accuracies and losses after each epoch
training_accuracy_plot.append(tr_accuracy)
training_loss_plot.append(tr_loss)
val_accuracy_plot.append(val_accuracy)
val_loss_plot.append(val_loss)

# Display after each epoch
print(f'Epoch: {epoch + 1}/{epoch_num}\t Training loss: {tr_loss:.3f}\t',

f'Training accuracy: {100*tr_accuracy:2.3f}\t Validation accuracy:
→˓{100*val_accuracy:2.3f}')

Epoch: 1/10 Training loss: 69.309 Training accuracy: 75.644 Validation␣
→˓accuracy: 88.977
Epoch: 2/10 Training loss: 22.932 Training accuracy: 92.277 Validation␣
→˓accuracy: 88.977
Epoch: 3/10 Training loss: 11.393 Training accuracy: 95.974 Validation␣
→˓accuracy: 89.703
Epoch: 4/10 Training loss: 8.982 Training accuracy: 97.013 Validation␣
→˓accuracy: 86.799
Epoch: 5/10 Training loss: 5.881 Training accuracy: 98.036 Validation␣
→˓accuracy: 91.089
Epoch: 6/10 Training loss: 5.154 Training accuracy: 98.218 Validation␣
→˓accuracy: 89.703
Epoch: 7/10 Training loss: 6.606 Training accuracy: 97.987 Validation␣
→˓accuracy: 90.363
Epoch: 8/10 Training loss: 5.586 Training accuracy: 98.218 Validation␣
→˓accuracy: 89.835
Epoch: 9/10 Training loss: 2.577 Training accuracy: 99.092 Validation␣
→˓accuracy: 89.241
Epoch: 10/10 Training loss: 1.870 Training accuracy: 99.356 Validation␣
→˓accuracy: 89.109

The training and validation accuracies and loss are shown in the next figure. Note that Mathplotlib doesn’t support
plotting tensors that are on the GPU, and therefore, we needed to bring the values of the accuracies and losses to the
CPU for plotting (e.g., by using item() as in the above code).

[ ]: # plot the accuracy and loss for the training and validation datasets
plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)

(continues on next page)

7.18. Lecture 18 - Neural Networks with PyTorch 621



Fall 2023 Python Programming for Data Science, Release 0.1

(continued from previous page)

plt.plot(training_accuracy_plot)
plt.plot(val_accuracy_plot)
plt.legend(['Training accuracy', 'Validation accuracy'])
plt.title('Training and Validation Accuracy')
plt.subplot(1,2,2)
plt.plot(training_loss_plot)
plt.plot(val_loss_plot)
plt.legend(['Training loss', 'Validation loss'])
plt.title('Training and Validation Loss')
plt.show()

Model Evaluation

We can use the same function validate to evaluate the model performance on the test dataset.

[ ]: # calculate the accuracy and loss on the test dataset
test_accuracy, test_loss = validate(vgg_model, test_dataloader, criterion)
print(f'Test dataset accuracy: {100*test_accuracy:2.3f}')

Test dataset accuracy: 89.335

7.18.6 18.6 Model Saving and Loading in PyTorch

Save and Load State Dictionary

To save PyTorch models we use torch.save() as shown below. The parameters of the model are stored in a state
dictionary with state_dict(), and as expected, the path to the directory to save the model needs to be provided.
A state_dict() is a dictionary that has as keys the layers in the network, and the values in the dictionary are the
corresponding parameters in each layer.

A PyTorch convention is to use the extension .pth or .pt with the file path.
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[ ]: torch.save(vgg_model.state_dict(), 'vgg_model_weights.pth')

Let’s print the keys in the state_dict for the vgg model. The model has 30 layers in the features part, and 6 layers
in the classifier part (as shown in one of the above cells). E.g., features.0.weight is the key for the weights in
layer 0 and features.0.bias is the key for the biases in layer 0 of the model, where biases is a vector of trainable
constant values that are added to the weights in each layer.

[ ]: print("Keys in the state_dict keys: \n", vgg_model.state_dict().keys())

Keys in the state_dict keys:
odict_keys(['features.0.weight', 'features.0.bias', 'features.2.weight', 'features.2.
→˓bias', 'features.5.weight', 'features.5.bias', 'features.7.weight', 'features.7.bias',
→˓'features.10.weight', 'features.10.bias', 'features.12.weight', 'features.12.bias',
→˓'features.14.weight', 'features.14.bias', 'features.17.weight', 'features.17.bias',
→˓'features.19.weight', 'features.19.bias', 'features.21.weight', 'features.21.bias',
→˓'features.24.weight', 'features.24.bias', 'features.26.weight', 'features.26.bias',
→˓'features.28.weight', 'features.28.bias', 'classifier.0.weight', 'classifier.0.bias',
→˓'classifier.3.weight', 'classifier.3.bias', 'classifier.6.weight', 'classifier.6.bias
→˓'])

To load a saved model, we need to have an instance of the model, and therefore let’s create an instance model_1.
Then, we use the load_state_dict() method with torch_load(). Internally PyTorch uses pickle to serialize and
deserialize the state_dict() when saving and loading.

[ ]: model_1 = vgg_model

model_1.load_state_dict(torch.load('vgg_model_weights.pth'))

<All keys matched successfully>

[ ]: # calculate the accuracy and loss on the test dataset
test_accuracy, test_loss = validate(model_1, test_dataloader, criterion)
print(f'Test dataset accuracy: {100*test_accuracy:2.3f}')

Test dataset accuracy: 89.335

Save and Load the Entire Model

Instead of saving only the model parameters with the state_dict(), it is also possible to save the entire model in
PyTorch, including the class definition, the architecture with the layers, and other related information, as in the next
cell.

[ ]: torch.save(vgg_model, 'vgg_model_2.pth')

However, saving the state dictionary is the preferred way, since it results in a reduced file size, and it allows to share
models accross different versions of PyTorch, whereas saved objects with the entire model may not be compatible
between PyTorch versions. In addition, loading a saved state dictionary provides more flexibility and it allows to
replace the model achitecture and fine-tune the model with a different architecture.
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Save and Load a Checkpoint

If we would like to save the model checkpoint after an epoch, and later resume the training, we will need to also save in-
formation about the loss and gradients at that epoch, along with the state dictionary. In the next cell, the checkpoint saves
the last epoch, the state dictionary model.state_dict(), and the optimizer information optimizer.state_dict().

[ ]: checkpoint = {'epoch': epoch,
'state_dict': vgg_model.state_dict(),
'optimizer_state' : optimizer.state_dict()}

torch.save(checkpoint, 'vgg_checkpoint.pth')

When loading the checkpoint, we will load the 'state_dict', 'optimizer_state', and 'epoch'.

[ ]: model_2 = vgg_model

checkpoint = torch.load('vgg_checkpoint.pth')
model_2.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state'])
epoch = checkpoint['epoch']

[ ]: # calculate the accuracy and loss on the test dataset
test_accuracy, test_loss = validate(model_2, test_dataloader, criterion)
print(f'Test dataset accuracy: {100*test_accuracy:2.3f}')

Test dataset accuracy: 89.335

7.18.7 References

1. Training a Classifier in PyTorch, available at: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html.
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7.19.1 19.1 Introduction to NLP

Natural Language Processing (NLP) is a branch of Computer Science (and more broadly, a branch of Artificial
Intelligence) that is concerned with providing computers with the ability to understand texts and human language.

Common tasks in NLP include:

• Text classification — assign a class label to text based on the topic discussed in the text, e.g., sentiment analysis
(positive or negative movie review), spam detection, content filtering (detect abusive content).

• Text summarization/reading comprehension — summarize a long input document with a shorter text.

• Speech recognition — convert spoken language to text.

• Machine translation — convert text in a source language to a target language.

• Part of Speech (PoS) tagging — mark up words in text as nouns, verbs, adverbs, etc.

• Question answering — output an answer to an input question.

• Dialog generation — generate the next reply in a conversation given the history of the conversation.

• Text generation — generate text to complete the sentence or to complete the paragraph.

7.19.2 19.2 Preprocessing Text Data

In order to perform operations with text data, they first need to be converted into a numerical representation.

Converting text data into numerical form for processing by ML models typically involves the following steps:

• Standardization - remove punctuation, convert the text to lowercase.

• Tokenization - break up the text into tokens (e.g., tokens can be individual words, several consecutive words
(N-grams), or individual characters).

• Indexing - assign a numerical index to each token in the training set (i.e., vocabulary). Modern ML models
typically include an additional step - embedding which involves assigning a numerical vector to each token (e.g.,
one-hot encoding and word-embedding are explained in Section 19.5 below).

Text Standardization

Text standardization usually includes some or all of the following steps, depending on the application:

• Remove punctuation marks (such as comma, period) or non-alphabetic characters (@, #, {, ]).

• Change all words to lower-case letters, since ML models should consider Text and text as the same word.

Some NLP tasks can apply additional steps, such as:

• Correct spelling errors or replace abbreviations with full words.

• Remove stop words, such as for, the, is, to, some, etc.; if the task is text classification, these words are not relevant
to the meaning of the text.

• Apply stemming and lemmatization, which transforms words to their base form, such as changing the word
changing to change, or grilled to grill since they have a common root.
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Applying text standardization is helpful for training ML models, because the models do not need to consider Text and
text as two different words, which reduces the requirements for large training datasets. However, depending on the
application, text standardization may remove information that can be important for some tasks, and this should always
be considered when performing text preprocessing.

Tokenization

Tokenization is breaking up a sequence of text into individual units called tokens.

Tokenization can be performed at different levels:

• Character-level tokenization - where the text is divided into individual characters, and each character is a token,
including letters, digits, punctuation marks, and symbols. One disadvantage of this type of tokenization is that
antigrams (words with same letters in different order, such as silent and listen) can have the same numerical
encoding, which can affect the performance of ML models. As well as, character-level tokenization does not
capture semantic meaning of words as effectively as word-level tokens. Consequently, it is not widely used in
practice.

• Word-level tokenization - where each word is a token. This type of tokenization provides a natural representation
of input text with the words as building blocks of language, and it is the most commonly used.

• Subword-level tokenization - where the words are divided into smaller units (e.g., tokenizing the word “unhap-
piness” into two tokens “un” + “happiness”). In some languages with complex word structures, subword-level
tokenization is more suitable.

• N-gram tokenization - where N consecutive words represent a token. For instance, N-grams consisting of two
adjacent words are called bigrams, or three words constitute a trigram, etc. N-gram tokens preserve the words
order and can potentially capture more information in the text. For instance, for spam filtering using bigram
tokens such as mailing list or bank account may provide more helpful information than using word-level tokens.

For some NLP tasks, tokenization can also be performed at other levels, such as sentence-level tokenizaiton for docu-
ment segmentation task.

An example of text standardization, word-level tokenization, and indexing is shown in the next figure.

Figure: Text standardization, word-level tokenization, and indexing.
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7.19.3 19.3 Text Tokenization

Keras provides a text preprocessing function Tokenizer for converting raw text into sequences of tokens. The
Tokenizer performs text standardization, tokenization, and indexing.

The Kears Tokenizer has the following arguments:

• num_words: the maximum number of words to keep in the input text. It is better to set a high number if we are
not sure, because if we set a number less than the words in the text, some words will not be tokenized.

• filters: by default, all punctuations and special characters in the text will be removed. If we want to change that,
we can provide a list of punctuations and characters to keep.

• lower: can be True or False. By default, it is True, and that means all texts will be converted to lowercase.

• split: separator for splitting words. A default separator is a space (" ").

• char_level: can be True or False. By default, it is False and will perform word-level tokenization. If it is True,
the function will perform character-level tokenization.

• oov_token: oov stands for Out Of Vocabulary, and it denotes a special token that will replace tokens that are not
present in the input text.

19.3.1 Character-level Tokens

To use the Tokenizer for character-level tokenization, we need to set char_level to True. Let’s set the number of
tokens to 1,000.

Let’s apply it to the following sentence by using the method fit_on_texts().

[ ]: import tensorflow as tf
from tensorflow import keras
import numpy as np

# Print the version of tf
print("TensorFlow version:{}".format(tf.__version__))

TensorFlow version:2.14.0

[ ]: # A sample sentence
sentence = ['TensorFlow is a Machine Learning framework']

[ ]: from keras.preprocessing.text import Tokenizer

tokenizer = Tokenizer(num_words=1000, char_level=True)

# Fitting tokenizer on sentences
tokenizer.fit_on_texts(sentence)

When the Tokenizer separates the characters in text, it creates a dictionary that maps each character to an integer
index. We can inspect the dictionary by using the attribute word_index, although since we have set char_level to
True in this case it is the character index.

Note that the start index is 1. By default, all letters are converted to lowercase. The first token is an empty space ' ',
the second is the letter 'e', etc. There are 17 unique characters in the sentence, including the empty space.

[ ]: char_index = tokenizer.word_index
print(char_index)
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{' ': 1, 'e': 2, 'n': 3, 'r': 4, 'a': 5, 'o': 6, 'i': 7, 's': 8, 'f': 9, 'l': 10, 'w':␣
→˓11, 'm': 12, 't': 13, 'c': 14, 'h': 15, 'g': 16, 'k': 17}

The method text_to_sequences outputs the indices for the text. You can check that the word TensorFlow has the
indices 13, 2, 3, 8, 6, 4, 9, 10, 6, 11, where each index corresponds to the letters listed in char_index.

[ ]: print(tokenizer.texts_to_sequences(sentence))

[[13, 2, 3, 8, 6, 4, 9, 10, 6, 11, 1, 7, 8, 1, 5, 1, 12, 5, 14, 15, 7, 3, 2, 1, 10, 2, 5,
→˓ 4, 3, 7, 3, 16, 1, 9, 4, 5, 12, 2, 11, 6, 4, 17]]

As we mentioned earlier, character-level tokenization is rarely used, because it does not capture semantic meaning of
words as effectively as word-level tokens.

19.3.2 Word-level Tokens

To use the Tokenizer for tokenizing words instead of characters, we need to just change the argument char_level
to False, which is the default setting, so we may as well just omit it.

[ ]: # Sample sentences
sentences = ['TensorFlow is a Machine Learning framework.',

'Keras is a well designed deep learning API!',
'Keras is built on top of TensorFlow!']

After the text is broken down into individual words, the Tokenizer builds a vocabulary of all words that are found in
the input text, and assigns a unique integer index to each word in the vocabulary. We can inspect the words by using
again the attribute word_index.

[ ]: tokenizer = Tokenizer(num_words=1000)

# Fitting tokenizer on sentences
tokenizer.fit_on_texts(sentences)

word_index = tokenizer.word_index
print(word_index)

{'is': 1, 'tensorflow': 2, 'a': 3, 'learning': 4, 'keras': 5, 'machine': 6, 'framework':␣
→˓7, 'well': 8, 'designed': 9, 'deep': 10, 'api': 11, 'built': 12, 'on': 13, 'top': 14,
→˓'of': 15}

There are 15 unique words in the above sentences. By default, all punctuations are removed and all letters are converted
to lowercase.

The indices for the above three sentences are shown below. For instance, the first list [2, 1, 3, 6, 4, 7] represents
the first sentence in the text TensorFlow is a Machine Learning framework.

[ ]: print(tokenizer.texts_to_sequences(sentences))

[[2, 1, 3, 6, 4, 7], [5, 1, 3, 8, 9, 10, 4, 11], [5, 1, 12, 13, 14, 15, 2]]

Also, word_counts can return the number of times each word appears in the sentences.

[ ]: word_counts = tokenizer.word_counts
word_counts
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OrderedDict([('tensorflow', 2),
('is', 3),
('a', 2),
('machine', 1),
('learning', 2),
('framework', 1),
('keras', 2),
('well', 1),
('designed', 1),
('deep', 1),
('api', 1),
('built', 1),
('on', 1),
('top', 1),
('of', 1)])

Out of Vocabulary Words

To handle the case when the Tokenizer is applied to text that contains words that were not present in the original
documents, we can define a special token oov_token. This token will be used to replace these words that are Out Of
Vocabulary (OOV).

In the example below, we set the oov_token, which has been assigned the index 1.

[ ]: tokenizer = Tokenizer(num_words=1000, oov_token='Word Out of Vocab')
tokenizer.fit_on_texts(sentences)
word_index = tokenizer.word_index
print(word_index)

{'Word Out of Vocab': 1, 'is': 2, 'tensorflow': 3, 'a': 4, 'learning': 5, 'keras': 6,
→˓'machine': 7, 'framework': 8, 'well': 9, 'designed': 10, 'deep': 11, 'api': 12, 'built
→˓': 13, 'on': 14, 'top': 15, 'of': 16}

[ ]: # Converting text to sequences
print(tokenizer.texts_to_sequences(sentences))

[[3, 2, 4, 7, 5, 8], [6, 2, 4, 9, 10, 11, 5, 12], [6, 2, 13, 14, 15, 16, 3]]

Next, if we pass text with new words that the tokenizer was not fit to, the new words will be replaced with the
oov_token.

[ ]: new_sentences = ['I like TensorFlow', # 'I' and 'like' are new words
'Keras is a superb deep learning API'] # 'superb' is a new word

print(tokenizer.texts_to_sequences(new_sentences))

[[1, 1, 3], [6, 2, 4, 1, 11, 5, 12]]

And also, if we work with a large dataset that contains many documents, we can limit the number of words in the
vocabulary to 20,000 or 30,000, and consider the rare words as out-of-vocabulary words. This can reduce the input
space of the model, by ignoring those words that are present only once or twice in the large database.
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19.3.3 Padding Word Sequences

Most machine learning models require the input samples to have the same length/size. In Keras, the function
pad_sequences() can be used to pad the text sequences with predefined values, so that they have the same length.

The function pad_sequences() accepts the following arguments:

• sequence: a list of integer indices (i.e., tokenized text).

• maxlen: maximum length of all sequences; if not provided, sequences will be padded to the length of the longest
sequence.

• padding: ‘pre’ (default) or ‘post’, whether to pad before the sequence or after the sequence.

• truncating: ‘pre’ (default) or post’, whether to remove the values from sequences larger than maxlen at the
beginning or at the end of the sequences.

• value: a float or a string to use as a padding value. By default, the sequences are padded with 0.

[ ]: tokenized_sentences = tokenizer.texts_to_sequences(sentences)

print(tokenized_sentences)

[[3, 2, 4, 7, 5, 8], [6, 2, 4, 9, 10, 11, 5, 12], [6, 2, 13, 14, 15, 16, 3]]

The next cell shows the above sequences pre-padded with 0 to sequences with length 10.

[ ]: from keras.preprocessing.sequence import pad_sequences

padded_sequences = pad_sequences(tokenized_sentences, maxlen=10)

print(padded_sequences)

[[ 0 0 0 0 3 2 4 7 5 8]
[ 0 0 6 2 4 9 10 11 5 12]
[ 0 0 0 6 2 13 14 15 16 3]]

7.19.4 19.4 Representation of Groups of Words

Representation of groups of words in Machine Learning models for text processing includes two categories of ap-
proaches:

• Set models approach, the text is represented as unordered collection of words. Such approaches include bag-of-
words models.

• Sequence models approach, where the text is represented as ordered sequences of words. These methods pre-
serve the order of the words in the text. Representatives of these approaches are Recurrent Neural Networks, and
Transformer Networks.

The order of words in natural language is not necessarily fixed, and sentences with different orders of the words can
have the same meaning. Also, different languages use different ways to order the words. As a result, defining the order
of the words in text in NLP tasks is not straightforward.
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Bag-of-Words Models

Bag-of-words models discard the information about the order of the words, where the term bag implies that the structure
of the text is lost. A depiction of a bag-of-words is shown below, where the initial text is separated into word-level
tokens, and a bag is created from all words in the text. Also, instead of individual words, these models often employ N-
gram representations. This type of models typically consider the frequency of occurrence of each word in the training
data, and a classifier is trained by using the word counts as inputs.

For instance, to create a spam filtering classifier, two bags-of-words can be created from the words in spam and non-
spam emails. Presumably, the spam bag will contain trigger words (such as cheap, buy, stock) more frequently than the
bag with words from non-spam emails. A classifier will be trained using the two bags-of-words and learn to differentiate
trigger words from regular words. After the training, the classifier will analyze the words in new unseen messages, and
predict the probability that these words belong to the spam or non-spam bag-of-words.

Figure: Bag-of-words representation.

The early applications of machine learning in NLP relied on bag-of-words models. Modern applications, especially
those related to large language models, rely predominantly on sequence models. Before 2018, Recurrent Neural Net-
works were the preferred models for NLP applications. In recent years, Transformer Networks have replaced Recurrent
Neural Networks as more powerful models for NLP tasks.

7.19.5 19.5 Sequence Models Approach

Sequence models process the entire text sequence at once, which allows preserving the order of words in the input
text. Typical implementation of sequence models includes the steps of representing the words in text data with integer
indices, mapping the integers to vector representations, and passing the vectors to a machine learning model, where
the layers in the model will account for the ordering of input vectors.

The input vectors to sequence models can be in the form of:

• One-hot word vector representation, or

• Word embeddings representation.
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One-Hot Word Vector Representation

One-hot word vector representation is similar to encoding categorical features with one-hot encoding matrix. That
is, the index for each word is converted to one-hot vector, having 1 (hot) for that word and 0 (cold) for all other
words. An example is shown in the left-hand figure, where we created a zero vector with length of 4, and assigned 1
for the index that corresponds to every word. Another example if shown in the right-hand figure.

Figure: One-hot word vector encoding.

One-hot word vector representation is not an efficient way to represent text, because for large text datasets the input
vectors can become quite large. For instance, a training set with 20,000 words will need to use one-hot vectors of size
20,000 to represent each word, and this results in slow training, as well as this type of word representation takes a lot
of memory space.

Using word embeddings is more efficient, since the vectors for word representation are much smaller than the size of the
vocabulary, and more importantly, embedding vectors can capture important semantic meaning of the words. Hence,
most modern NLP models rely on word embeddings for word representating words in text.

19.5.1 Word Embeddings

Word embeddings representation is used to convert each word into a vector (also referred to as embedding vector), in
such as way that the vectors of words that have similar semantic meaning have close spatial positions in the embeddings
space.

The embeddings space consists of the set of vectors, where each word in the vocabulary is represented with one vector.
For calculating the distance between the vectors in the embeddings space, typically the cosine similarity is used as a
distance metric. For two vectors 𝑢 and 𝑣, cosine similarity is calculated as the dot (scalar, inner) product of the vectors
divided by the norm of the vectors, i.e.,

𝑢 · 𝑣
||𝑢|| · ||𝑣||

.

Typical vectors for representing word embeddings have between 256 to 1,024 dimensions. For instance, the following
figure shows the embedding vector for the word ‘work’. The embedding vector has many values, and each value
represents some aspect of the meaning of that word.

Figure: Embedding vector for the word ‘work’. Source: link
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The embedding vectors of words that have similar meanings are also similar. In the following figure, we can see that
the embedding vectors of the words ‘football’ and ‘soccer’ are more similar to each other, than the embedding vectors
of the words ‘sea’ or ‘we’.

Figure: Embedding vectors for words with similar meanings are also similar. Source: link

A simple example of word embeddings space is shown below, where similar words are positioned closer to each other.
Therefore, the spatial distance between the vectors is dependent on the semantic meaning of the words.
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Figure: Word embeddings space. Source: link

Two popular methods for generating word embeddings are word2vec and Glove. These methods use neural networks to
learn embedding vectors from a large corpus of text. The resulting vectors learned by these techniques can be imported
as pretrained word embeddings and applied to downstream tasks with smaller training datasets.

For example, the website Embedding Projector provides visualizations of word embeddings, and for an entered word
displays other words that are adjacent in the embeddings space.

To demonstrate the use of word embeddings with Keras, we will implement it for a sentiment analysis task, to classify
movie reviews using the IMDB Reviews dataset.

Loading the IMDB Reviews Dataset

IMDB Reviews Dataset can be downloaded from the built-in datasets in Keras. There are 25,000 samples of movie
reviews for training and 25,000 samples for validation. Setting max_features to 20,000 means we are only considering
the first 20,000 words and the rest of the words will have the out-of-vocabulary token. Each movie review has a positive
or negative label.

The training and validation datasets will be loaded as lists with 25,000 elements.

[ ]: max_features = 20000

(continues on next page)
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(continued from previous page)

(train_data, train_labels), (val_data, val_labels) = keras.datasets.imdb.load_data(num_
→˓words=max_features)

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb.
→˓npz
17464789/17464789 [==============================] - 0s 0us/step

[ ]: print(len(train_data))
print(len(val_data))

25000
25000

Displayed below is one example of a movie review. It is a list of indices, it contains 141 words, and as we can see the
words in the dataset are already converted to integer indices.

[ ]: # Display the third movie review
print('Number of words in the third review', len(train_data[2]))
print(train_data[2])

Number of words in the third review 141
[1, 14, 47, 8, 30, 31, 7, 4, 249, 108, 7, 4, 5974, 54, 61, 369, 13, 71, 149, 14, 22, 112,
→˓ 4, 2401, 311, 12, 16, 3711, 33, 75, 43, 1829, 296, 4, 86, 320, 35, 534, 19, 263, 4821,
→˓ 1301, 4, 1873, 33, 89, 78, 12, 66, 16, 4, 360, 7, 4, 58, 316, 334, 11, 4, 1716, 43,␣
→˓645, 662, 8, 257, 85, 1200, 42, 1228, 2578, 83, 68, 3912, 15, 36, 165, 1539, 278, 36,␣
→˓69, 2, 780, 8, 106, 14, 6905, 1338, 18, 6, 22, 12, 215, 28, 610, 40, 6, 87, 326, 23,␣
→˓2300, 21, 23, 22, 12, 272, 40, 57, 31, 11, 4, 22, 47, 6, 2307, 51, 9, 170, 23, 595,␣
→˓116, 595, 1352, 13, 191, 79, 638, 89, 2, 14, 9, 8, 106, 607, 624, 35, 534, 6, 227, 7,␣
→˓129, 113]

[ ]: # Display the first 10 train labels
train_labels[:10]

array([1, 0, 0, 1, 0, 0, 1, 0, 1, 0])

Preparing the Dataset

Let’s pad the data using the pad_sequences function in Keras. Setting maxlen indicates to use the first 200 words
in each movie review, and ignore the rest. Most movie reviews in the dataset are shorter than 200 words, however for
those that are longer than 200 words some information will be lost. That is a tradeoff between computational expense
and model performance.

We can see in the next cell that for the third review, which has a length of 141 words, the first 59 words are now 0, and
the length is 200.

[ ]: train_data = pad_sequences(train_data, maxlen=200)
val_data = pad_sequences(val_data, maxlen=200)

[ ]: # Display the third movie review
print('Shape of the third padded review:', train_data.shape, '\n')
print(train_data[2])
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Shape of the third padded review: (25000, 200)

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 14 47 8 30 31 7 4 249 108 7
4 5974 54 61 369 13 71 149 14 22 112 4 2401 311
12 16 3711 33 75 43 1829 296 4 86 320 35 534 19
263 4821 1301 4 1873 33 89 78 12 66 16 4 360 7
4 58 316 334 11 4 1716 43 645 662 8 257 85 1200
42 1228 2578 83 68 3912 15 36 165 1539 278 36 69 2
780 8 106 14 6905 1338 18 6 22 12 215 28 610 40
6 87 326 23 2300 21 23 22 12 272 40 57 31 11
4 22 47 6 2307 51 9 170 23 595 116 595 1352 13

191 79 638 89 2 14 9 8 106 607 624 35 534 6
227 7 129 113]

Embedding Layer in Keras

Keras has Embedding layer, which we will use to project the input tokens into vectors in an embedding space. The
Embedding layer requires at the minimum to specify the number of possible tokens in the data sequences, and the
dimensionality of the vectors in the embeddings space. The layer takes integer indices as inputs, and outputs a feature
vector. It can be considered as a look-up table, which maps an embedding vector to each integer index.

To understand how the Embedding layer works, let’s consider a dataset with the maximum number of words set to 100,
and out aim is to represent the words with 5-dimensional vectors. In the cell below, the Embedding layer assigned
random values to the list of indices 1, 2, and 3, and we can see that to each index a 5-dimensional vector is assigned.
However, the embedding vectors are trainable, and when we include the Embedding layer in a model, as we train the
model, words that are similar will get closer in the embeddings space.

[ ]: from keras.layers import Embedding

# embedding layer: represent a dataset with a vocabulary of 100 words with 5 dimensional␣
→˓vectors
embedding_layer = Embedding(input_dim=100, output_dim=5)

embed_integers = embedding_layer(tf.constant([1, 2, 3]))

embed_integers.numpy()

array([[ 0.04004519, 0.0458275 , -0.04573163, -0.02836338, 0.00029951],
[-0.03247341, 0.00142381, -0.00083622, -0.04686186, -0.02296721],
[ 0.04272026, 0.00845009, -0.04817088, -0.04544125, -0.03160852]],

dtype=float32)
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Define, Compile, and Train the Model

Next, we will define a model that uses an Embedding layer to project the words in input sequences into 8-dimensional
vectors. These vectors will be further processed through dense layers, and the last layer will predict the label of movie
reviews. There are two labels: positive and negative movie review, therefore this is a binary classification problem.

[ ]: from keras.layers import Flatten, Dense, Dropout
from keras import Sequential

embedding_dim = 8

# Create a model
model = Sequential([

Embedding(input_dim=max_features, output_dim=embedding_dim, input_length=200),
Flatten(),
Dense(32, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')

])

We will compile the model with binary_crossentropy loss (two labels: positive and negative review) and adam
optimizer.

[ ]: model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

Before training the model, we can see the model summary.

[ ]: model.summary()

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 200, 8) 160000

flatten (Flatten) (None, 1600) 0

dense (Dense) (None, 32) 51232

dropout (Dropout) (None, 32) 0

dense_1 (Dense) (None, 1) 33

=================================================================
Total params: 211265 (825.25 KB)
Trainable params: 211265 (825.25 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

[ ]: history = model.fit(train_data, train_labels, validation_data = (val_data, val_labels),␣
→˓epochs=3)

Epoch 1/3
782/782 [==============================] - 75s 85ms/step - loss: 0.4589 - accuracy: 0.
→˓7602 - val_loss: 0.2947 - val_accuracy: 0.8741

(continues on next page)
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(continued from previous page)

Epoch 2/3
782/782 [==============================] - 18s 23ms/step - loss: 0.1971 - accuracy: 0.
→˓9291 - val_loss: 0.3094 - val_accuracy: 0.8733
Epoch 3/3
782/782 [==============================] - 13s 17ms/step - loss: 0.0863 - accuracy: 0.
→˓9736 - val_loss: 0.3993 - val_accuracy: 0.8626

19.5.2 Using TextVectorization Layer

Keras also provides another way to preprocess text by using a TextVectorization layer.

This layer performs the following preprocessing steps:

• Standardize text by removing punctuations and lowering the text case.

• Split sentences into individual tokens.

• Convert the tokens into a numerical representation.

The arguments in TextVectorization layer are:

• max_tokens: maximum number of tokens in the vocabulary, where vocabulary is comprised of unique text units
(words) in the data. E.g., if max_tokens=1000 the layer will only consider the 1000 most frequent tokens from
the input text data when building the vocabulary.

• standardize: denotes the standardization specifics to be applied to input data; by default, it is
lower_and_strip_punctuation meaning to convert to lowercase and remove punctuations.

• split: denotes what will be considered while splitting the input text; by default it is whitespace " ".

• output_sequence_length: the length to which the sequences will be padded (if shorter than the length) or truncated
(if longer than the length).

[ ]: from keras.layers import TextVectorization

[ ]: # Sample sentences
sentences = ['TensorFlow is a deep learning library!',

'Is TensorFlow powered by Keras API?']

[ ]: text_vect_layer = TextVectorization(max_tokens=1000, output_sequence_length=10)

The adapt() method is used to fit the sentences to the TextVectorization layer. The adapt() method will create a
vocabulary of the most frequent tokens, and it will create a mapping from tokens to integer indices that will be used
later for converting text into a numerical representation.

[ ]: text_vect_layer.adapt(sentences)

Let’s pass a sample sentence to inspect the output.

[ ]: sample_sentence = 'Tensorflow is a machine learning framework!'

vectorized_sentence = text_vect_layer([sample_sentence])

[ ]: print('Orginal sentence:', sample_sentence)
print('Vectorized sentence:', vectorized_sentence)
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Orginal sentence: Tensorflow is a machine learning framework!
Vectorized sentence: tf.Tensor([[ 2 3 11 1 6 1 0 0 0 0]], shape=(1, 10),␣
→˓dtype=int64)

Since the words 'machine' and 'framework'were not part of the sentences that we passed to the layer, they are both
represented by 1 in the vectorized output, since the index 1 is reserved for words that are out of vocabulary(oov_token).

The output is padded with 0, and the length of the output sequence size is 10.

The TextVectorization layer performs all required text preprocessing steps at once, and another advantage of this
layer is that it can be used inside a model.

19.5.3 Sequence Modeling with Recurrent Neural Networks

Recurrent Neural Networks (RNN) is a neural network architecture that is designed for handling sequential data.
Examples of sequential data are time-series, texts (sequence of words or characters), audio (sequence of sound waves),
etc.

Working with sequential data requires to preserve the sequence of the information flow in the data. For example, given
the sentence Today, I took my cat for a [....], to predict the next word, there should be a way to capture and
preserve the flow from the beginning to the end of the sequence.

In conventional feedforward networks (such as networks composed of fully-connected or convolutional layers), the
information flows from the input layer to the output layer. Conversely, in RNNs, there is a feedback loop at each time
step, which creates the recurrence. This is shown in the next figure, where at each time step of the RNN model, an
input (e.g., word) is processed, then in the next step the succeeding word is processed based on the information from
the previous word, etc. This way, the network can learn dependencies between words that are not adjacent.

Figure: Recurrent Neural Network.

There are three major types of RNN layers: conventional (a.k.a. basic, simple, vanilla) RNN, LSTM (Long Short-Term
Memory), and GRU (Gated Recurrent Units). They are implemented in Keras and PyTorch, and can be conveniently
imported and used for creating models. In Keras, the conventional (basic) RNN is called SimpleRNN, and LSTM and
GRU are called as they are written.

While SimpleRNN has difficulty in handling long sequences, LSTM and GRU have the ability to store and preserve
long-term dependencies over many time steps. Consequently, SimpleRNNs are rarely used at present.

Both LSTM and GRU layers use multiple gates to control to flow of information between the time steps. For instance,
LSTM layers include an input gate and an output gate to control the input and output information for each time step, a
forget gate that removes irrelevant information, and a memory cell that saves important information.

Next, we will apply an RNN model with LSTM layers for classification of text data.
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Loading the Data

We are going to use the ag_news_subset dataset that is available in TensorFlow datasets. AG is a collection of
news articles gathered from more than 2,000 news sources. The news articles are classified into 4 classes: World(0),
Sports(1), Business(2), and Sci/Tech(3). The total number of training samples is 120,000 and testing 7,600.

Let’s get the dataset from TensorFlow datasets. In the load function, with_info=True will return various information
about the dataset (as shown in the next cells), and as_supervised=True indicates that the data will be loaded as
2-element tuples consisting of (input, target) pairs.

[ ]: import tensorflow_datasets as tfds
import pandas as pd

[ ]: (train_data, val_data), info = tfds.load('ag_news_subset:1.0.0', #version 1.0.0
split=['train', 'test'],
with_info=True,
as_supervised=True)

Downloading and preparing dataset 11.24 MiB (download: 11.24 MiB, generated: 35.79 MiB,␣
→˓total: 47.03 MiB) to /root/tensorflow_datasets/ag_news_subset/1.0.0...

Dl Completed...: 0 url [00:00, ? url/s]

Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]

Generating splits...: 0%| | 0/2 [00:00<?, ? splits/s]

Generating train examples...: 0%| | 0/120000 [00:00<?, ? examples/s]

Shuffling /root/tensorflow_datasets/ag_news_subset/1.0.0.incomplete665NZN/ag_news_subset-
→˓train.tfrecord*...: ...

Generating test examples...: 0%| | 0/7600 [00:00<?, ? examples/s]

Shuffling /root/tensorflow_datasets/ag_news_subset/1.0.0.incomplete665NZN/ag_news_subset-
→˓test.tfrecord*...: ...

Dataset ag_news_subset downloaded and prepared to /root/tensorflow_datasets/ag_news_
→˓subset/1.0.0. Subsequent calls will reuse this data.

We can use info to check basic information about the dataset.

[ ]: # Displaying the classes
class_names = info.features['label'].names
print(class_names)

['World', 'Sports', 'Business', 'Sci/Tech']

[ ]: print('Number of training samples:', info.splits['train'].num_examples)
print('Number of validation samples:', info.splits['test'].num_examples)

Number of training samples: 120000
Number of validation samples: 7600

We can use tfds.as_dataframe to display the first 10 news articles as Pandas DataFrame.
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[ ]: news_df = tfds.as_dataframe(train_data.take(10), info)

news_df

description label
0 b'AMD #39;s new dual-core Opteron chip is desi... 3
1 b'Reuters - Major League Baseball\\Monday anno... 1
2 b'President Bush #39;s quot;revenue-neutral q... 2
3 b'Britain will run out of leading scientists u... 3
4 b'London, England (Sports Network) - England m... 1
5 b'TOKYO - Sony Corp. is banking on the \\$3 bi... 0
6 b'Giant pandas may well prefer bamboo to lapto... 3
7 b'VILNIUS, Lithuania - Lithuania #39;s main pa... 0
8 b'Witnesses in the trial of a US soldier charg... 0
9 b'Dan Olsen of Ponte Vedra Beach, Fla., shot a... 1

The columns in the DataFrame are description and label.

[ ]: news_df.columns

Index(['description', 'label'], dtype='object')

Now that we understand the data, let’s prepare it before we can use LSTMs to classify the news.

Preparing the Data

First, we will shuffle and batch the training data. For the validation data, we don’t shuffle, we only batch it.

The buffer_size below limits the number of data points to be shuffled to 1,000. This can be useful when working
with large datasets, that can not fit in the memory.

The prefetch() function below is only added for optimizing the performance, and while the model is being trained,
it will prefetch batches for validation.

[ ]: buffer_size = 1000
batch_size = 32

train_data = train_data.shuffle(buffer_size)
train_data = train_data.batch(batch_size).prefetch(1)
val_data = val_data.batch(batch_size).prefetch(1)

To convert the text data into tokens, in this case we will use the TextVectorizer layer in Keras.

[ ]: max_features = 20000

text_vectorizer = TextVectorization(max_tokens=max_features)

Next, we will apply the adapt() method to preprocess the training data. Since the data was loaded as (input, label)
tuples, the lambda function applies the vectorizer only on the input features (in the column description), and not
on the labels. This is, the lambda function that takes two arguments, description and label, and returns only the
description. The map() method that is called on the train_data applies the text_vectorizer to each data instance
in the training dataset.

[ ]: text_vectorizer.adapt(train_data.map(lambda description, label: description))
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Let’s pass two news articles to text_vectorizer. The vectorized sequences will be padded to the sentence with the
maximum length, but if we want to have fixed size of padded sequences, we can set the output_sequence_length
to another value in the layer initialization.

[ ]: sample_news = ['This weekend there is a sport match between Man U and Fc Barcelona',
'Tesla has unveiled its humanoid robot that appeared dancing during the␣

→˓show!']

[ ]: vectorized_news = text_vectorizer(sample_news)
vectorized_news.numpy()

array([[ 40, 491, 185, 16, 3, 1559, 560, 163, 362,
13418, 7, 7381, 2517],
[ 1, 20, 878, 14, 1, 4663, 10, 1249, 11657,

159, 2, 541, 0]])

Note that the second sentence was padded with 0. Also the words Tesla and humanoid have an index of 1 because
they were not a part of the training data.

Creating and Training the Model

We are going to create a Keras model that takes the tokenized text as input and outputs the class of the news articles.

The model has the following layers:

• TextVectorization layer for converting input texts into tokens.

• Embedding layer for representing the tokens with trainable embedding vectors. Because the embedding vec-
tors are trainable, words that have similar semantic meaning be represented by vectors that are close in the
embeddings space.

• LSTM layer for processing the sequences. The layer is wrapped into a Bidirectional layer, which will process the
sequences from both directions (forward and backward), i.e., one LSTM layer will process the sequences forward,
another layer will process the sequences backward, and the outputs of the two LSTMs will be combined.

• Dense layer for classification purpose.

[ ]: input_dim = len(text_vectorizer.get_vocabulary())
input_dim

20000

[ ]: from keras.layers import Bidirectional, LSTM

model = Sequential([
text_vectorizer,
Embedding(input_dim=input_dim, output_dim=64),
Bidirectional(LSTM(64)),
Dense(64, activation='relu'),
Dense(4, activation='softmax')

])

[ ]: # Compile the model
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=[
→˓'accuracy'])
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[ ]: # Train the model
history = model.fit(train_data, epochs=5, validation_data=val_data)

Epoch 1/5
3750/3750 [==============================] - 139s 33ms/step - loss: 0.3386 - accuracy: 0.
→˓8812 - val_loss: 0.2779 - val_accuracy: 0.9050
Epoch 2/5
3750/3750 [==============================] - 92s 24ms/step - loss: 0.2069 - accuracy: 0.
→˓9286 - val_loss: 0.2938 - val_accuracy: 0.9063
Epoch 3/5
3750/3750 [==============================] - 91s 24ms/step - loss: 0.1426 - accuracy: 0.
→˓9495 - val_loss: 0.3396 - val_accuracy: 0.9038
Epoch 4/5
3750/3750 [==============================] - 91s 24ms/step - loss: 0.0900 - accuracy: 0.
→˓9676 - val_loss: 0.4485 - val_accuracy: 0.8954
Epoch 5/5
3750/3750 [==============================] - 90s 24ms/step - loss: 0.0545 - accuracy: 0.
→˓9803 - val_loss: 0.5474 - val_accuracy: 0.8957

[ ]: # Predicting the class of new news articles
sample_news_1 = ['The self driving car company Tesla has unveiled its humanoid robot␣
→˓that appeared dancing during the show!']

# make predictions on the sample_news 1
predictions_1 = model.predict(sample_news_1)
print(predictions_1)

1/1 [==============================] - 3s 3s/step
[[0.00460763 0.01687396 0.0096032 0.96891516]]

The model correctly predicted that the news article is related to tech or science.

[ ]: # find the index of the predicted class
predicted_class_1 = np.argmax(predictions_1)

print('Predicted class:', predicted_class_1)
print('Predicted class name:', class_names[predicted_class_1])

Predicted class: 3
Predicted class name: Sci/Tech

One more example is provided in the next cell.

[ ]: # Predicting the class of new news
sample_news_2 = ['This weekend there is a match between two big footbal teams in the␣
→˓national league']

predictions_2 = model.predict(sample_news_2)

predicted_class_2 = np.argmax(predictions_2)

print('Predicted class:', predicted_class_2)
print('Predicted class name:', class_names[predicted_class_2])
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1/1 [==============================] - 0s 36ms/step
Predicted class: 1
Predicted class name: Sports

7.19.6 References

1. Complete Machine Learning Package, Jean de Dieu Nyandwi, available at: https://github.com/Nyandwi/
machine_learning_complete.

2. Deep Learning with Python, Francois Chollet, Second Edition, Manning Publications, 2021.
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7.20.1 20.1 Introduction to Transformers

Transformer Neural Networks, or simply Transformers, is a neural network architecture introduced in 2017 in the
now-famous paper “Attention is all you need”. The title refers to the attention mechanism, which forms the basis for
data processing with Transformers.

Transformer Networks have been the predominant type of Deep Learning models for NLP in recent years. They replaced
Recurrent Neural Networks in all NLP tasks, and also, all Large Language Models employ the Transformer Network
architecture. As well as, Transformer Networks were recently adapted for other tasks and have outperformed other
Machine Learning models for image processing and video processing tasks, protein and DNA sequence prediction,
time-series data processing, and have been used for reinforcement learning tasks. Consequently, Transformers are
currently the most important Neural Network architecture.
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7.20.2 20.2 Self-attention Mechanism

Self-attention in NNs is a mechanism that forces a model to attend to portions of the data when making predictions.
For instance, in NLP, self-attention mechanism is used to identify words in sentences that have significance for a given
query word in the sentence. That is, the model should pay more attention to some words in sentences, and less attention
to other words in sentences that are less relevant for a given task.

In the following two sentences, in the left subfigure the word “it” refers to “street”, while in the right subfigure the word
“it” refers to “animal”. Understanding the relationships between the words in such sentences has been challenging with
traditional NLP approaches. Transformers use the self-attention mechanism to model the relationships between all
words in a sentence, and assign weights to other words in sentences based on their importance. In the left subfigure, the
mechanism estimated that the query word “it” is most related to the word “street”, but the word “it” is also somewhat
related to the words “The” and “animal. These words are referred to as key words for the query word “it”.The intensity
of the lines connecting the words, as well as the intensity of the blue color, signifies the attention scores (i.e., weights).
The wider and bluer the lines, the higher the attention scores between two words are.

Figure: Attention to words in sentences.

Specifically, Transformer Network compares each word to every other word in the sentence, and calculates attention
scores. This is shown in the next figure, where for example, the word “caves” has the highest attention scores for
the words “glacier” and “formed”. The attention scores are calculated as the dot (i.e., inner) product of the input
representations of two words. That is, for each Query word 𝑄 and Key word 𝐾, the attention score is 𝑄 ·𝐾.
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Figure: Attention scores.

Transformers employ word embeddings for representing the individual words in text sequences (where each text se-
quence can have one or several sentences). Recall from the previous lecture that word embeddings are vector repre-
sentations of words, such that the vectors of words that have similar semantic meaning have close spatial positions in
the embeddings space. Therefore, the attention scores are dot products of the embedding vectors for each pair of words
in sentences.

The obtained attention scores for each word are then first scaled (by dividing the values by
√
𝑑) and afterward are

normalized to be in the [0,1] range (by applying a softmax function). That is, the attention scores are calculated as
𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝑖·𝐾𝑗√
𝑑

), where 𝑑 is the dimensionality of the embedding vectors. Scaling the values by
√
𝑑 is helpful

for improving the flow of the gradients during training. The resulting scaled and normalized attention scores are then
multiplied with the initial representation of the words, which in the self-attention module is referred to as value or 𝑉 .

This is shown in the next figure. The left subfigure shows the attention scores calculated as product of the input
representations of the words 𝑄 and 𝐾, which are afterwards multiplied with the input representation 𝑉 to obtain
the output of the module. Note that for text classification, all three terms Query, Key, and Value are the same input
representation of the words in sentences. However, the original Transformer was developed for machine translation,
where the words in the target language are queries, and the words in the source language are pairs of keys and values.
This terminology is also related to search engines, which compare queries to keys, and return values (e.g., the user
submits a query, the search engine identifies key words within the query to search for, and it returns the results of the
search as values). Self-attention works in a similar way, where each query word is matched to other key words, and a
weighted value is returned.

The right subfigure below shows how self-attention is implemented in Transformer Networks. Namely, Matmul stands
for a matrix multiplication layer which calculates the dot product 𝑄 ·𝐾, which is afterwards scaled by

√
𝑑, then there is

an optional masking layer , and afterward the final attention scores are obtained by passing it through a Softmax layer
to obtain 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝑖·𝐾𝑗√
𝑑

). Finally, the attention scores are multiplied with 𝑉 via another matrix multiplication layer
Matmul to calculate the output of the self-attention module. The optional masking layer can be used for two purposes:
(a) to ensure that attention scores are not calculated for the padding tokens in padded sequences (e.g., 0 is often used as
the padding token), but instead are calculated only for the positions in input sequences that have actual words in padded
sequences; or (b) to set the attention scores for future tokens to zero, so that the model can only attend to previous
tokens, as explained in the section below on decoder sub-networks).
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Figure: Self-attention in Transformer Networks

In conclusion, self-attention is applied to determine the meaning of the words in a sentence based on the context. That
is, Transformers use the attention scores to modify the input vector representations for each word and generate a new
representation based on the context of the sentence. During the training of the network, the representations of the words
are updated and projected into a new embeddings space that takes the context into account.

7.20.3 20.3 Multi-Head Attention

Transformer Networks include multiple self-attention modules in their architecture. Each self-attention module is
called attention head, and the aggregation of the outputs of multiple attention heads is called multi-head attention.
For instance, the original Transformer model had 8 attention heads, while the GPT-3 language model has 12 attention
heads.

The multi-head attention module is shown in the next figure, where the inputs are first passed through a linear layer
(dense or fully-connected layer), next they are fed to the multiple attention heads, and the outputs of all attention heads
are concatenated, and passed through one more linear layer.

A logical question one can ask is why are multiple attention heads needed? The reason is that multiple attention modules
can learn different relationships between the words in sentences. Each module can extract context independently from
the other modules, which allows to capture less obvious context and enhance the learning capabilities of the model.
For example, one head may capture relationship between the nouns and numerical values in sentences, another head
may focus on the relationship between the adjectives in sentences, and another head may focus on rhyming words, etc.
And, if one head becomes too specialized in capturing one type of patterns, the other heads can compensate for it and
provide redundancy that can improve the overall performance of the model.

Also, the computations of each attention head can be performed in parallel on different workers, which allows for
accelerating the training and scaling up the models.
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Figure: Multi-head attention

7.20.4 20.4 Encoder Block

The Encoder Block in Transformer Networks is shown in the next figure. It processes the input word embeddings and
extracts representations in text data that can afterwards be used for different NLP tasks.

The components in the Encoder Block are:

• Multi-head Attention layer, which as explained, consists of multiple self-attention modules.

• Dropout layer, is a regular dropout layer.

• Residual connections, are skip connections in neural networks, where the input to a layer is added to the processed
output of the layer. Residual connections were popularized in the ResNets models, as they were shown to stabilize
the training and mitigate the problems of vanishing and exploding gradients in neural networks (i.e., they refer
to cases when the gradients become too small or too large during training). In the figure, the Add term in the
layer refers to the residual connection, which adds the input embeddings to the output of the Dropout layer.

• Layer Normalization, is an operation that is similar to the batch normalization in CNNs, but instead, it normalizes
the outputs of each multi-head attention layer independently from the outputs of the other multi-head attention
layers, and scales the data to have 0 mean and 1 standard deviation. This type of normalization is more adequate
for text data. And, as we learned in the previous lectures, normalization improves the flow of gradients during
training. The Norm term in the figure refers to the Layer Normalization operation.

• Feed Forward network, consists of 2 fully-connected (dense) layers that extract useful data representations.

• The Encoder Block also contains one more Dropout layer, and another Add & Norm layer that forms a residual
connection for the input to the Feed Forward network and applies a layer normalization operation.

Larger Transformer networks typically include several encoder blocks in a sequence. For instance, in the original paper
the authors used 6 encoder blocks.
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Figure: Encoder block

The implementation of the Encoder Block in Keras and TensorFlow is shown in the cell following the imported libraries.

The Encoder Block is implemented as a custom layer which is a subclass of the Layer class in Keras. The __init__()
constructor method lists the definitions of the layers in the Encoder, and the method call() provides the forward pass
with the flow of information through the layers.

• Multi-head attention layer is implemented in Keras, and it can be directly imported. The arguments in the layer
are: num_heads is the number of attention heads, and key_dim is the dimension of the embeddings of the input
tokens.

• Dropout and Normalization layers are also directly imported, with arguments rate for the dropout rate, and
epsilon is a small float added to the standard deviation to avoid division by 0.

• Feed forward network includes 2 dense layers, with the number of neurons set to ff_dim and embed_dim,
respectively.

The call()method specifies the forward pass of the network, and takes two parameters: inputs (the input embeddings
to the network) and training (an argument which can be True or False). For the dropout layers, during the model
training this argument is set to True and dropout is applied, while during inference the argument is set to False and
dropout is not applied.

Each step in the call() method performs the data processing for one layer. Note that the multi_head_attention
layer has as arguments the inputs twice, which is once for the key and once for the value in the self-attention. Also
note the residual connections that are implemented in the layer normalization, e.g., the inputs are added to the output
of the multi-head attention.

[ ]: import tensorflow as tf
from tensorflow import keras
from keras.layers import MultiHeadAttention, LayerNormalization, Dropout, Dense,␣
→˓Embedding, Layer
from keras import Sequential, Model
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[ ]: class TransformerEncoder(Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):

super().__init__()
self.multi_head_attention = MultiHeadAttention(num_heads=num_heads, key_

→˓dim=embed_dim)
self.feed_forward_net = Sequential([Dense(ff_dim, activation="relu"),␣

→˓Dense(embed_dim),])
self.layer_normalization1 = LayerNormalization(epsilon=1e-6)
self.layer_normalization2 = LayerNormalization(epsilon=1e-6)
self.dropout1 = Dropout(rate)
self.dropout2 = Dropout(rate)

def call(self, inputs, training):
multi_head_att_output = self.multi_head_attention(inputs, inputs)
multi_head_att_dropout = self.dropout1(multi_head_att_output, training=training)
add_norm_output_1 = self.layer_normalization1(inputs + multi_head_att_dropout)
feed_forward_output = self.feed_forward_net(add_norm_output_1)
feed_forward_dropout = self.dropout2(feed_forward_output, training=training)
add_norm_output_2 = self.layer_normalization2(add_norm_output_1 + feed_forward_

→˓dropout)
return add_norm_output_2

7.20.5 20.5 Positional Encoding

We mentioned that Transformers use word embeddings as inputs, however, the embeddings alone don’t provide in-
formation about the order of words in sentences. Understandably, the order of the words in a sentence is important,
and different order of the words can convey a different meaning. To provide such information, Transformer Network
introduces positional encoding for each word that is added to the input embedding, as shown in the next figure.
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Figure: Positional encoding

There are different ways in which positional encoding can be implemented. In the original Transformer paper, the
positional encoding is a vector that has the same size as the word embedding vector, and the authors used sine and
cosine functions to create position vectors, which are afterwards scaled to be in the range from -1 to 1. Using such
positional encoding, each encoding vector corresponds to a unique position in a sequence of words. This type is called
sinusoidal positional encoding.

The following cell implements the addition of positional encoding to word embeddings in Keras. In this case, we will
not use the approach for obtaining positional encodings based on sine and cosine functions, but instead we will use a
simpler approach and learn the positional encodings in the same way the word embeddings are learned. This type of
positional encoding is referred to as learned positional encodings/embeddings. Therefore, for both token and positional
embeddings we will use the Embedding layer in Keras which we introduced in the previous lecture. The arguments in
the Embedding layer are the input dimension input_dim and the dimension of the embedding vectors output_dim.
For the token embeddings layer, the input dimension is the size of the vocabulary, whereas for the positional embeddings
layer the input dimension is the length of the text sequences.

In the call method, first the length of the text sequences is assigned to maxlen. The function tf.range is similar to
NumPy’s linspace and creates numbers in the range from start to limit with a step delta. Next, the two separate
Embedding layers are called, and returned is the sum of the token and positional embeddings.

[ ]: class TokenAndPositionEmbedding(Layer):
def __init__(self, maxlen, vocab_size, embed_dim):

super().__init__()
self.token_embeddings = Embedding(input_dim=vocab_size, output_dim=embed_dim)
self.positional_embeddings = Embedding(input_dim=maxlen, output_dim=embed_dim)

(continues on next page)
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(continued from previous page)

def call(self, inputs):
maxlen = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
position_embeddings = self.positional_embeddings(positions)
input_embeddings = self.token_embeddings(inputs)
return input_embeddings + position_embeddings

7.20.6 20.6 Using a Transformer Model for Classification

Model Definition

We will now employ the layers that we defined above, to create a Transformer model for text classification.

It is a simple model that consists of the following parts:

• Encoder, which includes an Input layer that defines the maximum length of input sequences,
TokenAndPositionEmbedding layer, and the TransformerEncoder layer.

• Classifier, which consists of a GlobalAveragePooling1D layer, and two Dropout and Dense layers. Global
Average Pooling calculates the average value for each word, and it passes those values to the dense layers to
classify the text sequences.

[ ]: from keras.layers import Input, GlobalAveragePooling1D

maxlen = 200 # Maximum length of input sequences is 200 words
embed_dim = 32 # Embedding size for each token
num_heads = 2 # Number of attention heads
ff_dim = 32 # Dense layer size in the feed forward network inside transformer
vocab_size = 20000 # The size of the vocabulary is 20k words

# encoder
inputs = Input(shape=(maxlen,))
embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)(inputs)
x = TransformerEncoder(embed_dim, num_heads, ff_dim)(embedding_layer)

# classifier
x = GlobalAveragePooling1D()(x)
x = Dropout(0.1)(x)
x = Dense(20, activation="relu")(x)
x = Dropout(0.1)(x)
outputs = Dense(1, activation="sigmoid")(x)

model = Model(inputs=inputs, outputs=outputs)

The summary of the model is shown below.

[ ]: model.summary()

Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================

(continues on next page)
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(continued from previous page)

input_1 (InputLayer) [(None, 200)] 0

token_and_position_embeddi (None, 200, 32) 646400
ng (TokenAndPositionEmbedd
ing)

transformer_encoder (Trans (None, 200, 32) 10656
formerEncoder)

global_average_pooling1d ( (None, 32) 0
GlobalAveragePooling1D)

dropout_2 (Dropout) (None, 32) 0

dense_2 (Dense) (None, 20) 660

dropout_3 (Dropout) (None, 20) 0

dense_3 (Dense) (None, 1) 21

=================================================================
Total params: 657737 (2.51 MB)
Trainable params: 657737 (2.51 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

Loading the Dataset

Let’s apply the model for sentiment analysis of the movie reviews in the IMDB database. The data is loaded from the
Keras datasets, and it contains 25,000 training sequences and 25,000 validation sequences.

[ ]: from keras.preprocessing.sequence import pad_sequences

(x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(num_words=vocab_size)
print(len(x_train), "Training sequences")
print(len(x_val), "Validation sequences")
x_train = pad_sequences(x_train, maxlen=maxlen)
x_val = pad_sequences(x_val, maxlen=maxlen)

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb.
→˓npz
17464789/17464789 [==============================] - 1s 0us/step
25000 Training sequences
25000 Validation sequences
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Model Training

[ ]: model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=32, epochs=2, validation_data=(x_val, y_val))

Epoch 1/2
782/782 [==============================] - 69s 76ms/step - loss: 0.3943 - accuracy: 0.
→˓8097 - val_loss: 0.2872 - val_accuracy: 0.8773
Epoch 2/2
782/782 [==============================] - 20s 26ms/step - loss: 0.1968 - accuracy: 0.
→˓9239 - val_loss: 0.3153 - val_accuracy: 0.8746

<keras.src.callbacks.History at 0x7920b23f9000>

7.20.7 20.7 Fine-tuning a Pretrained BERT Model

BERT (Bidirectional Encoder Representations from Transformers) is a Transformer Network that can be used for
variety of NLP tasks such as question answering, text classification, machine translation, etc.

In this section we will use a pretrained version of BERT and will fine-tune it for classification of news articles in the
AG database (that we used in the previous lecture).

TensorFlow Hub is a repository of pretrained machine learning models, and it offers several versions of BERT such as:
Small BERT, Albert, and BERT Expert. The different versions of BERT are optimized for different use cases. In our
case, we will use SmallBERT.

To use this model we will need to install the TensorFlow Text library for text processing.

[ ]: !pip install -q tensorflow_text

import tensorflow_text as text

6.5/6.5 MB 36.9 MB/s eta 0:00:00

The BERT model in TensorFlow Hub has a corresponding text preprocessing model for converting texts into tokens.

[ ]: import tensorflow_hub as hub
import numpy as np

bert_handle = 'https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/2'
preprocessing_model = 'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3'

The output of the preprocessing model has 3 elements:

• input_word_ids: token ids of the input sequences.

• input_mask: has value 1 for all input tokens before padding, and value 0 for the padding tokens.

• input_type_ids: has different values for segments in text; e.g., if there are 3 sentences in the input text, the
tokens in the same sentences will have the same index.

Let’s wrap preprocessing_model into a hub.KerasLayer and test it on a sample sentence.

[ ]: preprocess_layer = hub.KerasLayer(preprocessing_model)
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[ ]: sample_news = ['Tech rumors: The tech giant Apple is working on a self driving car']

preprocessed_news = preprocess_layer(sample_news)

print('Keys:', preprocessed_news.keys())
# length of the input sequence
print('Shape:', preprocessed_news["input_word_ids"].shape)
print('Word Ids:', preprocessed_news["input_word_ids"][0,:10])
print('Input Mask:', preprocessed_news["input_mask"][0, :10])
print('Type Ids:', preprocessed_news["input_type_ids"][0, :10])

Keys: dict_keys(['input_mask', 'input_word_ids', 'input_type_ids'])
Shape: (1, 128)
Word Ids: tf.Tensor([ 101 6627 11256 1024 1996 6627 5016 6207 2003 2551],␣
→˓shape=(10,), dtype=int32)
Input Mask: tf.Tensor([1 1 1 1 1 1 1 1 1 1], shape=(10,), dtype=int32)
Type Ids: tf.Tensor([0 0 0 0 0 0 0 0 0 0], shape=(10,), dtype=int32)

Loading the Dataset

The news articles in the AG dataset are classified into 4 categories: World, Sports, Business, and Sci/Tech.

[ ]: import tensorflow_datasets as tfds

(train_data, val_data), info = tfds.load('ag_news_subset:1.0.0', #version 1.0.0
split=('train', 'test'),
with_info=True,
as_supervised=True)

Downloading and preparing dataset 11.24 MiB (download: 11.24 MiB, generated: 35.79 MiB,␣
→˓total: 47.03 MiB) to /root/tensorflow_datasets/ag_news_subset/1.0.0...

Dl Completed...: 0 url [00:00, ? url/s]

Dl Size...: 0 MiB [00:00, ? MiB/s]

Extraction completed...: 0 file [00:00, ? file/s]

Generating splits...: 0%| | 0/2 [00:00<?, ? splits/s]

Generating train examples...: 0%| | 0/120000 [00:00<?, ? examples/s]

Shuffling /root/tensorflow_datasets/ag_news_subset/1.0.0.incompleteZ0FFY4/ag_news_subset-
→˓train.tfrecord*...: ...

Generating test examples...: 0%| | 0/7600 [00:00<?, ? examples/s]

Shuffling /root/tensorflow_datasets/ag_news_subset/1.0.0.incompleteZ0FFY4/ag_news_subset-
→˓test.tfrecord*...: ...

Dataset ag_news_subset downloaded and prepared to /root/tensorflow_datasets/ag_news_
→˓subset/1.0.0. Subsequent calls will reuse this data.

[ ]: # Dataset information
class_names = info.features['label'].names
print('Classes:', class_names)

(continues on next page)
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(continued from previous page)

print('Number of training samples"', info.splits['train'].num_examples)
print('Number of test samples"', info.splits['test'].num_examples)

Classes: ['World', 'Sports', 'Business', 'Sci/Tech']
Number of training samples" 120000
Number of test samples" 7600

[ ]: buffer_size = 1000
batch_size = 32

# prepare the data
train_data = train_data.shuffle(buffer_size)
train_data = train_data.batch(batch_size).prefetch(1)
val_data = val_data.batch(batch_size).prefetch(1)

Model Definition with BERT

The model defined below includes an Input layer, a preprocessing layer to convert the text data into token embeddings,
and a layer for the BERT model.

Afterward, the output is passed through a classifier head, which includes two dense layers and dropout layers.

[ ]: # input layer
input_text = Input(shape=(), dtype=tf.string)

# preprocesing model
preprocessing_layer = hub.KerasLayer(preprocessing_model)(input_text)
# Bert model, set trainable to True
bert_encoder = hub.KerasLayer(bert_handle, trainable=True)(preprocessing_layer)

# For fine-tuning use pooled output
pooled_bert_output = bert_encoder['pooled_output']

# clasifier
x = Dense(16, activation='relu')(pooled_bert_output)
x = Dropout(0.2)(x)
final_output = Dense(4, activation='softmax')(x)

# Combine input and output
news_model = Model(input_text, final_output)

Model Training

Let’s compile and train the model.

[ ]: # compile
news_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=3e-5),

loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# train
news_model.fit(train_data, epochs=3, validation_data=val_data)
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Epoch 1/3
3750/3750 [==============================] - 735s 193ms/step - loss: 0.3221 - accuracy:␣
→˓0.8924 - val_loss: 0.2472 - val_accuracy: 0.9178
Epoch 2/3
3750/3750 [==============================] - 715s 191ms/step - loss: 0.2130 - accuracy:␣
→˓0.9302 - val_loss: 0.2213 - val_accuracy: 0.9272
Epoch 3/3
3750/3750 [==============================] - 714s 190ms/step - loss: 0.1623 - accuracy:␣
→˓0.9473 - val_loss: 0.2526 - val_accuracy: 0.9242

<keras.src.callbacks.History at 0x791f163977f0>

Model Evaluation

Finally, let’s predict the class of two news articles.

[ ]: sample_news_1 = ['Tesla, a self driving car company is also planning to make a humanoid␣
→˓robot. This humanoid robot appeared dancing in the latest Tesla AI day']

predictions_1 = news_model.predict(np.array(sample_news_1))

predicted_class_1 = np.argmax(predictions_1)

print('Predicted class:', predicted_class_1)
print('Predicted class name:', class_names[predicted_class_1])

1/1 [==============================] - 0s 426ms/step
Predicted class: 3
Predicted class name: Sci/Tech

[ ]: sample_news_2 = ["In the last weeks, there has been many transfer suprises in footbal.␣
→˓Ronaldo went back to Old Trafford, "

"while Messi went to Paris Saint Germain to join his former colleague␣
→˓Neymar."

"We can't wait to see these two clubs will perform in upcoming leagues"]

predictions_2 = news_model.predict(np.array(sample_news_2))

predicted_class_2 = np.argmax(predictions_2)

print('Predicted class:', predicted_class_2)
print('Predicted class name:', class_names[predicted_class_2])

1/1 [==============================] - 0s 22ms/step
Predicted class: 1
Predicted class name: Sports
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7.20.8 20.8 Decoder Sub-network

The Transformer Network in the original paper was designed for machine translation. Differently from the text classi-
fication task where for an input text sentence the model predicts a class label, in machine translation for an input text
sentence in a source language the model predicts the corresponding text sentence in a target language. Therefore, both
the input and output of the model are text sequences. These type of models are called sequence-to-sequence models,
or oftentimes this term is abbreviated to seq2seq models. Beside machine translation, other NLP tasks that employ
seq2seq models include question answering, text summarization, dialog generation, and others.

The architecture of Transformer Networks designed to handle seq2seq tasks consists of encoder and decoder sub-
networks.

• Encoder sub-network takes a source text sequence as an input, and extracts a useful representation of the text
data.

• Decoder sub-network takes a target text sequence as an input, as well as it receives the intermediate represen-
tation from the encoder sub-network. The decoder combines the information from the target sequence and the
encoded source sequence, and learns to predict the next word (token) in the target sequence.

This is shown in the next figure, where the French sequence “Je suis etudiant” is translated into “I am a student”. The
decoder outputs one word at each time step until the end-of-sequence is reached.

Figure: Decoder block

Such models that predict future values based on past observations under the assumption that the current value is de-
pendent on previous values are called autoregressive models. Autoregressive text generation involves iteratively gen-
erating one token at a time, by predicting the next word or token based on the preceding words in the sequence. This
approach allows the model to produce coherent and relevant responses by chatbots.

The architecture of the decoder is similar to the encoder and it is shown in the next figure. The upper part of the decoder
is practically the same as the encoder, and it consists of a multi-head attention module with residual connections and
layer normalization, followed by a feed-forward network with residual connections and layer normalization.

The main difference from the encoder is the masked multi-head attention module in the lower part of the decoder. This
module is inserted before the multi-head attention module in the decoder. Masked multi-head attention module applies
masking to the next words in the target sequence, so that the network does not have access to those words. That is,
during training, if the model needs to predict the 4th word in a sentence, masks will be applied to all words after the
3rd word, so that the model has access only to the words 1, 2, and 3, in order to predict the 4th word. This step ensures
that the model uses only the previous steps to predict the word in the next step in the target sequence. This type of
mask is also referred to as causal attention mask, because it enforces causality by ensuring the the model only relies
on information avaiable up to the current token for predicting the next token.

This also explains why in the figure below inputs to the decoder sub-network are “Outputs (shifted right)”. It is because
at each step, the target sequence is shifted to the right and it is fed again into the decoder. E.g., after predicting the 4th
word, to predict the 5th word the input to the decoder will be words 1, 2, 3, and 4, and so on.

Finally, the output representations from the decoder are passed to a linear (dense) layer and a softmax layer, that outputs
the probability for the next word in the vocabulary learned from the training dataset.

And also note the marks Nx in the figure. They indicate that the shown encoder and decoder blocks are repeated multiple
times in the network. In the original Transformer Network, there are 6 encoder blocks, and similarly there are 6 decoder
blocks. Introducing multiple blocks in the encoder and decoder sub-networks increases the learning ability as it allows
the model to learn more abstract representations.
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Figure: Transformer Network

Note that Recurrent Neural Networks are also a type of seq2seq models. Transformer Networks have several advan-
tages over RNN, due to the ability to inspect entire text sequences at once, capture context in long sequences, are
parallelizable, and are more powerful in general. Conversely, RNN have access only to the next token in a sequence
(have difficulty finding correlations in long sequences because the information needs to pass through many processing
steps), can not perform parallel computations (are slow to train), and the gradients can become unstable.

7.20.9 20.9 Vision Transformers

After the initial success of Transformer Networks in NLP, recently they have been adapted for computer vision tasks
as well. The initial Transformer model for vision tasks proposed in 2021 was called Vision Transformer (ViT).

The architecture of ViT is very similar to the Transformers used in NLP. However, Transformer Networks were designed
for working with sequential data, while images are spatial data types. To consider each pixel in an image as a sequential
token would be impractical and too time-consuming. Therefore, ViT splits images into a set of smaller image patches
(16x16 pixels), and it uses the sequence of image patches as inputs to the model (i.e., each image patch is considered
a token). Each image patch is first flattened to one-dimensional vector, and those vectors are afterward passed through
a dense layer to learn lower-dimensional embeddings for each patch. Positional embeddings and class embeddings are
added, and the sequences are fed to a standard transformer encoder. Class embeddings are vectors that correspond
to different classes in the dataset. The encoder block in ViT is identical to the encoder in the original Transformer
Network. The steps are depicted in the figure below.

Figure: Vision Transformer

The authors trained 3 versions of ViT, called Base (12 encoder blocks, 768 embeddings dimension, 86M parameters),
Large (24 encoder blocks, 1,024 embeddings dimension, 307M parameters), and Huge (32 encoder blocks, 1,280
embeddings dimension, 632M parameters).

Various other versions of vision transformers were introduced recently, which include MaxViT (Multi-axis ViT), Swin
(Shifted Window ViT), DeiT (Data-efficient image Transformer), T2T-ViT (Token-to-token ViT), and others. These
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models achieved higher accuracy on many vision tasks in comparison to Convolutional Neural Networks (EffNet,
ConvNeXt, NFNet). The following figure shows the accuracy on ImageNet.

Figure: Accuracy on the ImageNet dataset

7.20.10 References

1. The Illustrated Transformer, Jay Alammar, available at: https://jalammar.github.io/illustrated-transformer/.

2. Keras Examples, Text classification with Transformer, available at: https://keras.io/examples/nlp/text_
classification_with_transformer/.

3. Using Pretrained BERT for Text Classification, Jean de Dieu Nyandwi, available at: https://github.com/
Nyandwi/machine_learning_complete/blob/main/9_nlp_with_tensorflow/5_using_pretrained_bert_for_text_
classification.ipynb.

4. Deep Learning with Python, Francois Chollet, Second Edition, Manning Publications, 2021.

5. TensorFlow Tutorials, Neural Machine Translation with a Transformer and Keras, available at https://www.
tensorflow.org/text/tutorials/transformer.

6. How the Vision Transformer (ViT) Works in 10 Minutes: An Image is Worth 16x16 Words, Nikolas Adaloglou,
available at https://theaisummer.com/vision-transformer/.
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7.21 Lecture 21 - NLP with Hugging Face

• 21.1 Introduction to Hugging Face

• 21.2 Hugging Face Pipelines

• 21.3 Pipelines for NLP Tasks

– 21.3.1 Sentiment Analysis

– 21.3.2 Question Answering

– 21.3.3 Machine Translation

– 21.3.4 Text Summarization

– 21.3.5 Text Generation

– 21.3.6 Named Entity Recognition

– 21.3.7 Zero-shot Classification

– 21.3.8 Mask Filling

• 21.4 Tokenizers

• 21.5 Datasets

• 21.6 Models

• References

7.21.1 21.1 Introduction to Hugging Face

Hugging Face (link) is a platform for Machine Learning and AI created in 2016, with the aim to “build, train, and
deploy state of the art models powered by the reference open source in machine learning”. Since then, Hugging Face
has established itself as the main source for NLP and other Machine Learning tasks, providing open access to over
400,000 pre-trained models, datasets, and pertinent tools and resources. Hugging Face focuses on community-building
around open-source machine learning tools and data. They also developed several courses on how to use their libraries
for various tasks. Also note that while open access is provided to the core NLP libraries, Hugging Face also offers
pricing options for access to AutoNLP libraries.
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Figure: Hugging Face webpage.

Hugging Face initially focused on Transformer Networks and NLP, while recently they have expanded their libraries
and tools to cover machine learning models and tasks, in general. State-of-the-art Transformer Networks are very large
models, and hence, training such models from scratch is expensive and not affordable for many organizations. For
example, the cost of training the GPT-4 model is estimated to over USD $100 million. Providing access to pre-trained
models for transfer learning and fine-tuning to specific tasks by Hugging Face has been a significant resourse.

The core Hugging Face libraries include Transformer models, Tokenizers, Datasets, and Accelerate. Accelerate library
enables distributed training with hardware acceleration devices, such as using multiple GPUs, or cloud accelerators
with TPUs. In addition to these core libraries, Hugging Face provides various community resources, which include a
platform for sharing models, code versioning, Spaces allow sharing apps developed with Hugging Face libraries and
browsing apps created by others, etc.
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Figure: Hugging Face libraries.

The key characteristics of these libraries include:

• Ease of use and simplicity, where downloading and using state-of-the-art NLP models can be done with a few
lines of code.

• Flexibility, since all models are implemented either using the nn.Module in PyTorch or tf.keras.Model in
TensorFlow, allowing for easy model integration with these popular frameworks.

7.21.2 21.2 Hugging Face Pipelines

Hugging Face uses Pipelines as an API that through the pipeline() method allows performing inference over a
variety of tasks.

The pipeline() method has the following syntax:

from transformers import pipeline

# Pipeline to use a default model & tokenizer for a given task
pipeline("<task-name>")

# Pipeline to use an existing or custom model
pipeline("<task-name>", model="<model_name>")

# Pipeline to use an existing or custom model and tokenizer
pipeline('<task-name>', model='<model name>', tokenizer='<tokenizer_name>')

Among the currently available task pipelines are:
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• Sentiment-analysis

• Question-answering

• Translation

• Summarization

• Text-generation

• NER (named entity recognition)

• Zero-shot-classification

• Fill-mask

7.21.3 21.3 Pipelines for NLP Tasks

In this section, we will examine examples on how to use the pipeline("<task-name>") method with different NLP
tasks. As we mentioned, if we don’t provide the names for the used model and tokenizer, the pipeline will assign
a default language model and tokenizer to complete the task, and it will download the model parameters and other
required elements to perform text generation.

To use the Transformer library by Hugging Face we will need to first install it, since it is not preinstalled in Google
Colab.

[ ]: !pip install -q transformers datasets

7.9/7.9 MB 51.6 MB/s eta 0:00:00
493.7/493.7 kB 43.0 MB/s eta 0:00:00
302.0/302.0 kB 36.1 MB/s eta 0:00:00
3.8/3.8 MB 105.6 MB/s eta 0:00:00
1.3/1.3 MB 53.2 MB/s eta 0:00:00
115.3/115.3 kB 12.5 MB/s eta 0:00:00
134.8/134.8 kB 13.2 MB/s eta 0:00:00
295.0/295.0 kB 30.1 MB/s eta 0:00:00

21.3.1 Sentiment Analysis

The first example uses pipeline() for sentiment analysis. When the cell is executed, the pipeline will select a default
pretrained model for sentiment analysis in English, it will download the model and the related tokenizer, and it will
instantiate a text classifier object.

We saw examples of sentiment analysis in the previous lectures, where the goal was to classify the sentiment in movie
reviews text as positive or negative.

[ ]: from transformers import pipeline

classifier = pipeline("sentiment-analysis")

No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english and␣
→˓revision af0f99b (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-
→˓english).
Using a pipeline without specifying a model name and revision in production is not␣
→˓recommended.
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Downloading (...)lve/main/config.json: 0%| | 0.00/629 [00:00<?, ?B/s]

Downloading model.safetensors: 0%| | 0.00/268M [00:00<?, ?B/s]

Downloading (...)okenizer_config.json: 0%| | 0.00/48.0 [00:00<?, ?B/s]

Downloading (...)solve/main/vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]

In the next cell, the classifier is applied to a sentence. The output is the predicted label and the confidence score.

[ ]: classifier("I fully understand what you are saying.")

[{'label': 'POSITIVE', 'score': 0.9996806383132935}]

The pipeline allows to pass multiple sentences, and it will return a sentiment label and confidence score for each
sentence.

[ ]: classifier(
["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"]

)

[{'label': 'POSITIVE', 'score': 0.9598048329353333},
{'label': 'NEGATIVE', 'score': 0.9994558691978455}]

21.3.2 Question Answering

This pipeline answers questions using information from a given context. Such pipeline can be very useful when we are
dealing with long text data and finding answers to questions in the document can take time.

[ ]: question_answerer = pipeline("question-answering")

No model was supplied, defaulted to distilbert-base-cased-distilled-squad and revision␣
→˓626af31 (https://huggingface.co/distilbert-base-cased-distilled-squad).
Using a pipeline without specifying a model name and revision in production is not␣
→˓recommended.

Downloading (...)lve/main/config.json: 0%| | 0.00/473 [00:00<?, ?B/s]

Downloading model.safetensors: 0%| | 0.00/261M [00:00<?, ?B/s]

Downloading (...)okenizer_config.json: 0%| | 0.00/29.0 [00:00<?, ?B/s]

Downloading (...)solve/main/vocab.txt: 0%| | 0.00/213k [00:00<?, ?B/s]

Downloading (...)/main/tokenizer.json: 0%| | 0.00/436k [00:00<?, ?B/s]

We can provide inputs to the pipeline as a dictionary with question and context as keys. The model extracts in-
formation from the provided context and returns a dictionary with a confidence score, start and end characters of the
answer in the context, and the answer. Also note that the model does not generate new text to answer the questions, but
instead it searches for the answer in the supplied context sequence.

[ ]: input_1 = {
"question" : "What didn't cross the street?",
"context" : "The animal didn't cross the street because it was too tired",
}

question_answerer(input_1)
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{'score': 0.7553669214248657, 'start': 0, 'end': 10, 'answer': 'The animal'}

[ ]: input_2 = {
"question" : "Why the animal didn't cross the street?",
"context" : "The animal didn't cross the street because it was too wide",
}

question_answerer(input_2)

{'score': 0.607613742351532,
'start': 43,
'end': 58,
'answer': 'it was too wide'}

21.3.3 Machine Translation

For machine translation, we can provide source and target languages in the pipeline, as in the next cell where the task
"translation_en_to_fr" is to translate text from English to French. Although this pipeline can work with several
languages, most often, machine translation requires to specify the name of the used language model, and only for several
special cases it can work by specifying only the task name.

[ ]: translator = pipeline("translation_en_to_fr")

No model was supplied, defaulted to t5-base and revision 686f1db (https://huggingface.co/
→˓t5-base).
Using a pipeline without specifying a model name and revision in production is not␣
→˓recommended.

Downloading (...)lve/main/config.json: 0%| | 0.00/1.21k [00:00<?, ?B/s]

Downloading model.safetensors: 0%| | 0.00/892M [00:00<?, ?B/s]

Downloading (...)neration_config.json: 0%| | 0.00/147 [00:00<?, ?B/s]

Downloading (...)ve/main/spiece.model: 0%| | 0.00/792k [00:00<?, ?B/s]

Downloading (...)/main/tokenizer.json: 0%| | 0.00/1.39M [00:00<?, ?B/s]

/usr/local/lib/python3.10/dist-packages/transformers/models/t5/tokenization_t5_fast.py:
→˓160: FutureWarning: This tokenizer was incorrectly instantiated with a model max␣
→˓length of 512 which will be corrected in Transformers v5.
For now, this behavior is kept to avoid breaking backwards compatibility when padding/
→˓encoding with `truncation is True`.
- Be aware that you SHOULD NOT rely on t5-base automatically truncating your input to␣
→˓512 when padding/encoding.
- If you want to encode/pad to sequences longer than 512 you can either instantiate this␣
→˓tokenizer with `model_max_length` or pass `max_length` when encoding/padding.
- To avoid this warning, please instantiate this tokenizer with `model_max_length` set␣
→˓to your preferred value.
warnings.warn(

[ ]: translator("I am a student")

[{'translation_text': 'Je suis un étudiant'}]
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[ ]: translator("Peyton Manning became the first quarterback ever to lead two different teams␣
→˓to multiple Super Bowls.")

[{'translation_text': 'Peyton Manning est devenu le premier quarterback à conduire deux␣
→˓équipes différentes à plusieurs Super Bowls.'}]

21.3.4 Text Summarization

Text summarization reduces a longer text into a shorter summary.

[ ]: summarizer = pipeline("summarization")

No model was supplied, defaulted to sshleifer/distilbart-cnn-12-6 and revision a4f8f3e␣
→˓(https://huggingface.co/sshleifer/distilbart-cnn-12-6).
Using a pipeline without specifying a model name and revision in production is not␣
→˓recommended.

Downloading (...)lve/main/config.json: 0%| | 0.00/1.80k [00:00<?, ?B/s]

Downloading pytorch_model.bin: 0%| | 0.00/1.22G [00:00<?, ?B/s]

Downloading (...)okenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]

Downloading (...)olve/main/vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]

Downloading (...)olve/main/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]

[ ]: summarizer(
"""
America has changed dramatically during recent years. Not only has the number of
graduates in traditional engineering disciplines such as mechanical, civil,
electrical, chemical, and aeronautical engineering declined, but in most of
the premier American universities engineering curricula now concentrate on
and encourage largely the study of engineering science. As a result, there
are declining offerings in engineering subjects dealing with infrastructure,
the environment, and related issues, and greater concentration on high
technology subjects, largely supporting increasingly complex scientific
developments. While the latter is important, it should not be at the expense
of more traditional engineering.

Rapidly developing economies such as China and India, as well as other
industrial countries in Europe and Asia, continue to encourage and advance
the teaching of engineering. Both China and India, respectively, graduate
six and eight times as many traditional engineers as does the United States.
Other industrial countries at minimum maintain their output, while America
suffers an increasingly serious decline in the number of engineering graduates
and a lack of well-educated engineers.

"""
)

[{'summary_text': ' The number of engineering graduates in the United States has␣
→˓declined in recent years . China and India graduate six and eight times as many␣
→˓traditional engineers as the U.S. does . Rapidly developing economies such as China␣
→˓continue to encourage and advance the teaching of engineering . There are declining␣
→˓offerings in engineering subjects dealing with infrastructure, infrastructure, the␣
→˓environment, and related issues .'}]
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Specifying the min_length and max_length arguments allows to control the length of the summary.

[ ]: summarizer(
"""
Flooding on the Yangtze river remains serious although water levels on parts of the␣

→˓river decreased
today, according to the state headquarters of flood control and drought relief .
""", min_length=8, max_length=20)

[{'summary_text': ' Flooding on the Yangtze river remains serious although water levels␣
→˓on parts of the'}]

[ ]: summarizer(
"""BAGHDAD -- Archaeologists in northern Iraq last week unearthed 2,700-year-old␣

→˓rock carvings featuring war scenes and trees from the Assyrian Empire, an␣
→˓archaeologist said Wednesday.

The carvings on marble slabs were discovered by a team of experts in Mosul, Iraq’s␣
→˓second-largest city, who have been working to restore the site of the ancient Mashki␣
→˓Gate, which was bulldozed by Islamic State group militants in 2016.

Fadhil Mohammed, head of the restoration works, said the team was surprised by␣
→˓discovering “eight murals with inscriptions, decorative drawings and writings.”

Mashki Gate was one of the largest gates of Nineveh, an ancient Assyrian city of␣
→˓this part of the historic region of Mesopotamia.

The discovered carvings show, among other things, a fighter preparing to fire an␣
→˓arrow while others show palm trees.
""")

[{'summary_text': ' The carvings on marble slabs were discovered by a team of experts in␣
→˓Mosul, Iraq’s second-largest city . They have been working to restore the site of the␣
→˓ancient Mashki Gate, which was bulldozed by Islamic State group militants in 2016 .␣
→˓Mashki gate was one of the largest gates of Nineveh, an ancient Assyrian city of this␣
→˓part of Mesopotamia .'}]

21.3.5 Text Generation

In this example, we will use the "text-generation" pipeline to generate text based on a provided prompt.

[ ]: generator = pipeline("text-generation")

No model was supplied, defaulted to gpt2 and revision 6c0e608 (https://huggingface.co/
→˓gpt2).
Using a pipeline without specifying a model name and revision in production is not␣
→˓recommended.

Downloading (...)lve/main/config.json: 0%| | 0.00/665 [00:00<?, ?B/s]

Downloading model.safetensors: 0%| | 0.00/548M [00:00<?, ?B/s]

Downloading (...)neration_config.json: 0%| | 0.00/124 [00:00<?, ?B/s]

Downloading (...)olve/main/vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s]
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Downloading (...)olve/main/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]

Downloading (...)/main/tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]

Now let’s provide a prompt text to the generator object, and the generator will continue the text. Note that text generation
involves randomness, so some of the outputs will not be perfect. And admittedly, this is one of the most difficult NLP
tasks.

[ ]: outputs_1 = generator("In this course, we will teach you how to")

print(outputs_1[0]['generated_text'])

Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.

In this course, we will teach you how to design a powerful software architecture to␣
→˓handle high complexity Web application developers. We will show you how to use a␣
→˓simple interface to implement the dataflow concepts and we will be showing how simple␣
→˓these concepts can be

[ ]: outputs_2 = generator("Niagara Falls is a city located in")

print(outputs_2[0]['generated_text'])

Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.

Niagara Falls is a city located in the northeast corner of New York town. It is located␣
→˓within walking distance to the east of New York's main highway, and adjacent to␣
→˓Interstate 90 on the Queens Bridge. In the 1920s, when Niagara Falls

[ ]: outputs_3 = generator("Niagara Falls is a famous world attractation")

print(outputs_3[0]['generated_text'])

Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.

Niagara Falls is a famous world attractation so you can see the amazing waterfalls,␣
→˓creeks, or valleys below. It's also popular because it offers great views of the world
→˓'s most famous waterfall.

In the summer, you

21.3.6 Named Entity Recognition

Named Entity Recognition (NER), also known as named entity tagging, is a task of identifying parts of the input that
represent entities. Examples of entities are:

• Location (LOC)

• Organizations (ORG)

• Persons (PER)

• Miscellaneous entities (MISC)

[ ]: ner = pipeline("ner", grouped_entities=True)
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No model was supplied, defaulted to dbmdz/bert-large-cased-finetuned-conll03-english and␣
→˓revision f2482bf (https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-
→˓english).
Using a pipeline without specifying a model name and revision in production is not␣
→˓recommended.

Downloading (...)lve/main/config.json: 0%| | 0.00/998 [00:00<?, ?B/s]

Downloading model.safetensors: 0%| | 0.00/1.33G [00:00<?, ?B/s]

Some weights of the model checkpoint at dbmdz/bert-large-cased-finetuned-conll03-english␣
→˓were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias',
→˓'bert.pooler.dense.weight']
- This IS expected if you are initializing BertForTokenClassification from the␣
→˓checkpoint of a model trained on another task or with another architecture (e.g.␣
→˓initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForTokenClassification from the␣
→˓checkpoint of a model that you expect to be exactly identical (initializing a␣
→˓BertForSequenceClassification model from a BertForSequenceClassification model).

Downloading (...)okenizer_config.json: 0%| | 0.00/60.0 [00:00<?, ?B/s]

Downloading (...)solve/main/vocab.txt: 0%| | 0.00/213k [00:00<?, ?B/s]

/usr/local/lib/python3.10/dist-packages/transformers/pipelines/token_classification.py:
→˓169: UserWarning: `grouped_entities` is deprecated and will be removed in version v5.0.
→˓0, defaulted to `aggregation_strategy="simple"` instead.
warnings.warn(

[ ]: text_1 = "Abraham Lincoln was a president who lived in the United States."

print(ner(text_1))

[{'entity_group': 'PER', 'score': 0.9988935, 'word': 'Abraham Lincoln', 'start': 0, 'end
→˓': 15}, {'entity_group': 'LOC', 'score': 0.99965084, 'word': 'United States', 'start':␣
→˓49, 'end': 62}]

Or, we can use Pandas to display the output.

[ ]: import pandas as pd

pd.DataFrame(ner(text_1))

entity_group score word start end
0 PER 0.998893 Abraham Lincoln 0 15
1 LOC 0.999651 United States 49 62

[ ]: text_2 = """BAGHDAD -- Archaeologists in northern Iraq last week unearthed 2,700-year-
→˓old rock carvings featuring war scenes and trees from the Assyrian Empire, an␣
→˓archaeologist said Wednesday.

The carvings on marble slabs were discovered by a team of experts in Mosul, Iraq’s␣
→˓second-largest city, who have been working to restore the site of the ancient Mashki␣
→˓Gate, which was bulldozed by Islamic State group militants in 2016.

Fadhil Mohammed, head of the restoration works, said the team was surprised by␣
→˓discovering “eight murals with inscriptions, decorative drawings and writings.”

(continues on next page)
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(continued from previous page)

Mashki Gate was one of the largest gates of Nineveh, an ancient Assyrian city of␣
→˓this part of the historic region of Mesopotamia.

The discovered carvings show, among other things, a fighter preparing to fire an␣
→˓arrow while others show palm trees.

"""

pd.DataFrame(ner(text_2))

entity_group score word start end
0 LOC 0.434805 BA 0 2
1 LOC 0.999473 Iraq 38 42
2 MISC 0.893631 Assyrian 132 140
3 LOC 0.782092 Empire 141 147
4 LOC 0.999238 Mosul 256 261
5 LOC 0.999156 Iraq 263 267
6 LOC 0.971527 Mashki Gate 348 359
7 ORG 0.997262 Islamic State 384 397
8 PER 0.999300 Fadhil Mohammed 428 443
9 LOC 0.974939 Mashki Gate 592 603
10 LOC 0.975865 Nineveh 636 643
11 MISC 0.994617 Assyrian 656 664
12 LOC 0.976547 Mesopotamia 709 720

21.3.7 Zero-shot Classification

Zero-shot classification is a task to classify text documents, where the term zero-shot classification refers to tasks for
which a language model has not been trained. I.e., the model was not trained to classify documents using the provided
type of labels in the next example.

[ ]: classifier = pipeline("zero-shot-classification")

No model was supplied, defaulted to facebook/bart-large-mnli and revision c626438 (https:
→˓//huggingface.co/facebook/bart-large-mnli).
Using a pipeline without specifying a model name and revision in production is not␣
→˓recommended.

Downloading (...)lve/main/config.json: 0%| | 0.00/1.15k [00:00<?, ?B/s]

Downloading model.safetensors: 0%| | 0.00/1.63G [00:00<?, ?B/s]

Downloading (...)okenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]

Downloading (...)olve/main/vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]

Downloading (...)olve/main/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]

Downloading (...)/main/tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]

The pipeline allows us to list candidate labels to be used for the classification. For this example, the model returned
confidence scores for each category, and the highest probability was assigned to the “sports” category.

[ ]: classifier(
"Peyton Manning became the first quarterback ever to lead two different teams to␣

→˓multiple Super Bowls.",
(continues on next page)
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candidate_labels=["education", "politics", "business", "sports"],
)

{'sequence': 'Peyton Manning became the first quarterback ever to lead two different␣
→˓teams to multiple Super Bowls.',
'labels': ['sports', 'business', 'education', 'politics'],
'scores': [0.9866245985031128,
0.006729820277541876,
0.0034621653612703085,
0.003183382796123624]}

21.3.8 Mask Filling

The pipeline with the fill-mask task is used to fill in blanks in an input text.

[ ]: mask_filling = pipeline("fill-mask")

No model was supplied, defaulted to distilroberta-base and revision ec58a5b (https://
→˓huggingface.co/distilroberta-base).
Using a pipeline without specifying a model name and revision in production is not␣
→˓recommended.

Downloading (...)lve/main/config.json: 0%| | 0.00/480 [00:00<?, ?B/s]

Downloading model.safetensors: 0%| | 0.00/331M [00:00<?, ?B/s]

Some weights of the model checkpoint at distilroberta-base were not used when␣
→˓initializing RobertaForMaskedLM: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.
→˓weight']
- This IS expected if you are initializing RobertaForMaskedLM from the checkpoint of a␣
→˓model trained on another task or with another architecture (e.g. initializing a␣
→˓BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaForMaskedLM from the checkpoint of␣
→˓a model that you expect to be exactly identical (initializing a␣
→˓BertForSequenceClassification model from a BertForSequenceClassification model).

Downloading (...)olve/main/vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]

Downloading (...)olve/main/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]

Downloading (...)/main/tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]

We can provide the top_k argument to indicate the number of returned answers.

[ ]: mask_filling("Abraham Lincoln was a <mask> who lived in the United States.", top_k=5)

[{'score': 0.3327265977859497,
'token': 3661,
'token_str': ' Democrat',
'sequence': 'Abraham Lincoln was a Democrat who lived in the United States.'},

{'score': 0.18091031908988953,
'token': 1172,
'token_str': ' Republican',
'sequence': 'Abraham Lincoln was a Republican who lived in the United States.'},

{'score': 0.033906374126672745,
(continues on next page)
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'token': 16495,
'token_str': ' Jew',
'sequence': 'Abraham Lincoln was a Jew who lived in the United States.'},

{'score': 0.028415339067578316,
'token': 24156,
'token_str': ' Presbyterian',
'sequence': 'Abraham Lincoln was a Presbyterian who lived in the United States.'},

{'score': 0.02462911792099476,
'token': 11593,
'token_str': ' physician',
'sequence': 'Abraham Lincoln was a physician who lived in the United States.'}]

[ ]: mask_filling("Flooding on the Yangtze river remains serious although <mask> levels on␣
→˓parts of the river decreased today.", top_k=2)

[{'score': 0.2489088624715805,
'token': 514,
'token_str': ' water',
'sequence': 'Flooding on the Yangtze river remains serious although water levels on␣

→˓parts of the river decreased today.'},
{'score': 0.12597304582595825,
'token': 11747,
'token_str': ' oxygen',
'sequence': 'Flooding on the Yangtze river remains serious although oxygen levels on␣

→˓parts of the river decreased today.'}]

7.21.4 21.4 Tokenizers

Tokenizers library in Hugging Face is used to split input text data into tokens (e.g., words, characters, N-grams), and
map the tokens to integers. When we use a pretrained model from Hugging Face for a downstream task, our text data
needs to be preprocessed in the same way as the training data used with the model. Therefore, we will need to download
the tokenizer for that specific model.

Let’s consider the model "distilbert-base-uncased", which is a version of the BERT transformer model, which
takes case-insensitive English text as input data. Next, we will download the tokenizer for this model by using the
AutoTokenizer class and its method from_pretrained(). By using AutoTokenizer we don’t need to manually
download and manage the tokenizer files.

Or, we can also specify the tokenizer name for the model that we wish to use. For instance, for the BERT model,
Hugging Face has a BertTokenizer that can be directly imported from the transformers package.

[ ]: from transformers import AutoTokenizer

model = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model)

Downloading (...)okenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]

Downloading (...)lve/main/config.json: 0%| | 0.00/483 [00:00<?, ?B/s]

Downloading (...)solve/main/vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]

Downloading (...)/main/tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]

Let’s now use the tokenizer to convert sentences into a sequence of integers, and display the output.
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The ouput of the tokenizer is a dictionary consisting of two key-value pairs:

• input_ids, a list of integers, where each index identifies a token. The indexing is based on the vocabulary of
the training data that was used to train the model "distilbert-base-uncased".

• attention_mask, a list of 1’s or 0’s, to indicate padding of the text sequence. This sentence does not have
padding, since all elements have an attention mask of 1’s. The attention mask ensures that the attention mecha-
nism in Transformer is applied only to the real tokens, and the padding tokens are ignored.

[ ]: output_tokens_1 = tokenizer('Tokenizing text is easy.')
print(output_tokens_1)

{'input_ids': [101, 19204, 6026, 3793, 2003, 3733, 1012, 102], 'attention_mask': [1, 1,␣
→˓1, 1, 1, 1, 1, 1]}

Notethat the above output has 8 tokens, although the input sentence has 4 words and the period mark. To understand
better how the tokenization was performed, in the next cell we used the method covert_ids_to_tokens() to obtain
the text for each integer value. Now we can see that the tokenizer places special tokens at the beginning and end of
each sequence. [CLS] is placed at the beginning (it stands for Classification), and [SEP] is placed at the end of the
sequence (it stands for Separate).

Also note that the gerund verb “tokenizing” is split into 'token' and '##izing'. Using two tokens for the word
allows to work with smaller vocabularies. I.e., instead of considering token and tokenization as two different
words, by splitting the word into the root token and the suffix ization, the model will use two tokens that have a
distinct semantic meaning. This approach of decomposing long words into subwords is especially efficient with some
languages where one can form very long words by chaining simple subwords.

[ ]: tokenizer.convert_ids_to_tokens(output_tokens_1.input_ids)

['[CLS]', 'token', '##izing', 'text', 'is', 'easy', '.', '[SEP]']

Most tokenizers in Hugging Face assign integers for the special tokens between 100 and 103.

These special tokens include:

• [PAD], padding.

• [UNK], unknown token.

• [CLS], sequence beginning.

• [SEP], sequence end.

• [MASK], masked tokens.

[ ]: tokenizer.convert_ids_to_tokens([0, 100, 101, 102, 103])

['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]']

Another simple example is provided next. We can see that the word ‘Transformer’ is tokenized as ‘transform’ + ‘##er’.

[ ]: output_tokens_2 = tokenizer('Using a Transformer network in Hugging Face is simple')
print(output_tokens_2)

{'input_ids': [101, 2478, 1037, 10938, 2121, 2897, 1999, 17662, 2227, 2003, 3722, 102],
→˓'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

[ ]: tokenizer.convert_ids_to_tokens(output_tokens_2.input_ids)
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['[CLS]',
'using',
'a',
'transform',
'##er',
'network',
'in',
'hugging',
'face',
'is',
'simple',
'[SEP]']

Tokenizers can be applied to multiple text sequences. The argument padding=True is used below to pad the sequences
to the longest sequence. Note below that 0’s are added to pad the second sentence.

[ ]: text_3 = ["I've been waiting for a HuggingFace course my whole life.", "I hate this so␣
→˓much!"]

output_tokens_3 = tokenizer(text_3, padding=True)

[ ]: print(output_tokens_3)

{'input_ids': [[101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026,␣
→˓2878, 2166, 1012, 102], [101, 1045, 5223, 2023, 2061, 2172, 999, 102, 0, 0, 0, 0, 0, 0,
→˓ 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1,
→˓ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}

The output is more readable if we print it line by line.

[ ]: print("Input IDs")
for item in output_tokens_3.input_ids:

print(item)

print("Attention Mask")
for item in output_tokens_3.attention_mask:

print(item)

Input IDs
[101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 2878, 2166,␣
→˓1012, 102]
[101, 1045, 5223, 2023, 2061, 2172, 999, 102, 0, 0, 0, 0, 0, 0, 0, 0]
Attention Mask
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

Note also that each sequence of tokens begins with 101 (‘[CLS]’) and ends with 102 (‘[SEP]’).

If max_length is provided, the tokenizer will truncate longer sentences to the specified length, as in the example in
the next cell.

[ ]: output_tokens_4 = tokenizer(text_3, padding=False, max_length=10)

print("Input IDs")
(continues on next page)
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for item in output_tokens_4.input_ids:
print(item)

print("Attention Mask")
for item in output_tokens_4.attention_mask:

print(item)

Truncation was not explicitly activated but `max_length` is provided a specific value,␣
→˓please use `truncation=True` to explicitly truncate examples to max length. Defaulting␣
→˓to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style)␣
→˓with the tokenizer you can select this strategy more precisely by providing a specific␣
→˓strategy to `truncation`.

Input IDs
[101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 102]
[101, 1045, 5223, 2023, 2061, 2172, 999, 102]
Attention Mask
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1]

The Tokenizers library also allows to train new tokenizers from scratch. For instance, if a large corpus of text is available
in another language than English, a new tokenizer will need to be trained to efficiently deal with the differences in the
punctuation and use of spaces in that language.

7.21.5 21.5 Datasets

Hugging Face provides access to a large number of datasets. If you wish to check all datasets please follow this link.
As well as, to see all available datasets in Hugging Face, we can import list_datasets.

[ ]: from datasets import list_datasets

all_datasets = list_datasets()

<ipython-input-37-cac6c310c34b>:3: FutureWarning: list_datasets is deprecated and will␣
→˓be removed in the next major version of datasets. Use 'huggingface_hub.list_datasets'␣
→˓instead.
all_datasets = list_datasets()

[ ]: print('Number of datasets in Hugging Face:', len(all_datasets))

Number of datasets in Hugging Face: 75567

[ ]: print('Display the first 10 datasets:', '\n'.join(all_datasets[:10]))

Display the first 10 datasets: acronym_identification
ade_corpus_v2
adversarial_qa
aeslc
afrikaans_ner_corpus
ag_news
ai2_arc
air_dialogue
ajgt_twitter_ar
allegro_reviews
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Let’s load the Emotions dataset. It contains Twitter messages with six basic emotions: anger, fear, joy, love, sadness,
and surprise. We can just use load_dataset() to accomplish that.

[ ]: from datasets import load_dataset

emotions = load_dataset("emotion")

Downloading builder script: 0%| | 0.00/3.97k [00:00<?, ?B/s]

Downloading metadata: 0%| | 0.00/3.28k [00:00<?, ?B/s]

Downloading readme: 0%| | 0.00/8.78k [00:00<?, ?B/s]

Downloading data files: 0%| | 0/3 [00:00<?, ?it/s]

Downloading data: 0%| | 0.00/592k [00:00<?, ?B/s]

Downloading data: 0%| | 0.00/74.0k [00:00<?, ?B/s]

Downloading data: 0%| | 0.00/74.9k [00:00<?, ?B/s]

Extracting data files: 0%| | 0/3 [00:00<?, ?it/s]

Generating train split: 0%| | 0/16000 [00:00<?, ? examples/s]

Generating validation split: 0%| | 0/2000 [00:00<?, ? examples/s]

Generating test split: 0%| | 0/2000 [00:00<?, ? examples/s]

We can see in the next cell that emotions dataset is a dictionary object that is split into training, validation, and test
data sets, consisting of 16,000, 2,000, and 2,000 messages, respectively.

[ ]: emotions

DatasetDict({
train: Dataset({

features: ['text', 'label'],
num_rows: 16000

})
validation: Dataset({

features: ['text', 'label'],
num_rows: 2000

})
test: Dataset({

features: ['text', 'label'],
num_rows: 2000

})
})

The first and second training samples are shown next. They contain the text and the corresponding emotion label.

[ ]: emotions['train'][0]

{'text': 'i didnt feel humiliated', 'label': 0}

[ ]: emotions['train'][1]

{'text': 'i can go from feeling so hopeless to so damned hopeful just from being around␣
→˓someone who cares and is awake',
'label': 0}
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The order of the labels for the emotion categories are shown in the next cell.

[ ]: emotions['train'].features

{'text': Value(dtype='string', id=None),
'label': ClassLabel(names=['sadness', 'joy', 'love', 'anger', 'fear', 'surprise'],␣
→˓id=None)}

Hugging Face also allows to use the set_format() method with datasets, and to define the format of the data. For
instance, by setting the type to Pandas, we can obtain the data as Pandas DataFrames.

[ ]: emotions.set_format(type='pandas')
df = emotions["train"][:]
df.head()

text label
0 i didnt feel humiliated 0
1 i can go from feeling so hopeless to so damned... 0
2 im grabbing a minute to post i feel greedy wrong 3
3 i am ever feeling nostalgic about the fireplac... 2
4 i am feeling grouchy 3

We can use a bar plot to plot the number of values in each category.

[ ]: import matplotlib.pyplot as plt

df["label"].value_counts(ascending=True).plot.barh()
plt.show()
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Apply a Tokenizer to a Dataset

Let’s show next how we can use a tokenizer to convert the first 5 samples in the training dataset to sequences of tokens.

[ ]: emotions.set_format(type=None)

training_samples_5 = emotions["train"][:5]
training_samples_5

{'text': ['i didnt feel humiliated',
'i can go from feeling so hopeless to so damned hopeful just from being around someone␣

→˓who cares and is awake',
'im grabbing a minute to post i feel greedy wrong',
'i am ever feeling nostalgic about the fireplace i will know that it is still on the␣

→˓property',
'i am feeling grouchy'],
'label': [0, 0, 3, 2, 3]}

Let’s extract only the text data, and not the labels.

[ ]: text_training_5 = training_samples_5['text']
text_training_5

['i didnt feel humiliated',
'i can go from feeling so hopeless to so damned hopeful just from being around someone␣
→˓who cares and is awake',
'im grabbing a minute to post i feel greedy wrong',
'i am ever feeling nostalgic about the fireplace i will know that it is still on the␣
→˓property',
'i am feeling grouchy']

Apply the tokenizer, and display the sequence of tokens.

[ ]: output_tokens_5 = tokenizer(text_training_5, padding=True)

print("Input IDs")
for item in output_tokens_5.input_ids:

print(item)

print("Attention Mask")
for item in output_tokens_5.attention_mask:

print(item)

Input IDs
[101, 1045, 2134, 2102, 2514, 26608, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[101, 1045, 2064, 2175, 2013, 3110, 2061, 20625, 2000, 2061, 9636, 17772, 2074, 2013,␣
→˓2108, 2105, 2619, 2040, 14977, 1998, 2003, 8300, 102]
[101, 10047, 9775, 1037, 3371, 2000, 2695, 1045, 2514, 20505, 3308, 102, 0, 0, 0, 0, 0,␣
→˓0, 0, 0, 0, 0, 0]
[101, 1045, 2572, 2412, 3110, 16839, 9080, 12863, 2055, 1996, 13788, 1045, 2097, 2113,␣
→˓2008, 2009, 2003, 2145, 2006, 1996, 3200, 102, 0]
[101, 1045, 2572, 3110, 24665, 7140, 11714, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓0, 0]
Attention Mask
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(continues on next page)
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(continued from previous page)

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

7.21.6 21.6 Models

Importing a Pretrained Model

Instead of using a default model for a task, we can also select a language model from the many available in Hugging
Face. Let’s use GPT-2 language model, and we will also need to use the corresponding tokenizer for GPT-2.

The parameter pad_token_id is optional, and its purpose is to define the ID (assigned integer value) for the token
used for padding the text sequences. In this case, the ID of the padding token is set to the ID of the end-of-sequence
token (eos_token_id), which is a common choice for padding in language models.

[ ]: from transformers import GPT2LMHeadModel
from transformers import GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

model = GPT2LMHeadModel.from_pretrained("gpt2", pad_token_id = tokenizer.eos_token_id)

Now, let’s consider the following sentence input_string, and first preprocess it with the tokenizer to encode it into
a sequence of integers. The argument return_tensors="pt" specifies that the output should be returned as PyTorch
tensors, where "pt" stands for PyTorch.

Next, we will use the GPT-2 model for text generation, to continue the input sentences. The decode method will
convert the generated sequence by the model into text, here named output_string.

Two common methods for generating text with Language Models are:

• Greedy search, selects the word with the highest probability as the next word. The major drawback of greedy
search is that it can miss potentially high-probability words that follow a low-probability word. Therefore, al-
though each individual word may be the best fit when generating a response, the entire generated text can be less
relevant for the query.

• Beam search, selects a sequence of words (beam) that has the overall highest probability. This approach reduces
the risk of missing high-probability words, because rather than focusing only on the next word in a sequence,
beam search looks at the probability of the entire response.

Beam search is typically preferred than greedy search, because with beam search, the model can consider multiple
routes and find the best option.

For example, in the following figure, the input query to the model is “The Financial Times is . . . ”. The model created
four possible beams with a potential response, and out of the four beams, the third beam “a newspaper founded in 1888”
was selected as the most coherent human-like response.
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Figure: Beam search example. Source: link

[ ]: input_string = "Yesterday I spent several hours in the library, studying"
input_tokens = tokenizer.encode(input_string, return_tensors = "pt")

output_greedy = model.generate(input_tokens, max_length=64)

output_string = tokenizer.decode(output_greedy[0], skip_special_tokens=True)
print(f"Output sequence: {output_string}")

Output sequence: Yesterday I spent several hours in the library, studying the books, and␣
→˓I was amazed at how much I had learned. I was amazed at how much I had learned. I was␣
→˓amazed at how much I had learned. I was amazed at how much I had learned. I was amazed␣
→˓at how much I had learned.

You can notice that the generated text sequence with greedy search is not the best, since after the initial sequence of
words, the model got stuck into a loop, and began repeating the same sentence. To deal with repetitive text generation
we can apply a beam search strategy. Beam search examines multiple probable solutions (beams) for the generated
text, which is set by the argument num_beams=32. We also applied a penalty term for repeating the same words. By
considering severl possible solutions, the beam search algorithm tries to improve the generated output text by the model.

[ ]: output_beam = model.generate(input_tokens, max_length=64, num_beams=32, \
no_repeat_ngram_size=2, early_stopping=True)

output_string = tokenizer.decode(output_beam[0], skip_special_tokens=True)

print("Output sequence:\n", output_string)

Output sequence:
(continues on next page)
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(continued from previous page)

Yesterday I spent several hours in the library, studying all the books I could get my␣
→˓hands on, and trying to figure out what I wanted to do with them. I didn't know what␣
→˓to expect, but I did know that it was going to be a lot of fun.

When I got home, I

Fine-tuning a Pretrained Model to the Emotions Dataset

The next section demonstrates how to use a pretrained model and tokenizer in Hugging Face, and fine-tune the model
to a dataset. We will use the DistilBERT model for this task, and we will again use the Emotions dataset.

Let’s first download the tokenizer for the "distilbert-base-uncased" model.

[ ]: model_ckpt = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

The following code tokenizes the emotions dataset. It is common to use the Dataset.map() method in Hugging Face
for tokenization, which applies a function on each sample in the dataset. Therefore, we first define a function tokenize
that is used in the Dataset.map() method. Using the option batched=True in the map() method will apply the
tokenization to a batch of input sequences instead to each text sequence, which will speed up the tokenization. And, as
we learned in the previous section, tokenize returns a dictionary with keys input_ids and attention_mask.

[ ]: def tokenize(rows):
return tokenizer(rows['text'], padding="max_length", truncation=True)

emotions.set_format(type=None)

tokenized_datasets = emotions.map(tokenize, batched=True)

Map: 0%| | 0/16000 [00:00<?, ? examples/s]

Map: 0%| | 0/2000 [00:00<?, ? examples/s]

Map: 0%| | 0/2000 [00:00<?, ? examples/s]

[ ]: tokenized_train_dataset = tokenized_datasets["train"]
tokenized_eval_dataset = tokenized_datasets["test"]

DefaultDataCollator in Hugging Face converts the data into appropriate format for model training. In this case we
used return_tensors="tf", therefore it will transform the dataset into TensorFlow type data, which we will use to
train a neural network model defined in TensorFlow. I.e., the collate function will convert the tokenized input samples
into TensorFlow tensors, and concatenate the tensors to create batches for training the model.

[ ]: from transformers import DefaultDataCollator

data_collator = DefaultDataCollator(return_tensors="tf")

The train and validation datasets are defined in the next cell, where the columns and label_col define the text and
labels in the datasets.

[ ]: tf_train_dataset = tokenized_train_dataset.to_tf_dataset(
columns=["attention_mask", "input_ids"],
label_cols=["label"],

(continues on next page)
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(continued from previous page)

shuffle=True,
collate_fn=data_collator,
batch_size=8)

tf_validation_dataset = tokenized_eval_dataset.to_tf_dataset(
columns=["attention_mask", "input_ids"],
label_cols=["label"],
shuffle=False,
collate_fn=data_collator,
batch_size=8)

/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:400: FutureWarning:␣
→˓The output of `to_tf_dataset` will change when a passing single element list for␣
→˓`labels` or `columns` in the next datasets version. To return a tuple structure rather␣
→˓than dict, pass a single string.
Old behaviour: columns=['a'], labels=['labels'] -> (tf.Tensor, tf.Tensor)

: columns='a', labels='labels' -> (tf.Tensor, tf.Tensor)
New behaviour: columns=['a'],labels=['labels'] -> ({'a': tf.Tensor}, {'labels': tf.
→˓Tensor})

: columns='a', labels='labels' -> (tf.Tensor, tf.Tensor)
warnings.warn(

Next, we will load the DistilBERT model for classification. Hugging Face Transformers library provides an AutoModel
class which also has a from_pretrained() method that can be used to load a pretrained checkpoint. Hugging
Face offers several types of AutoModel instances, and since we will need a model to perform classification of
Twitter messages into classes, and the dataset is preprocessed into TesorFlow data type, we will use the model
TFAutoModelForSequenceClassification.

After the model is defined, we will compile it and re-train using our dataset.

[ ]: import tensorflow as tf
from transformers import TFAutoModelForSequenceClassification

model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased",␣
→˓num_labels=6)

Downloading model.safetensors: 0%| | 0.00/268M [00:00<?, ?B/s]

Some weights of the PyTorch model were not used when initializing the TF 2.0 model␣
→˓TFDistilBertForSequenceClassification: ['vocab_layer_norm.bias', 'vocab_transform.bias
→˓', 'vocab_transform.weight', 'vocab_layer_norm.weight', 'vocab_projector.bias']
- This IS expected if you are initializing TFDistilBertForSequenceClassification from a␣
→˓PyTorch model trained on another task or with another architecture (e.g. initializing␣
→˓a TFBertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing TFDistilBertForSequenceClassification␣
→˓from a PyTorch model that you expect to be exactly identical (e.g. initializing a␣
→˓TFBertForSequenceClassification model from a BertForSequenceClassification model).
Some weights or buffers of the TF 2.0 model TFDistilBertForSequenceClassification were␣
→˓not initialized from the PyTorch model and are newly initialized: ['pre_classifier.
→˓weight', 'pre_classifier.bias', 'classifier.weight', 'classifier.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for␣
→˓predictions and inference.
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[ ]: from tensorflow import keras
from keras.optimizers import Adam
from keras.losses import SparseCategoricalCrossentropy
from keras.metrics import SparseCategoricalAccuracy

[ ]: model.compile(optimizer=Adam(learning_rate=5e-5),
loss=SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

[ ]: model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=5)

Epoch 1/5
2000/2000 [==============================] - 979s 476ms/step - loss: 0.3840 - sparse_
→˓categorical_accuracy: 0.8656 - val_loss: 0.1661 - val_sparse_categorical_accuracy: 0.
→˓9210
Epoch 2/5
2000/2000 [==============================] - 960s 480ms/step - loss: 0.1546 - sparse_
→˓categorical_accuracy: 0.9324 - val_loss: 0.1549 - val_sparse_categorical_accuracy: 0.
→˓9220
Epoch 3/5
2000/2000 [==============================] - 964s 482ms/step - loss: 0.1249 - sparse_
→˓categorical_accuracy: 0.9382 - val_loss: 0.2141 - val_sparse_categorical_accuracy: 0.
→˓9135
Epoch 4/5
2000/2000 [==============================] - 970s 485ms/step - loss: 0.1128 - sparse_
→˓categorical_accuracy: 0.9495 - val_loss: 0.1692 - val_sparse_categorical_accuracy: 0.
→˓9150
Epoch 5/5
2000/2000 [==============================] - 961s 481ms/step - loss: 0.0974 - sparse_
→˓categorical_accuracy: 0.9580 - val_loss: 0.1974 - val_sparse_categorical_accuracy: 0.
→˓9235

<keras.src.callbacks.History at 0x7fbb843b27a0>

7.21.7 References

1. Hugging Face Course, available at https://huggingface.co/course/chapter1/1.

2. Applications of Deep Neural Networks, Course at Washington University in St. Louis, Jeff Heaton, available at
https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_11_01_huggingface.ipynb.

3. Getting Started with Hugging Face Transformers for NLP, Exxact Blog, available at https://www.exxactcorp.
com/blog/Deep-Learning/getting-started-hugging-face-transformers.

4. An Introduction to Using Transformers and Hugging Face, Zoumana Kelta, available at https://www.datacamp.
com/tutorial/an-introduction-to-using-transformers-and-hugging-face.
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• 22.6 Generating Images with Stable Diffusion

• Appendix
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7.22.1 22.1 Generative Text-to-Image Models

Generative models are a category of Machine Learning models that generate new data instances, typically based on
the learned data distribution of the training dataset. This is different from most models that we studied so far, such as
discriminative models that can be used to classify data instances into several classes, for example.

The family of GAN models (StyleGAN, CycleGAN, BigGAN, etc.) have been the most important category of generative
models since the original GAN paper was published in 2014. Despite the remarkable progress in image synthesis
achieved by the family of GAN models, these models are generally difficult to train due to their adversarial nature, as
well as there is a lack of diversity in generated images.

Another group of generative models were recently been introduced, referred to as Denoising Diffusion Probabilistic
Models (DDPMs), or they are also simply called Diffusion Models. Diffusion Models convert Gaussian random noise
into images from a learned data distribution in an iterative denoising process. This approach is inspired by the physical
process of gas diffusion, and has also applications in other scientific fields. Diffusion Models have demonstrated an
ability to generate images with increased quality and diversity in comparison to GANs, and they don’t suffer from mode
collapse and other training instabilities that are characteristical for GANs.

Examples of recent text-to-image generative methods that are based on Diffusion Models include DALL-E 2 by OpenAI,
Stable Diffusion by Stability.AI, and ImageGen by Google Brain.

Text-to-image generative models rely on learned representations by Large Language Models that are trained on pairs
of images and image captions. These representations are afterward used to guide a Diffusion Model in generating new
images given a text prompt.

This group of generative models can also take an input image as a prompt, and generate an image similar to the input
image. For instance, we can quickly draw a simple drawing manually, and use it to create a photorealistic image.
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7.22.2 22.2 High-Level API for Stable Diffusion with Keras

Let’s first show an example of a high-level API for generating images from text prompts, and afterward we will explain
the components in text-to-image models.

The code in the next cells employs a Keras library for Computer Vision called keras_cv that implements the Stable
Diffusion model. Stable Diffusion was the first text-to-image model that was open-sourced, and this motivated a large
number of recent applications.

To run the model we need to first install the keras_cv package. Afterward, we can just load a Stable Diffusion model
and give a prompt to generate images.

[ ]: !pip install keras_cv --upgrade --quiet

803.1/803.1 kB 10.8 MB/s eta 0:00:00
950.8/950.8 kB 48.5 MB/s eta 0:00:00

[ ]: import keras_cv
from tensorflow import keras
import matplotlib.pyplot as plt

Using TensorFlow backend

[ ]: # instantiate a Stable Diffusion model
model = keras_cv.models.StableDiffusion(img_width=512, img_height=512)

By using this model checkpoint, you acknowledge that its usage is subject to the terms␣
→˓of the CreativeML Open RAIL-M license at https://raw.githubusercontent.com/CompVis/
→˓stable-diffusion/main/LICENSE

[ ]: # generate images (it takes a few minutes with Google Colab Pro)
images = model.text_to_image("photograph of an astronaut riding a horse", batch_size=3)

# plot the images
plt.figure(figsize=(16, 8))
for i in range(len(images)):

ax = plt.subplot(1, len(images), i + 1)
plt.imshow(images[i])
plt.axis("off")

Downloading data from https://github.com/openai/CLIP/blob/main/clip/bpe_simple_vocab_
→˓16e6.txt.gz?raw=true
1356917/1356917 [==============================] - 0s 0us/step
Downloading data from https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_
→˓encoder.h5
492466864/492466864 [==============================] - 2s 0us/step
Downloading data from https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_
→˓diffusion_model.h5
3439090152/3439090152 [==============================] - 14s 0us/step
50/50 [==============================] - 176s 2s/step
Downloading data from https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_
→˓decoder.h5
198180272/198180272 [==============================] - 4s 0us/step
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[ ]: # generate images (it takes a few minutes per image with Google Colab Pro)
images = model.text_to_image("ruins of an ancient castle in a desert, concept art",␣
→˓batch_size=3)

# plot the images
plt.figure(figsize=(16, 8))
for i in range(len(images)):

ax = plt.subplot(1, len(images), i + 1)
plt.imshow(images[i])
plt.axis("off")

50/50 [==============================] - 95s 2s/step

[ ]: # generate images
images = model.text_to_image("a cute magical flying dog, fantasy art, golden color, high␣
→˓quality, highly detailed, elegant, sharp focus,"

"concept art, character concepts, digital painting, mystery, adventure", batch_
→˓size=3)

# plot the images
plt.figure(figsize=(16, 8))
for i in range(len(images)):

ax = plt.subplot(1, len(images), i + 1)
plt.imshow(images[i])
plt.axis("off")

50/50 [==============================] - 95s 2s/step
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7.22.3 22.3 Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic process consists of two phases:

1. Forward diffusion process, in which Gaussian noise is gradually added to an image, until the image becomes
complete random noise.

2. Reverse diffusion process, in which the image with Gaussian noise is gradually denoised, until all noise is removed
and the original image is recovered.

22.3.1 Forward Diffusion Process

For an initial image denoted 𝑥0 that is sampled from the data distribution 𝑞(𝑥), the forward diffusion process adds noise
over 𝑇 consecutive steps. At each step, the added Gaussian noise has variance 𝛽𝑡. I.e., the sample 𝑥𝑡 that corresponds
to step 𝑡 of the forward process is obtained by adding Gaussian noise to the sample 𝑥𝑡−1 from step 𝑡1. Therefore the
conditional probability density of the forward diffusion process 𝑞(𝑥𝑡|𝑥𝑡−1) can be written as:

𝑞(𝑥𝑡 | 𝑥𝑡−1) = 𝒩 (𝑥𝑡;
√︀

1− 𝛽𝑡𝑥𝑡−1, 𝛽𝑡I)

The above notation means that 𝑥𝑡 has Gaussian distribution, with a mean
√
1− 𝛽𝑡𝑥𝑡−1 and variance 𝛽𝑡I.

This process is depicted in the next figure.

Figure: Forward diffusion process.

Such process where the probability of an event at any given state is dependent only on the immediately preceding state
is called Markov Chain or Markov Process.

The mean and variance of the samples depend on a parameter 𝛽𝑡, which defines the level of added Gaussian noise. The
value of 𝛽𝑡 can either be constant for all steps, or it can be gradually changed (e.g., by using a sigmoid, cosine, tanh,
linear function, etc).
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Substituting 𝛼𝑡 = 1− 𝛽𝑡, and �̄�𝑡 =
∏︀𝑡

𝑠=1 𝛼𝑠, the distribution can also be rewritten as:

𝑞(𝑥𝑡 | 𝑥0) = 𝒩 (𝑥𝑡;
√
�̄�𝑡𝑥0, (1− �̄�𝑡)I)

This substitution allows to draw samples at any timestep by using only the initial image 𝑥0, without going through the
intermediate steps. Hence, the variable 𝑥𝑡 of the forward diffusion can be written in terms of the initial image 𝑥0 and
the random Gaussian noise 𝜖 ∼ 𝒩 (0, 1) as:

𝑥𝑡 =
√
�̄�𝑡𝑥0 +

√
1− 𝛼𝑡𝜖

Note that the forward diffusion process does not involve learning. It is a simple process that just applies noise to an
image.

Example of Forward Diffusion

An example of performing forward diffusion is shown below, based on the code repository at https://github.com/
azad-academy/denoising-diffusion-model.

The codes in the next cells apply Gaussian noise to an image of the letter S over 100 steps. In the figure below, the
images for every 10th step of the noise-adding process are shown.

[ ]: from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

[ ]: cd 'drive/MyDrive/Data_Science_Course/Fall_2023/Lecture_22-Diffusion_Models/helper_
→˓functions/'

/content/drive/MyDrive/Data_Science_Course/Fall_2023/Lecture_22-Diffusion_Models/helper_
→˓functions

[ ]: # code from: https://github.com/azad-academy/denoising-diffusion-model

### Note: the code in the next cells for this example is not required for quizzes or␣
→˓assignments ###

import numpy as np
from sklearn.datasets import make_s_curve
from helper_plot import hdr_plot_style
import torch
from utils import *

# create S curve
s_curve, _= make_s_curve(10**4, noise=0.1)
s_curve = s_curve[:, [0, 2]]/10.0

data = s_curve.T

# plot the S curve
hdr_plot_style()
plt.scatter(*data, alpha=0.5, color='white', edgecolor='gray', s=5)
plt.axis('off')

dataset = torch.Tensor(data.T).float()
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[ ]: num_steps = 100

# apply a sigmoid schedule for the beta parameter
betas = make_beta_schedule(schedule='sigmoid', n_timesteps=num_steps, start=1e-5, end=0.
→˓5e-2)

# substitute alphas
alphas = 1 - betas
alphas_prod = torch.cumprod(alphas, 0)
alphas_prod_p = torch.cat([torch.tensor([1]).float(), alphas_prod[:-1]], 0)
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_log = torch.log(1 - alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)

[ ]: # draw a sample at step t, given an initial image x_0
def q_x(x_0, t, noise=None):

if noise is None:
noise = torch.randn_like(x_0)

alphas_t = extract(alphas_bar_sqrt, t, x_0)
alphas_1_m_t = extract(one_minus_alphas_bar_sqrt, t, x_0)
return (alphas_t * x_0 + alphas_1_m_t * noise)

[ ]: # plot the samples for steps 0, 10, 20, ..., 90
fig, axs = plt.subplots(1, 10, figsize=(24, 3))
for i in range(10):

q_i = q_x(dataset, torch.tensor([i * 10]))
(continues on next page)

690 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

(continued from previous page)

axs[i].scatter(q_i[:, 0], q_i[:, 1], color='white', edgecolor='gray', s=5)
axs[i].set_axis_off(); axs[i].set_title('$q(\mathbf{x}_{'+str(i*10)+'})$')

As mentioned above, we can obtain a sample at any desired step in the forward diffusion process, by applying the level
of Gaussian noise directly to the initial image. The cell below shows the image at step 15.

[ ]: # image in the 15th step
q_15 = q_x(dataset, torch.tensor([15]))
plt.scatter(q_15[:, 0], q_15[:, 1], color='white', edgecolor='gray', s=5);
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22.3.2 Reverse Diffusion Process

The goal of the reverse diffusion process is to denoise the images from the forward diffusion process, i.e., start with
a noisy image and obtain a clean image. Accurately calculating the reverse process 𝑞(𝑥𝑡−1|𝑥𝑡) is intractable, and
therefore, text-to-image models apply deep neural networks to approximate the probability density function 𝑞(𝑥𝑡−1|𝑥𝑡)
with a parameterized model 𝑝𝜃(𝑥𝑡−1|𝑥𝑡), where 𝜃 denotes the parameters of the deep neural network model that are
learned. The model takes as input a noisy image at step 𝑥𝑡 and predicts the mean 𝜇𝜃(𝑥𝑡, 𝑡) and the variance Σ𝜃(𝑥𝑡, 𝑡)
of a denoised image 𝑥𝑡−1.

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝒩 (𝑥𝑡−1;𝜇𝜃(𝑥𝑡, 𝑡),Σ𝜃(𝑥𝑡, 𝑡))

Figure: Reverse diffusion process.

Example of Reverse Diffusion

The reverse diffusion process for the image S from the above example is presented below. The mathematical expressions
for calculating the posteriors are omitted here, and can be found in reference [3]. The model is trained for 1,000
iterations, and the denoising images at steps 0, 250, 500, 750, and 1,000 are shown in the figure below. In the last row
of images, we can see that the model begins with a noisy image on the left and it ends with a denoised image on the
right.

[ ]: posterior_mean_coef_1 = (betas * torch.sqrt(alphas_prod_p) / (1 - alphas_prod))
posterior_mean_coef_2 = ((1 - alphas_prod_p) * torch.sqrt(alphas) / (1 - alphas_prod))
posterior_variance = betas * (1 - alphas_prod_p) / (1 - alphas_prod)
posterior_log_variance_clipped = torch.log(torch.cat((posterior_variance[1].view(1, 1),␣
→˓posterior_variance[1:].view(-1, 1)), 0)).view(-1)

def q_posterior_mean_variance(x_0, x_t, t):
coef_1 = extract(posterior_mean_coef_1, t, x_0)
coef_2 = extract(posterior_mean_coef_2, t, x_0)
mean = coef_1 * x_0 + coef_2 * x_t
var = extract(posterior_log_variance_clipped, t, x_0)
return mean, var

The U-Net model is imported in the next cell, and the model is trained for 1,000 iterations.

[ ]: from model import ConditionalModel
from ema import EMA
import torch.optim as optim

model = ConditionalModel(num_steps)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
# Create EMA model
ema = EMA(0.9)

(continues on next page)
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(continued from previous page)

ema.register(model)
# Batch size
batch_size = 128

# training
for t in range(1000):

# X is a torch Variable
permutation = torch.randperm(dataset.size()[0])
for i in range(0, dataset.size()[0], batch_size):

# Retrieve current batch
indices = permutation[i:i+batch_size]
batch_x = dataset[indices]
# Compute the loss
loss = noise_estimation_loss(model, batch_x,alphas_bar_sqrt,one_minus_alphas_bar_

→˓sqrt,num_steps)
# Before the backward pass, zero all of the network gradients
optimizer.zero_grad()
# Backward pass: compute gradient of the loss with respect to parameters
loss.backward()
# Perform gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
# Calling the step function to update the parameters
optimizer.step()
# Update the exponential moving average
ema.update(model)

# Print loss
if (t % 250==0) or (t==999):

print('Iteration:', t)
x_seq = p_sample_loop(model, dataset.shape,num_steps,alphas,betas,one_minus_

→˓alphas_bar_sqrt)
fig, axs = plt.subplots(1, 10, figsize=(24, 3))
for i in range(1, 11):

cur_x = x_seq[i * 10].detach()
axs[i-1].scatter(cur_x[:, 0], cur_x[:, 1],color='white',edgecolor='gray',␣

→˓s=5);
axs[i-1].set_axis_off();
axs[i-1].set_title('$q(\mathbf{x}_{'+str(i*10)+'})$')

Iteration: 0
Iteration: 250
Iteration: 500
Iteration: 750
Iteration: 999
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The gif image of the reverse diffusion process is shown below.

Figure: Animation of the reverse diffusion process.

U-Net Model for Reverse Diffusion

A U-Net model is used for the reverse diffusion phase. U-Net is a popular deep learning network for image segmen-
tation. The name is due to the architecture that looks like the letter U. U-Net includes an encoder sub-network that
extracts lower-dimensional representations, and a decoder sub-network that reconstructs the representations to full size
images. I.e., the encoder first downsamples the input image (reducing its size), and afterward the decoder upsamples
the representations to the size of the original image. Another important part of U-Net are the skip connections which
connect the feature maps from the encoder to the decoder, and help with the gradient flow. When U-Net is used for
image segmentation, the inputs are images, and the outputs are segmentation masks that segment the objects in the
input images.
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Figure: U-Net network.

In diffusion models, input to U-Net is a noisy image 𝑥𝑡 at a particular time step 𝑡, and output by the model is the noise
that has been added to the image in the previous time step of the forward diffusion process. By subtracting the predicted
noise 𝜖𝑡 from the input image 𝑥𝑡, the result is a denoised image 𝑥𝑡−1 at the previous time step. By repeating this process
for every time step 𝑡 from the final step 𝑇 to the initial step 0, the model learns how to gradually create slightly less
denoised images at each step. The final output for time step 0 is a fully denoised image 𝑥0.

7.22.4 22.4 Text Encoder

To generate images based on a text prompt, text-to-image models employ text embeddings from a Language Model. In
particular, the model CLIP (Contrastive Language Image Pretraining) has been used by several of these models.

CLIP employs a Transformer Network architecture. It is trained on a dataset of images and image captions, with an
objective to match the text in image captions to the content in the corresponding images.
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Figure: Images and captions dataset.

CLIP has an image encoder and a text encoder sub-network (shown in the figure). The two encoders convert the input
pairs of images and image captions into image embeddings and text embeddings, respectively. During training, the
model learns to group together image and text embeddings that belong to the same object. By repeating the training
over a large dataset of images and image captions, the model updates the weights of the image and text encoders so that
they output predictions that match the caption text and image content for the objects in the training dataset.

Figure: CLIP model.

7.22.5 22.5 Latent Diffusion Models

Latent Diffusion Models apply the diffusion process to a compressed image representation in a lower-dimensional
space, instead of applying the diffusion process to the raw high-dimensional images. The lower-dimensional space is
called latent space, hence the name for these models. Stable Diffusion is a Latent Diffusion Model.

The key advantage of Latent Diffusion Models is computational efficiency, due to processing small-size image repre-
sentations. For instance, Stable Diffusion is trained on images of size 512x512 pixels, whereas the size of the image
representations in the latent space is 64x64 pixels. Another advantage of performing the diffusion process in the latent
space instead of the pixel space, is producing diverse images that preserve the semantic structure of the data.

An annotated figure of a Latent Diffusion Model is shown in the next figure. The components of the model are described
next.
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Figure: Latent diffusion model.

Perceptual Compression

The input image to the model 𝑥 is shown in the upper left corner. The input image is in the pixel space, i.e., it consists
of raw pixels. During the perceptual compression step, the image is projected into the latent space. For this step, an
Encoder network ℰ is employed to produce a lower-dimensional representation of the input image 𝑧 that has smaller
dimensions.

Forward Diffusion Step

Forward diffusion process is applied to the latent representation of the image 𝑧, by applying steps of gradually corrupting
the image with Gaussian noise. The output of the forward diffusion step is a noise-corrupter image 𝑧𝑇 .

Semantic Compression

This step corresponds to the right-hand block in the figure, and typically employs a Language Model to capture the
semantic structure in text and images. An example is the use of the image-caption CLIP model from the previous
section. This model encodes the text prompt by the user into a compressed representation, denoted 𝜏𝜃 in the figure.
This compressed representation of the user’s prompt is used during the reverse diffusion step to control the visual
content generated by the model and to guide the image generation process in order to ensure that the content in the
denoised image corresponds to the text prompt.
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Reverse Diffusion Step

The reverse diffusion step takes noisy images 𝑧𝑇 and gradually removes the noise to generate clean images 𝑧. As we
mentioned, a U-Net model is typically employed for learning the denoising process. The reverse diffusion process is
conditioned on the text representation 𝜏𝜃 from the pretrained CLIP transformer model. I.e., conditioning the reverse
diffusion means that the model guides the denoising process by mapping the compressed text representations to the
intermediate layers of the U-Net via cross-attention layers. The cross-attention layers are similar to the self-attention
mechanism in Transformer Networks, and they learn a set of Q (queries), K (keys), and V (values) matrices. The U-Net
network also has added positional encodings into each block, which specify the diffusion timestep 𝑡.

High-resolution Image Decoder

The obtained latent vector 𝑧 is finally passed through a Decoder network 𝒟 to increase the resolution back to the size of
the original image. I.e., the resulting image representation in the latent space is 64x64 pixels, and the decoder recovers
it to a high-resolution image with 512x512 pixels size in the pixel space. The generated image is denoted �̃� in the
figure.

7.22.6 22.6 Generating Images with Stable Diffusion

The Stable Diffusion model trained by Stability.AI is available at Hugging Face. Let’s use this model to generate
images. Note that in the above code in Section 22.2 we used an implementation of Stable Diffusion by Keras.

To use this model requires to login at Hugging Face and obtain a token. After that, you can simply download the
diffusers and transformers packages, and provide text prompts to generate images.

[ ]: !pip install -q huggingface-hub

from huggingface_hub import notebook_login
notebook_login()

VBox(children=(HTML(value='<center> <img\nsrc=https://huggingface.co/front/assets/
→˓huggingface_logo-noborder.sv...

[ ]: !pip install -qq -U diffusers transformers accelerate

[ ]: from diffusers import StableDiffusionPipeline
import torch

# set up the pipeline to generate images
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision=
→˓"fp16", torch_dtype=torch.float16).to('cuda')

prompt = "a photograph of an astronaut riding a horse"
# generate an image for the above prompt
pipe(prompt).images[0]

/usr/local/lib/python3.10/dist-packages/diffusers/pipelines/pipeline_utils.py:267:␣
→˓FutureWarning: You are loading the variant fp16 from CompVis/stable-diffusion-v1-4 via␣
→˓`revision='fp16'`. This behavior is deprecated and will be removed in diffusers v1.␣
→˓One should use `variant='fp16'` instead. However, it appears that CompVis/stable-
→˓diffusion-v1-4 currently does not have the required variant filenames in the 'main'␣
→˓branch.
The Diffusers team and community would be very grateful if you could open an issue:␣
→˓https://github.com/huggingface/diffusers/issues/new with the title 'CompVis/stable-
→˓diffusion-v1-4 is missing fp16 files' so that the correct variant file can be added.

(continues on next page)
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warnings.warn(
vae/diffusion_pytorch_model.safetensors not found

Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]

/usr/local/lib/python3.10/dist-packages/transformers/models/clip/feature_extraction_clip.
→˓py:28: FutureWarning: The class CLIPFeatureExtractor is deprecated and will be removed␣
→˓in version 5 of Transformers. Please use CLIPImageProcessor instead.
warnings.warn(

`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The␣
→˓value `text_config["id2label"]` will be overriden.
`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The␣
→˓value `text_config["bos_token_id"]` will be overriden.
`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The␣
→˓value `text_config["eos_token_id"]` will be overriden.

0%| | 0/50 [00:00<?, ?it/s]

[ ]: prompt = "a cute magical flying dog, fantasy art, golden color, high quality, highly␣
→˓detailed, elegant, sharp focus," \

"concept art, character concepts, digital painting, mystery, adventure"
(continues on next page)
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# generate an image for the above prompt
pipe(prompt).images[0]

0%| | 0/50 [00:00<?, ?it/s]

The results from text-to-image models can vary based on the text prompt. Prompt engineering involves customizing
the text prompts to influence the generated images. Examples of prompt engineering include specifying the painting
style of the image type, lighting, focus, etc.
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7.22.7 Appendix

The material in the Appendix is not required for quizzes and assignments.

Interpolation Between Prompts

Text-to-image models can be used to interpolate between the embedding representations of different text prompts. This
is referred to as latent space walking or latent space exploration because the model samples data points in the latent
space and incrementally changes the latent representation to reach from one text prompt to another text prompt.

One application is shown below, where each sampled point is saved as a frame, and a gif animation is created that
shows the latent space walking between two prompts.

[ ]: # Code from: https://github.com/svpino/stable-diffusion/blob/main/stable-diffusion.ipynb

PROMPT1 = "a ford truck"
PROMPT2 = "an electric car"

# number of interpolation steps between the two text prompts
INTERPOLATION_STEPS = 42

# number of frames per second
FRAMES_PER_SECOND = 10

# number of diffusion steps
DIFFUSION_STEPS = 25

# name of the file
ANIMATION_FILENAME = "animation.gif"

SEED = 42

[ ]: import tensorflow as tf
from PIL import Image

# random noise patch
noise = tf.random.normal((512 // 8, 512 // 8, 4), seed=SEED)

# encoded vectors for the two text prompts
encoding1 = tf.squeeze(model.encode_text(PROMPT1))
encoding2 = tf.squeeze(model.encode_text(PROMPT2))

# generate the interpolation steps between the two encoded prompts
interpolated_encodings = tf.linspace(encoding1, encoding2, INTERPOLATION_STEPS)

# split the encodings into batches
batch_size = 3
batches = INTERPOLATION_STEPS // batch_size
encodings = tf.split(interpolated_encodings, batches)

animation = []
for batch in range(batches):

# generate images
(continues on next page)
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images = model.generate_image(
encodings[batch],
batch_size=batch_size,
num_steps=DIFFUSION_STEPS,
diffusion_noise=noise,

)

# add the images to the animation
animation.extend(map(lambda image: Image.fromarray(image), images))

def export_as_gif(images, filename, frames_per_second=10):
"""
Exports the supplied images as a GIF animation.
"""
images += images[2:-1][::-1]
images[0].save(filename, save_all=True, append_images=images[1:],

duration=1000 // frames_per_second, loop=0)

# Export the animation as a GIF and display it on the screen.
export_as_gif(animation, ANIMATION_FILENAME, frames_per_second=FRAMES_PER_SECOND)

25/25 [==============================] - 42s 2s/step
25/25 [==============================] - 43s 2s/step
25/25 [==============================] - 43s 2s/step
25/25 [==============================] - 43s 2s/step
25/25 [==============================] - 43s 2s/step
25/25 [==============================] - 44s 2s/step
25/25 [==============================] - 44s 2s/step
25/25 [==============================] - 44s 2s/step
25/25 [==============================] - 44s 2s/step
25/25 [==============================] - 44s 2s/step
25/25 [==============================] - 44s 2s/step
25/25 [==============================] - 44s 2s/step
25/25 [==============================] - 44s 2s/step
25/25 [==============================] - 44s 2s/step

Figure: Latent space walking from a Ford truck to an electric car.

7.22.8 References

1. High-performance image generation using Stable Diffusion in KerasCV, available at https://keras.io/guides/
keras_cv/generate_images_with_stable_diffusion/.

2. Diffusion Models Made Easy, J. Rafid Siddiqui, available at https://towardsdatascience.com/
diffusion-models-made-easy-8414298ce4da.

3. How Diffusion Models Work: The Math From Scratch, available at https://theaisummer.com/diffusion-models/.

4. The Illustrated Stable Diffusion, Jay Alammar, available at https://jalammar.github.io/
illustrated-stable-diffusion/.

5. What are Stable Diffusion Models and Why are they a Step Forward for Im-
age Generation?, J. Rafid Siddiqui, available at https://towardsdatascience.com/
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7.23.1 23.1 Introduction to LLMs

Large Language Models (LLMs) are a class of Deep Neural Networks designed to understand and generate natural
human language. These models have achieved state-of-the-art performance across various NLP tasks.

LLMs are a result of many years of research and advancement in NLP and Machine Learning. Important phases in the
development include:

• Statistical language models (1980s-2000s): developed to predict the probability of a word in a text sequence
based on the preceding words. Examples of statistical language models include bag-of-words models based on
N-grams. These models were used in tasks like speech recognition and machine translation, but struggled with
capturing long-range dependencies and context-related information in text.

• Neural network models (2000-2017): fully-connected NNs and recurrent NNs emerged as an alternative to sta-
tistical language models. Long Short-Term Memory (LSTM) RNN models were used for sequence-to-sequence
tasks like machine translation and they formed the basis for several early LLMs. Similar to statistical language
models, RNNs struggled with capturing context-related information, and other limitations of RNNs include the
inability to parallelize the data processing, and the gradients can become unstable during training.
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• Transformer network models (2017-present): Transformer architecture introduced the self-attention mechanism
as a replacement for the recurrent layers in RNNs. This breakthrough enabled the development of more powerful
and efficient LLMs, laying the foundation for BERT, GPT, and modern LLMs.

23.1.1 Architecture of Large Language Models

The architecture of LLMs is based on Transformer Networks, which we covered in Lecture 20. The main components
of the Transformer Networks architecture include:

• Input embeddings, are fixed-size continuous vector embeddings that represent tokens in input text.

• Positional encodings, are fixed-size continuous vectors that are added to the input embeddings to provide infor-
mation about the relative positions of the tokens in the input text sequence.

• Encoder, is composed of a stack of multi-head attention modules and fully-connected (feed-forward) modules.
The encoder block also includes dropout layers, residual connections, and applies layer normalization.

• Decoder, is composed of a stack of multi-head self-attention modules and fully-connected (feed-forward) mod-
ules similarly to the encoder block. The decoder block has an additional masked multi-head attention module,
that applies masking to the next words in the text sequence to ensure that the module does not have access to
those words for predicting the next token.

• Output fully-connected layer, the output of the decoder is passed through a fully-connected (dense, linear) layer
to produce the next token in the text sequence.

Figure: Pretraining LLMs. Source: [2].
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The architecture of Transformer Networks includes multiple successive encoder and decoder blocks to create deep
networks with many layers that allow learning complex patterns in input text. For example, the original Transformer
Network has 6 encoder and 6 decoder blocks, as shown in the above figure.

The self-attention mechanism is a key component of the Transformer Network architecture that enables the model
to weigh the importance of each token with respect to the other tokens in a sequence. It allows to capture long-range
dependencies and relationships between the tokens (words) and helps the model to understand the context and structure
of the input text sequence.

23.1.2 Variants of Transformer Network Architectures

Various LLMs have been built on top of the Transformer Network architecture. The popular variants include:

• Decoder-only models: are autoregressive models that utilize only the decoder part of the Transformer Network
architecture. These models are particularly suitable for generating text and content. An example of decoder-only
LLMs is the family of GPT models.

• Encoder-only models: use only the encoder part of the Transformer Network architecture, and perform well on
tasks related to language understanding, such as classification and sentiment analysis. An example is the BERT
model.

• Encoder-decoder models: employ the original Transformer Network architecture and combine encoder and
decoder sub-networks, enabling to both understand language and generate content. These models can be used
for various NLP tasks with minimal task-specific modifications. An example of this class of models is T5 (Text-
to-Text Transfer Transformer).

List of LLMs

A large number of LLMs were developed in the past several years. Some of the most well-known LLMs include:

• GPT (Generative Pretrained Transformers): Developed by OpenAI, the GPT family are the best-known LLMs.
They include GPT 1, 2, 3, 3.5 (initial ChatGPT), and 4 (current ChatGPT). According to some sources, GPT-4
has 1.76 trillion parameters, and it is trained on 13T tokens.

• BERT (Bidirectional Encoder Representations from Transformers): Developed by Google in 2018, BERT is an
early LLM with 340M parameters that can understand natural language and answer questions.

• LlaMA (Large Language Model Meta AI): Developed by Meta AI, LlaMA is an open-source LLM, which can
be used for both research and commercial uses. It consists of several models including LlaMA base model,
LlaMA-Chat, and Code-LlaMA. LlaMA 2 includes models with 7B, 13B, and 70B parameters, trained on 2T
tokens.

• Falcon: Developed by UAE’s Technology Innovation Institute (TII), it is an open-source family of models with
1.3B, 7.5B, 40B, and 180B parameters, trained on 3.5T tokens.

• Bard, developed by Google, Bard is an LLM with 137B parameters trained on 1.56T tokens, that is based on the
LaMDA model.

• Claude: developed by Anthropic AI, Claude is an LLM with 137B parameters.

• PaLM (Pathways Language Model): Developed by Google, PaLM is an LLM with 540B parameters capable of
common-sense and arithmetic reasoning, code generation, and translation. It was trained on 3.6T tokens.

• Cohere LLM: Developed by Cohere, it is a family of LLMs with 6B, 13B, and 52B parameters, designed for
enterprise use cases.

• Vicuna: Developed by LMSYS, Vicuna is a 13B parameters chat assistant finetuned from LLaMA on user-shared
conversations.

• Alpaca: Developed by Stanford, it is an LLM finetuned from instruction-following samples by LLaMA.

7.23. Lecture 23 - Large Language Models 705



Fall 2023 Python Programming for Data Science, Release 0.1

• Dolly: Developed by Databricks, it is an open-source instruction-following LLM language model with 12B
parameters.

7.23.2 23.2 Creating LLMs

Creating modern LLMs such as ChatGPT or LlaMA 2, typically involves three main phases:

1. Pretraining, the model extracts knowledge from large unlabeled text datasets.

2. Supervised finetuning, the model is refined to improve the quality of generated responses.

3. Alignment, the model is further refined to generate safe and helpful responses that are aligned with human
preferences.

23.2.1 Pretraining

The first step in creating LLMs is pretraining the model on massive amounts of text data. The datasets usually consist
of a large collection of web pages or e-books comprising billions or trillions of tokens, and ranging from gigabytes to
terabytes of text. During pretraining, the model learns the structure of the language, grammar rules, facts about the
world, and reasoning abilities. And, it also learns biases and harmful content present in the training data.

Pretraining is performed using unsupervised learning techniques. Two common approaches for pretraining LLMs are:

• Causal Language Modeling, also known as autoregressive language modeling, involves training the model to
predict the next token in the text sequence given the previous tokens. This approach is used for pretraining
ChatGPT, LlaMA 2, and it is more common with modern LLMs.

• Masked Language Modeling, where a certain percentage of the input tokens are randomly masked, and the
model is trained to predict the masked tokens based on the surrounding context. BERT and earlier LLMs were
pretrained with masked language modeling.

The following figure depicts the pretraining phase with Causal Language Modeling, where the model learns to predict
the next word in a sentence given the previous words.

Figure: Pretraining LLMs. Source: [3].

Pretraining allows to extract knowledge from very large unlabeled datasets in unsupervised learning manner, without
the need for manual labeling. Or, to be more precise, the “label” in LLMs pretraining is the next word in the text, to
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which we already have access since it is part of the training text. Such pretraining approach is also called self-supervised
training, since the model uses each next word in the text to self-supervise the training.

Note that pretraining LLMs from scratch is computationally expensive and time-consuming. As we stated before,
the pretraining phase can cost millions of dollars (e.g., the estimated cost for training GPT-4 is $100 million). Also,
pretraining LLMs requires access to large datasets and technical expertise with strong understanding of deep learning
workflows, working with distributed software and hardware, and managing model training with thousands of GPUs
simultaneously.

23.2.2 Supervised Finetuning

After the pretraining phase, the model is finetuned on a much smaller dataset, which is carefully generated with human
supervision. This dataset consists of samples where AI trainers provide both queries (instructions) and model responses
(outputs), as depicted in the following figure. That is, instruction is the input text given to the model, and output is the
desired response by the model. The model takes the instruction text as input (e.g., “Write a limerick about a pelican”)
and uses next-token prediction to generate the output text (e.g., “There once was a pelican so fine . . . ”).

The finetuning process involves updating the model’s weights using supervised learning techniques. The objective of
supervised finetuning is to improve the quality of the generated responses by the pretrained LLM.

To compile datasets for supervised finetuning, AI trainers need to write the desired instructions and responses, which
is a laborious process. Typical datasets include between 1K and 100K instruction-output pairs. Based on the provided
instruction-output pairs, the model is finetuned to generate responses that are similar to those provided by AI trainers.

Figure: Finetuning a pretrained LLM. Source: [3].

23.2.3 Alignment with Reinforcement Learning from Human Feedback (RLHF)

To further improve the performance and align the model responses with human preferences, LLMs are typically refined
in one additional phase with Reinforcement Learning from Human Feedback (RLHF). This process is depicted in
the figure below and involves the following steps:

1. Collect human feedback. For this step a new dataset is created by collecting sample prompts from a database or
by creating a set of new prompts. For each prompt, multiple responses are generated by the supervised finetuned
model. Next, AI trainers are asked to rank by quality all responses generated by the model for the same prompt,
from best to worst. Such feedback is used to define the human preferences and expectations about the responses
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by the model. Although this ranking process is time-consuming, it is usually less labor-intensive than creating
the dataset for supervised finetuning, since ranking the responses is faster than writing the responses.

2. Create a reward model. The collected data with human feedback containing the prompts and the ranking scores
of the different responses is used to train a Reward Model (denoted with RM in the figure). The task for the
Reward Model is to predict the quality of the different responses to a given prompt and output a ranking score.
The ranking scores provided by AI trainers are used to establish the ground-truth for training the Reward Model.
Note that the Reward Model is a different model than the LLM that is being finetuned, and it only needs to rank
the generated responses by the LLM.

3. Finetune the LLM with RL. The LLM is finetuned using a Reinforcement Learning (RL) algorithm, and for
this step typically the Proximal Policy Optimization (PPO) algorithm is used. For a new prompt, the original
LLM generates a response, which the Reward Model evaluates and calculates a reward score 𝑟𝑘. Next, the PPO
algorithm uses the reward score 𝑟𝑘 to finetune the LLM so that the total rewards for the generated responses by
the LLM are maximized. I.e., the goal is to generate responses by the LLM that maximize the predicted reward
scores, and by that, the responses become more aligned with human preferences and are more useful to human
users.

4. Iterative improvement. The RLHF process is performed iteratively, with multiple rounds of collecting additional
feedback from human labelers, re-training the Reward Model, and applying Reinforcement Learning. This leads
to continuous refinement and improvement of the LLM’s performance.

Figure: Reinforcement Learning from Human Feedback. Source: [4].

In summary, the RLHF approach creates a reward system that is augmented by human feedback and is used to teach
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LLMs which responses are more aligned with human preferences. Through these iterations, LLMs can be better aligned
with our human values and can lead to higher-quality responses, as well as improved performance on specific tasks.

RLHF has been successfully applied to finetune models like ChatGPT and LlaMA models. Note also that there are
several variants of the RLFH approach for finetuning LLMs. For example, LlaMA 2 employs two reward models: one
based on the ranks of helpfulness of the responses, and another based on the ranks of safety of the responses. The final
reward score is obtained as a combination of the helpfulness and safety scores.

7.23.3 23.3 Finetuning LLMs

Finetuning LLMs involves updating the weights of an LLM model on new data to improve its performance on a specific
task and make the model more suitable for a specific use case. It involves additional re-training of the model on a new
dataset that is specific to that task. That is, finetuning is a transfer learning technique, where the gained knowledge by
a trained model is transfered to improve the performance on a target task.

To adapt LLMs to a custom task, different finetuning techniques have been applied. Full model finetuning is a method
that finetunes all the parameters of all the layers of a pretrained model. Full model finetuning typically can achieve
the best performance, but it is also the most resource-intensive and time-consuming. Performance-efficient finetuning
involves updating only a small number of the parameters to reduce the required computational resources and costs.

In this section, we will demonstrate how to finetune LlaMA 2 (Large Language Model Meta AI 2), which is an open-
source LLM developed by Meta AI. Released in July 2023, LlaMA 2 was the first LLM that is open for both research
and commercial use. LlaMA 2 is a successor model to the original LlaMA developed by Meta AI as well. LlaMA 2 has
three variants with 7B, 13B, and 70B parameters. It has been trained on 2 trillion tokens, and it has a context window
of 4,096 tokens enabling to process large documents. For instance, for the task of summarizing a pdf document the
context can include the entire text of the pdf document, or for dialog with a chatbot the context can include the previous
conversation history with the chatbot.

Furthermore, several specialized versions of LlaMA 2 were recently released, including LlaMA-2-Chat optimized for
dialog generation, and Code LlaMA optimized for code generation tasks.

23.3.1 Parameter-Efficient Finetuning (PEFT)

Finetuning LLMs is challenging since the large number of parameters of modern LLMs requires substantial computa-
tional resources for storing the models and for re-training the wights. Thus, it can be prohibitively expensive for most
users. For instance, to load the largest version of the LLaMA 2 model with 70 billion parameters into the GPU memory
requires approximately 280 GB of RAM. Full model finetuning of LlaMA 2 model with 70 billion parameters requires
780 GB of GPU memory. This is equivalent to 10 A100s GPUs that have 80 GB RAM each, or 48 T4 GPUs that have
16 GB RAM each. The free version of Google Colab offers one T4 GPU with 16 GB RAM.

Fortunately, several Parameter-Efficient FineTuning (PEFT) techniques have been introduced recently, which allow
updating only a small number of the model weights. Consequently, these techniques enable finetuning LLMs using
lower computational resources by reducing memory usage and speeding up the training process. PEFT techniques
include prompt tuning, prefix tuning, adding additional adapter layers in the transformer block, and low-rank adaptation
(LoRA). Among these techniques, LoRA finetuning has been the most popular, since it allows to train LLMs with a
single GPU.

Hugging Face has developed a PEFT library that contains implementations of common finetuning techniques, such as
weight quantization, LoRA, QLoRA, prefix tuning, and others. We will use the PEFT library to finetune LlaMA 2 on
a custom dataset.
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23.3.2 Low-Rank Adaptation (LoRA)

Low-Rank Adaptation (LoRA) involves freezing the pretrained model and finetuning a small number of additional
weights. After the additional weights are updated, these weights are merged with the weights of the original model.

This is depicted in the following figure, where regular finetuning is shown in the left figure, and it involves updating
all weights 𝑊 in a pretrained model. As we know, the weight update matrix ∇𝑊 is calculated based on the negative
gradient of the loss function. Finetuning with LoRA is shown in the right figure, where the weight update matrix ∇𝑊
is decomposed into two smaller matrices, ∇𝑊 = 𝑊𝐴 *𝑊𝐵 , with size 𝑊𝐴 ∈ R𝐴×𝑟 and 𝑊𝐵 ∈ R𝑟×𝐵 . The matrices
𝑊𝐴 and𝑊𝐵 are called low-rank adapters, since they have lower rank 𝑟 in comparison to the original weight matrix, i.e.,
they have fewer number of columns or rows, respectively. During training, gradients are backpropagated only through
the matrices 𝑊𝐴 and 𝑊𝐵 , while the pretrained weights 𝑊 remain frozen.

For instance, if the full weight matrix 𝑊 is of size 100× 100, this is equal to 10, 000 elements (model weights). If we
decompose the weight update matrix ∇𝑊 by using rank 𝑟 = 5, the total number of elements of 𝑊𝐴 ∈ R100×5 and
𝑊𝐵 ∈ R5×100 will be 500 + 500 = 1, 000. Hence, with LoRA the number of elements was reduced from 10, 000 to
1, 000.

Figure: Regular finetuning versus LoRA finetuning . Source: [5].

23.3.3 Quanitized LoRA (QLoRA)

Quanitized LoRA (QLoRA) is a modified version of LoRA that uses 4-bit quantized weights. Quantization reduces
the precision for the values of the network weights. In TensorFlow and PyTorch, the network weights by default are
stored with 32-bit floating-point precision. With quantization techniques, the network weights are stored with lower
precision, such as 16-bit, 8-bit, or 4-bit precision.

QLoRA introduces a new 4-bit quantization format called “nf4” (normalized float 4) where the range of values is
normalized to the range [-1, 1] by dividing the values evenly into 16 bins (4-bit allows 24 = 16 values). While 4-
bit floating point precision (fp4) applies non-linear floating point representation of the original values and results in
unequal spacing of the values, normalized float 4 precision (nf4) applies linear quantization of the original values into
equaly spaced bins and follows a normal distribution.
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In addition, QLoRA combines 4-bit quantization of the model weights in the pretrained model and LoRA that adds
low-rank adaptor layers. The benefits of QLoRA with 4-bit quantization of the model weights include reduced size of
the model and increased inference speed, while having a modest decrease in the overall model performance.

For example, with QLoRA a 70B parameter model can be finetuned with 48 GB VRAM, in comparison to 780 GB
VRAM required for finetuning all weights of the original model (using 32-bit floating-point precision). Similarly,
QLoRA enables to train the smaller version of LlaMA 2 with 7B parameters on a T4 GPU (provided by Google Colab)
that has 16 GB VRAM. In cases when only a single GPU is available, using quantization is necessary for finetuning
LLMs.

23.3.4 Finetuning Example: Finetuning LlaMA-2 7B

Import Libraries

We will begin by installing the required libraries and importing modules from these packages. These include
accelerate (for optimized training on GPUs), peft (for Parameter-Efficient Fine-Tuning), bitsandbytes (to quan-
tize the LlaMA model to 4-bit precision), transformers (for working with Transformer Networks), and trl (for
supervised finetuning, where trl stands for Transformer Reinforcement Learning).

[ ]: !pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0␣
→˓trl==0.4.7

244.2/244.2 kB 4.8 MB/s eta 0:00:00
72.9/72.9 kB 11.3 MB/s eta 0:00:00
92.5/92.5 MB 19.7 MB/s eta 0:00:00
7.4/7.4 MB 106.8 MB/s eta 0:00:00
77.4/77.4 kB 10.4 MB/s eta 0:00:00
1.3/1.3 MB 81.1 MB/s eta 0:00:00
311.7/311.7 kB 37.3 MB/s eta 0:00:00
7.8/7.8 MB 108.6 MB/s eta 0:00:00
521.2/521.2 kB 60.7 MB/s eta 0:00:00
115.3/115.3 kB 17.2 MB/s eta 0:00:00
134.8/134.8 kB 20.7 MB/s eta 0:00:00

[ ]: import os
import torch
from datasets import load_dataset
from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig,

HfArgumentParser, TrainingArguments, pipeline, logging)
from peft import LoraConfig, PeftModel, get_peft_model
from trl import SFTTrainer

Load the Model

We will download the smallest version of LlaMA-2-Chat model with 7B parameters from Hugging Face. Understand-
ably, the larger LlaMA 2 models with 13B and 70B parameters require larger memory and computational resources for
finetuning.

Also, we will use the BitsAndBytes library to apply quantization with 4-bit precision format for loading the model
weights. Loading a quantized model reduces the GPU memory requirement and makes it possible to train the model
with a single GPU, as a tradeoff for some loss in precision. In the next cell we define the configuration for BitsAndBytes,

7.23. Lecture 23 - Large Language Models 711



Fall 2023 Python Programming for Data Science, Release 0.1

and afterward we will use the configuration in the from_pretrained function to load the LlaMA 2 model. The
parameters in BitsAndBytes configuration are described in the commented code below.

The compute type can be either “float16”, “bfloat16”, or “float32” because computations are performed in either 16
or 32-bit precision. In this case, we specified to use "torch. float16" compute data type (i.e., 16-bit floating-
point numbers) for memory-saving purposes. Note that although the model weights are loaded with 4-bit precision,
the weights are dequantized to 16-bit precision for performing the calculations for the forward and backward passes
through the network, as 4-bit precision is too low for performing the calculations.

[ ]: # The model is Llama 2 from the Hugging Face hub
model_name = "NousResearch/Llama-2-7b-chat-hf"

[ ]: # BitsAndBytes configuraton
bnb_config = BitsAndBytesConfig(

# Load the model using 4-bit precision
load_in_4bit=True,
# Quantization type (fp4 or nf4)
# nf4 is "normalized float 4" format, uses a symmetric quantization scheme with 4-

→˓bit precision
bnb_4bit_quant_type="nf4",
# Compute dtype for 4-bit models
bnb_4bit_compute_dtype= torch.float16,
# Use double quantization for 4-bit models
# Double quantization applies further quantization to the quantization constants
bnb_4bit_use_double_quant=False,

)

We will use AutoModelForCausalLM to load the model with the from_pretrained function, and we will use the
above BitesAndBytes configuration to load the model parameters with 4-bit precision.

In the following cell we will load the corresponding tokenizer for LlaMA 2 by using AutoTokenizer and
from_pretrained.

[ ]: # Load Llama 2 model from Hugging Face
model = AutoModelForCausalLM.from_pretrained(

model_name,
# Apply quantization by using the bnb configuration from the previous cell
quantization_config=bnb_config,
# Don't cache the model weights, load the model weights from Hugging Face
use_cache=False,
# Trade-off parameter in Llama-2, less important, it should be 1 in most cases
pretraining_tp=1,
# Load the entire model on the GPU if available
device_map="auto"

)

(...)ma-2-7b-chat-hf/resolve/main/config.json: 0%| | 0.00/583 [00:00<?, ?B/s]

(...)esolve/main/model.safetensors.index.json: 0%| | 0.00/26.8k [00:00<?, ?B/
→˓s]

Downloading shards: 0%| | 0/2 [00:00<?, ?it/s]

model-00001-of-00002.safetensors: 0%| | 0.00/9.98G [00:00<?, ?B/s]

model-00002-of-00002.safetensors: 0%| | 0.00/3.50G [00:00<?, ?B/s]
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Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]

(...)t-hf/resolve/main/generation_config.json: 0%| | 0.00/179 [00:00<?, ?B/s]

[ ]: # Load tokenizer from Hugging Face
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Needed for LLaMA tokenizer
tokenizer.pad_token = tokenizer.eos_token
# Fix an overflow issue with fp16 training
tokenizer.padding_side = "right"

(...)at-hf/resolve/main/tokenizer_config.json: 0%| | 0.00/746 [00:00<?, ?B/s]

tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s]

(...)2-7b-chat-hf/resolve/main/tokenizer.json: 0%| | 0.00/1.84M [00:00<?, ?B/
→˓s]

(...)b-chat-hf/resolve/main/added_tokens.json: 0%| | 0.00/21.0 [00:00<?, ?B/s]

(...)-hf/resolve/main/special_tokens_map.json: 0%| | 0.00/435 [00:00<?, ?B/s]

Define LoRA Configuration

Next, the model will be packed into the LoRA format, which will introduce additional weights and keep the original
weights frozen. The parameters in the LoRA configuration include:

• r, determines the rank of update matrices, where lower rank results in smaller update matrices with fewer train-
able parameters, and greater rank results in more trainable parameters but more robust model.

• lora_alpha, controls the LoRA scaling factor.

• lora_dropout, is the dropout rate for LoRA layers.

• bias, specifies if the bias parameters should be trained.

• task_type, is Causal LLM for the considered task.

[ ]: # LoRA configuration
peft_config = LoraConfig(

# LoRA rank dimension
r=64,
# Alpha parameter for LoRA scaling
lora_alpha=16,
# Dropout rate for LoRA layers
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",

)

In order to understand how LoRA impacts the finetuning of LlaMA 2 model, let’s compare the total number of trainable
parameters in LLaMA 2 and the trainable parameters for the LoRA model. As we can note in the cell below, the LoRA
model has about 33M trainable parameters, which is about 1% of the total trainable parameters in LlaMA 2. This
makes it possible to finetune the model on a single GPU.
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[ ]: def print_number_of_trainable_model_parameters(model, use_4bit=True):
trainable_model_params = 0
all_model_params = 0
for _, param in model.named_parameters():

all_model_params += param.numel()
if param.requires_grad:

trainable_model_params += param.numel()
if use_4bit:

all_model_params *= 2
trainable_model_params *= 2

print(f"Total model parameters: {all_model_params:,d}. Trainable model parameters:
→˓{trainable_model_params:,d}. Percent of trainable parameters: {100 * trainable_model_
→˓params/ all_model_params:4.2f} %")

[ ]: # compare the number of trainable parameters to QLoRA model
qlora_model = get_peft_model(model, peft_config)

# print trainable parameters
print_number_of_trainable_model_parameters(qlora_model)

Total model parameters: 7,067,934,720. Trainable model parameters: 67,108,864. Percent␣
→˓of trainable parameters: 0.95 %

Load the Dataset

We will use the Lamini docs dataset, which contains questions and answers about the framework Lamini for training
and developing Language Models. The dataset contains 1,260 question/answer pairs. Here are a few samples from the
dataset.

Question Answer
Does Lamini support generating
code

Yes, Lamini supports generating code through its API.

How do I report a bug or issue with
the Lamini documentation?

You can report a bug or issue with the Lamini documentation by submitting
an issue on the Lamini GitHub page.

Can Lamini be used in an online
learning setting, where the model
is updated continuously as new
data becomes available?

It is possible to use Lamini in an online learning setting where the model is
updated continuously as new data becomes available. However, this would
require some additional implementation and configuration to ensure that the
model is updated appropriately and efficiently.

A preprocessed version of the dataset in a format that matches the instruction-output pairs for LlaMA 2 is available on
Hugging Face, and we will directly load the preprocessed version of the dataset.

[ ]: # Lamini dataset
dataset = load_dataset("mwitiderrick/llamini_llama", split="train")

Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]

Downloading data: 0%| | 0.00/1.14M [00:00<?, ?B/s]

Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]

Generating train split: 0 examples [00:00, ? examples/s]
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[ ]: print(f'Number of prompts: {len(dataset)}')

Number of prompts: 1260

Model Training

The next cell defines the training arguments, and the commented notes describe the arguments. Note that we will
finetune the model for only 1 epoch (if we finetune for more than 1 epoch it will take longer but it will probably result
in improved performance).

[ ]: # Set training parameters
training_arguments = TrainingArguments(

# Output directory where the model predictions and checkpoints will be stored
output_dir="./results",
# Number of training epochs
num_train_epochs=1,
# Batch size per GPU for training
per_device_train_batch_size=4,
# Number of update steps to accumulate the gradients for
gradient_accumulation_steps=1,
# Optimizer to use
optim="paged_adamw_32bit",
# Save checkpoint every number of steps
save_steps=0,
# Log updates every number of steps
logging_steps=25,
# Initial learning rate (AdamW optimizer)
learning_rate=2e-4,
# Weight decay to apply
weight_decay=0.001,
# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16=False,
bf16=False,
# Maximum gradient normal (gradient clipping)
max_grad_norm=0.3,
# Group sequences with same length into batches (to minimize padding)
# Saves memory and speeds up training considerably
group_by_length=True,
# Learning rate schedule
lr_scheduler_type="constant"

)

Next, we will use the SFTTrainer class in Hugging Face to create an instance of the model by passing the loaded
LlaMA 2 model, training dataset, PeFT configuration, tokenizer, and the training arguments. SFTTrainer stands for
Supervised Fine-Tuning Trainer.

[ ]: # Set supervised finetuning parameters
trainer = SFTTrainer(

model=model,
train_dataset=dataset,
peft_config=peft_config,
tokenizer=tokenizer,

(continues on next page)
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(continued from previous page)

args=training_arguments,
# Column in the dataset that contains the data
dataset_text_field="text",
# Maximum sequence length to use
max_seq_length=None,
# Pack multiple short examples in the same input sequence to increase efficiency
packing=False,

)

/usr/local/lib/python3.10/dist-packages/peft/utils/other.py:102: FutureWarning: prepare_
→˓model_for_int8_training is deprecated and will be removed in a future version. Use␣
→˓prepare_model_for_kbit_training instead.
warnings.warn(

/usr/local/lib/python3.10/dist-packages/trl/trainer/sft_trainer.py:159: UserWarning: You␣
→˓didn't pass a `max_seq_length` argument to the SFTTrainer, this will default to 1024
warnings.warn(

Map: 0%| | 0/1260 [00:00<?, ? examples/s]

Finally, we can train the model with the train() function in Hugging Face. In the output of the cell we can see the
loss for every 25 training steps, because we set logging_steps=25 in the training arguments.

The training took about 15 minutes on a T4 GPU with High-RAM memory on Google Clab Pro.

[ ]: # Train the model
trainer.train()

You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer,␣
→˓using the `__call__` method is faster than using a method to encode the text followed␣
→˓by a call to the `pad` method to get a padded encoding.
/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning:␣
→˓torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False␣
→˓explicitly. The default value of use_reentrant will be updated to be False in the␣
→˓future. To maintain current behavior, pass use_reentrant=True. It is recommended that␣
→˓you use use_reentrant=False. Refer to docs for more details on the differences between␣
→˓the two variants.
warnings.warn(

<IPython.core.display.HTML object>

TrainOutput(global_step=315, training_loss=0.6278291732545883, metrics={'train_runtime':␣
→˓1020.6457, 'train_samples_per_second': 1.235, 'train_steps_per_second': 0.309, 'total_
→˓flos': 5614695674511360.0, 'train_loss': 0.6278291732545883, 'epoch': 1.0})

Generate Text

To generate text with the trained model we will use the Hugging Face pipeline with the task set to
"text-generation". We can set the length of the generated text tokens with the max_length argument.

The output displays the start <s>[INST] and end [/INST] of the instruction prompt, followed by the generated output
by the model.

[ ]: # Run text generation pipeline with the finetuned model
prompt = "What are Lamini models?"

(continues on next page)
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(continued from previous page)

pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
output = pipe(f"<s>[INST] {prompt} [/INST]")
print(output[0]['generated_text'])

Xformers is not installed correctly. If you want to use memory_efficient_attention to␣
→˓accelerate training use the following command to install Xformers
pip install xformers.
/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py:1270:␣
→˓UserWarning: You have modified the pretrained model configuration to control␣
→˓generation. This is a deprecated strategy to control generation and will be removed␣
→˓soon, in a future version. Please use a generation configuration file (see https://
→˓huggingface.co/docs/transformers/main_classes/text_generation )
warnings.warn(

/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:61: UserWarning: None␣
→˓of the inputs have requires_grad=True. Gradients will be None
warnings.warn(

<s>[INST] What are Lamini models? [/INST] Lamini is a language model training platform␣
→˓that allows developers to train and fine-tune their own custom language models using␣
→˓their own data. everybody can train a model with Lamini, regardless of their technical␣
→˓expertise. Lamini models are trained on large datasets of text and can be used for a␣
→˓variety of natural language processing tasks, such as text classification, sentiment␣
→˓analysis, and language translation.

Lamini models are trained using a technique called "fine-tuning," which involves␣
→˓adjusting the weights of a pre-trained language model to fit a specific task or␣
→˓dataset. This allows developers to train a model that is tailored to their specific␣
→˓needs, without having to start from scratch.

Lamini models can be trained on any dataset, including text data from the internet,␣
→˓social media, or internal company data. They can also be trained on a combination of␣
→˓different datasets, allowing developers

[ ]: # Run text generation pipeline with the finetuned model
prompt = "How to evaluate the quality of the generated text with Lamini models"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=500)
output = pipe(f"<s>[INST] {prompt} [/INST]")
print(output[0]['generated_text'])

<s>[INST] How to evaluate the quality of the generated text with Lamini models [/INST] ␣
→˓Lamini offers a Python library called Lamini Python Library that allows you to train␣
→˓and use LLMs. everybody can use Lamini's python library to train and use LLMs.

Here are some ways to evaluate the quality of the generated text with Lamini models:

1. Perplexity: Measure the perplexity of the generated text by comparing it to a␣
→˓reference text. Lower perplexity indicates better quality.
2. BLEU score: Use the BLEU score to evaluate the quality of the generated text. BLEU is␣
→˓a metric that measures the similarity between the generated text and a reference text.
3. ROUGE score: Use the ROUGE score to evaluate the quality of the generated text. ROUGE␣
→˓is a metric that measures the similarity between the generated text and a reference␣
→˓text.
4. METEOR score: Use the METEOR score to evaluate the quality of the generated text.␣
→˓METEOR is a metric that measures the similarity between the generated text and a␣
→˓reference text.

(continues on next page)
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5. Human evaluation: Have human evaluators rate the quality of the generated text on a␣
→˓scale from 1 to 5.
6. Automatic metrics: Use automatic metrics such as perplexity, entropy, and coherence␣
→˓to evaluate the quality of the generated text.
7. LLM's performance on specific tasks: Evaluate the performance of the LLM on specific␣
→˓tasks such as text generation, question answering, and language translation.
8. LLM's performance on specific domains: Evaluate the performance of the LLM on␣
→˓specific domains such as medical text, legal text, or technical text.
9. LLM's performance on specific types of data: Evaluate the performance of the LLM on␣
→˓specific types of data such as text, images, or audio.
10. LLM's performance on specific evaluation metrics: Evaluate the performance of the␣
→˓LLM on specific evaluation metrics such as accuracy, precision, recall, and F1 score.

It's important to note that the quality of the generated text can vary depending on the␣
→˓specific use case and the data used to train the LLM. Therefore, it's important to␣
→˓evaluate the quality of the generated text in the context

[ ]: # Run text generation pipeline with the finetuned model
prompt = "Write a poem about Data Science"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=500)
output = pipe(f"<s>[INST] {prompt} [/INST]")
print(output[0]['generated_text'])

<s>[INST] Write a poem about Data Science [/INST] In the realm of code and algorithms,
nobody knows like Data Science
With a dash of math and a pinch of magic,
She weaves a tale of insight and wonder.

With a click of her mouse, she uncovers
The secrets hidden deep within the data's cloak.
She sifts through the noise and finds the gems,
And turns them into insights that make us think.

She's a detective of the digital age,
Uncovering patterns and connections that we've never seen.
She's a wizard of the data realm,
Weaving spells of prediction and machine learning.

With a nod of her head, she conjures up
A world of possibilities, a world of wonder.
She's a master of the data craft,
A weaver of tales that make our hearts sing.

So let us hail the Data Queen,
Who brings us closer to the truth we seek.
For in the realm of data science,
She's the one who holds the key.
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23.3.5 Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG) refers to using external sources of information for improving the quality of
generated responses by LLMs. RAG enables LLMs to retrieve facts from external sources (such as Wikipedia, news
articles) and provide responses that are more accurate and/or are up-to-date.

In general, the internal knowledge of LLMs is static, as it is fixed by the date of the used training dataset. Therefore,
LLMs cannot answer questions about current events, and they are stuck in the time moment of their training data.
Updating LLMs with knowledge about current events requires to continuously retrain the models on new data. Such a
process is very expensive, as it requires collecting updated datasets and finetuning the model to update the weights.

RAG enables to avoid expensive LLMs retraining, by retrieving information from updated external databases to generate
responses. The RAG approach involves two phases: retrieval and content generation. The retrieval phase includes
performing relevancy search of external databases regarding a user query, and retrieving supporting documents and
snippets of important information. Afteward, in the content generation phases, these supporting documents are used
as a context that is appended to the user query, and are fed to the LLMs for generating the final response.

Instead of relying only on the information contained in the training dataset used for training an LLM, RAG provides
an interface to external knowledge to ensure that the model has access to the most current and reliable facts. E.g., in
enterprise setting, external sources of information for RAG can comprise of various company-specific files, documents,
and databases. Employing RAG can result in more relevant responses and it can reduce the problem of hallucination
by LLMs. It also allows the users to review the sources that were used by LLMs and verify the accuracy of generated
responses.

23.3.6 Prompt Engineering

Prompt engineering is a technique for improving the performance of LLMs by providing detailed context and infor-
mation about a specific task. It involves creating text prompts that provide additional information or guidance to the
model, such as the topic of the generated response. With prompt engineering, the model can better understand the kind
of expected output and produce more accurate and relevant results.

The following tips for creating effective prompts as part of prompt engineering can improve the performance of LLMs:

• Use clear and concise prompts: The prompt should be easy to understand and provide enough information for
the model to generate relevant output. Avoid using jargon or technical terms.

• Use specific examples: Providing specific examples can help the model better understand the expected output.
For example, if you want the model to generate a story about a particular topic, include a few sentences about
the setting, characters, and plot.

• Vary the prompts: Use prompts with different styles, tones, and formats to obtain more diverse outputs from the
model.

• Test and refine: Test the prompts on the model and refine them by adding more detail or adjusting the tone and
style.

• Use feedback: Use feedback from users or other sources to identify areas where the model needs more guidance
and make adjustments accordingly.

Chain-of-thought technique involves providing the LLM with a series of instructions to help guide the model and
generate a more coherent and relevant response. This technique is useful for obtaining well-reasoned responses from
LLMs.

An example of a chain-of-thought prompt is as follows: “You are a virtual tour guide from 1901. You have tourists
visiting Eiffel Tower. Describe Eiffel Tower to your audience. Begin with (1) why it was built, (2) how long it took to
build, (3) where were the materials sourced to build, (4) number of people it took to build it, and (5) number of people
visiting the Eiffel tour annually in the 1900’s, the amount of time it completes a full tour, and why so many people visit
it each year. Make your tour funny by including one or two funny jokes at the end of the tour.”
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7.23.4 23.4 Limitations and Ethical Considerations of LLMs

Although LLMs have demonstrated impressive performance across a wide range of tasks, there are several limitations
and ethical considerations that raise concerns.

Limitations:

• Computational resources: Training LLMs requires significant computational resources, making it difficult for
researchers with limited access to GPUs or specialized hardware to develop and use these models.

• Data bias: LLMs are trained on vast amounts of data from the internet, which often contain biases present in the
data. As a result, the models may unintentionally learn and reproduce biases in their generated responses.

• Producing hallucinations: LLMs can produce hallucinations, which are responses that are false, inacurate, unex-
pected, or contextually inappropriate. One example of hallucination by ChatGPT is when asked to list academic
papers by an author, and it provides papers that don’t exist.

• Inability to explain: LLMs are inherently black-box models, making it challenging to explain their reasoning or
decision-making processes, which is essential in certain applications like healthcare, finance, and legal domains.

Ethical considerations:

• Privacy concerns: LLMs memorize information from their training data, and can potentially reveal sensitive
information or violate user privacy.

• Misinformation and manipulation: Text generated by LLMs can be exploited to create disinformation, fake news,
or deepfake content that manipulates public opinion and undermines trust.

• Accessibility and fairness: The computational resources and expertise required to train LLMs may lead to an
unequal distribution of benefits, where only a few organizations have the resources to develop and control these
powerful models.

• Environmental impact: The large-scale training of LLMs consumes a significant amount of energy contributing
to carbon emissions, which raises concerns about the environmental sustainability of these models.

Conclusively, it is important to encourage transparency, collaboration, and responsible AI practices to ensure that LLMs
benefit all members of society without causing harm.

7.23.5 23.5 Foundation Models

Foundation Models are extremely large NN models trained on tremendous amounts of data with substantial computa-
tional resources, resulting in high capabilities for transfer learning to a wide range of downstream tasks. In other words,
these models are scaled along each of the three factors: number of model parameters, size of the training dataset, and
amount of computation. And, they are typically trained using self-supervised learning on unlabeled data. The scale
of Foundation Models leads to new emergent capabilities, such as the ability to perform well on tasks that the models
were not explicitly trained to do. This allows few-shot learning, which refers to finetuning Foundation Models to new
downstream tasks by using only a few training data instances for the new task. Similarly, zero-shot learning extends
this concept even further, and refers to a model’s ability to generalize to new tasks for which the model hasn’t seen any
examples during the training.

LLMs represent early examples of Foundation Models, because LLMs are trained at scale and can be adapted for
various NLP tasks, even for tasks they were not trained to perform.

The term Foundation Models is more general than LLMs, and they generally refer to large models that are trained on
multimodal data, where the inputs can include text, images, audio, video, and other data sources.

The importance of Foundation Models is in their potential to replace task-specific ML models that are specialized in
solving one task (i.e., optimized to perform well on one dataset) with general models that have the capabilities to solve
multiple tasks. I.e., these models can serve as a foundation that is adaptable to a broad range of applications.
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Figure: Foundation model. Source: link.
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7.25 Lecture 25 - Deploying Projects as Web Applications
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• 25.2 Deploying a Model for Iris Flowers Classification

– 25.2.1 Model Training and Prediction
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– 25.2.4 Output Webpage
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– 25.3.1 Model Training and Saving

– 25.3.2 Creating a Flask App

– 25.3.3 Run the Web Application

• Appendix

• References

7.25.1 25.1 Introduction to Web APIs for Model Serving

After a predictive model for a Data Science (DS) project is developed, the next steps in the project life cycle include
deploying the model and serving the model to the end-users. One approach to serving the model is via a web API
where the end-users can submit requests to query the model, and obtain the model’s predictions as responses to their
queries.

In general, an API (Application Programming Interface) enables software applications to communicate with each
other and exchange data. In the context of web APIs, the terms client and server are typically used to refer to the two
main components that are involved in the communication between software applications over the web. The client is
typically a front-end application that runs in a web browser and allows to access data or services from the server. The
client sends a request to the server, usually in the form of an HTTP request. The server is the application that receives
and processes requests from clients. The server performs actions based on the requests, and sends a response back to
the client. When a response is received from the server, the client presents the data to the end-users and/or it may take
other actions based on the response from the server.

Figure: Web API. Source: [4].
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An example of usage of a web API in Data Science is for accessing predictions from a model that is deployed on a
server. The end-user interacts with a front-end application that runs in a web browser and submits a request to initiate
an API call (e.g., submit an image for classification or submit tabular data inputs for classification). The API calls the
server to obtain predictions from the model. After the model makes the prediction, the API transfers the prediction to
the end-user in the form of JSON, XML, CSV, or another format.

Similarly, another use of web APIs in Data Science is for accessing data from a database that is hosted on a server, and
afterward using the retrieved data to train a predictive model.

25.1.1 REST Architecture

Two common approaches for building web APIs are SOAP (Service Object Access Protocol) and REST (REpresen-
tational State Transfer). Whereas SOAP is a protocol for communication between computer systems, REST is an
architecture that defines a set of constraints for communication over a network and promotes simplicity, scalability, and
reliability. Because of that, REST has been very popular, since it introduces guidelines regarding the architecture of an
API, instead of defining rules of specifications for the data exchange.

REST (REpresentational State Transfer) defines the following architectural constraints:

• Stateless: The server won’t maintain any state between requests from the client, and every request must contain
all necessary information. I.e., the server cannot use information from previous requests by the client.

• Client-server design: The client and server must be decoupled from each other. The decoupling helps them to
evolve independently.

• Cacheable: The response from the server should be cacheable, and it can be reused later by the client, if needed.

• Uniform interface: The data transfer from the server to the client will be in a standardized format, instead of a
format that is specific to one application.

• Layered system: The client may access the resources on the server indirectly through other layers. Also, the
server can have multiple layers, such as security, application, business logic, and these layers must remain invis-
ible to the client.

• Code on demand: The client may extend functionalities by downloading code blocks from the server.

An API that adheres to the REST guidelines is referred to as RESTful API or simply REST API.

RESTful APIs provide access to web services through public web URLs, referred to as request endpoints. The client
sends an HTTP request to the specific URL, and the RESTful API uses HTTP methods to manage the resources in the
web service. Although there are many HTTP methods, the most commonly used methods with RESTful APIs include:
GET (retrieve resources), POST (create a new resource), PUT (update an existing resource),PATCH (partially update an
existing resource), and DELETE (delete a resource).

25.1.2 RESTful APIs

RESTful APIs can be developed in different programming languages. Examples of libraries include Node.js in
Javascript, Roda and Sinatra in Ruby, Spring Boot in Java, etc.

In Python, the most popular libraries for developing RESTful APIs are Flask, Fast API, and Django.

Flask is a micro framework for developing RESTful APIs, which means that it is lightweight and provides the basic
components for serving predictive models as web services. Flask is the easiest to learn and use in comparison to
the other frameworks, and it is known for its simplicity and flexibility. However, it also has limitations in terms of
functionality, since it is designed for low-volume APIs, and does not scale well to large applications. Also, Flask is a
general-purpose web framework and may require importing additional libraries for specific functionalities.

Fast API is also a lightweight framework, but it is designed specifically for building web APIs quickly and efficiently.
Fast API was introduced in 2018 and it is a newer framework, but it has quickly gained popularity among developers.
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Its unique characteristic is its speed, as it is the fastest Python framework. FastAPI is explicitly designed for building
APIs, and offers many features for automating the building of APIs.

Django is a full-stack web framework, that has many built-in features and a specific project structure. This makes
it more difficult to learn than Flask and Fast API. On the other hand, Django is a powerful framework that has been
used in many large-scale projects as it offers various features for building APIs. This is considered advantageous by
developers who want a more structured framework or who prefer a comprehensive solution without relying on many
third-party packages.

There are also other similar Python libraries for developing RESTful APIs. As well as, numerous frameworks for
developing RESTful APIs as cloud services are available by the cloud providers such as Amazon SageMaker, Azure
ML, Google Cloud ML, IBM Watson Cloud, and others. These cloud frameworks provide access to pretrained models,
deployment of custom models, and allow easy integration of predictive models into users’ applications.

In this lecture we will demonstrate building a web API for Data Science projects with Flask, due to its ease of use.

7.25.2 25.2 Deploying a Model for Iris Flowers Classification

This section was inspired by the article Deploying Machine Learning Models using Flask.

The goal is to deploy a simple Machine Learning model for classification of the Iris dataset, which we used in Lecture
13. Recall that the dataset consists of measurements of three different species of irises:

1. Iris Setosa

2. Iris Versicolour

3. Iris Virginica

Each data point has 4 features, which include:

1. Sepal length in cm

2. Sepal width in cm

3. Petal length in cm

4. Petal width in cm

Let’s load the dataset using Pandas, and display the dataframe.

[1]: # Importing libraries
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder

import warnings
warnings.filterwarnings('ignore')

# Load the dataset
data = pd.read_csv('Iris-API/iris.csv')

[2]: data

[2]: sepal.length sepal.width petal.length petal.width variety
0 5.1 3.5 1.4 0.2 Setosa
1 4.9 3.0 1.4 0.2 Setosa
2 4.7 3.2 1.3 0.2 Setosa

(continues on next page)
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(continued from previous page)

3 4.6 3.1 1.5 0.2 Setosa
4 5.0 3.6 1.4 0.2 Setosa
.. ... ... ... ... ...
145 6.7 3.0 5.2 2.3 Virginica
146 6.3 2.5 5.0 1.9 Virginica
147 6.5 3.0 5.2 2.0 Virginica
148 6.2 3.4 5.4 2.3 Virginica
149 5.9 3.0 5.1 1.8 Virginica

[150 rows x 5 columns]

In the dataframe, the variety column contains the target labels. First, we will convert the labels from categorical
values to numerical values by applying the scikit-learn LabelEncoder.

[3]: # Convert the label column into ordinal format
label_feature = data[['variety']]
label_encoder = LabelEncoder()
label_encoded = label_encoder.fit_transform(label_feature)
data['variety'] = pd.DataFrame(label_encoded, columns=label_feature.columns, index=label_
→˓feature.index)

data

[3]: sepal.length sepal.width petal.length petal.width variety
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
.. ... ... ... ... ...
145 6.7 3.0 5.2 2.3 2
146 6.3 2.5 5.0 1.9 2
147 6.5 3.0 5.2 2.0 2
148 6.2 3.4 5.4 2.3 2
149 5.9 3.0 5.1 1.8 2

[150 rows x 5 columns]

25.2.1 Model Training and Prediction

Let’s extract the training features from the dataframe into variable X and the training labels into variable y.

In the following cell, we use a Logistic Regression model from scikit-learn to train a classification model.

[4]: # Extract the features X and target y variables
X = data.drop(['variety'], axis=1)
y = data['variety']

[5]: # Train a Logistic Regression model
logreg_model = LogisticRegression()
logreg_model.fit(X, y)
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[5]: LogisticRegression()

Finally, let’s define a function classify that takes 4 input arguments, and predicts the class of the iris flowers. The
four inputs a, b, c, and d correspond to the sepal length and width, and petal length and width. The ‘classify’ function
first converts the inputs to a numpy array, and reshapes the array to represent a batch with 1 data instance. Afterward,
the trained Logistic Regression classifier is used to predict the variety of an iris flower.

[6]: # Predict the iris class based on inputs a, b, c, d
def classify(a, b, c, d):

arr = np.array([a, b, c, d], dtype=np.float64) # Convert to numpy array
query = arr.reshape(1, -1) # Reshape the array
prediction = logreg_model.predict(query)[0] # Make a prediction
variety = variety_mappings[prediction] # Map the prediction to iris variety
return variety # Return the iris variety

# Dictionary containing the mapping
variety_mappings = {0: 'Setosa', 1: 'Versicolor', 2: 'Virginica'}

To make sure that the function classify works, in the following cell a set of four input values is passed to classify.
We can see that the output is the iris target label, as expected.

[7]: classify(1.0, 1.0, 2.0, 2.0)

[7]: 'Setosa'

The above code for classifying iris flowers is saved as model.py under the directory IRIS-API/model.py.

25.2.2 Creating an HTML Webpage

Next, we will build the following simple HTML page to accept inputs from the end-users.

Figure: Home webpage to accept inputs from end-users.
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The HTML code for the input form is shown below, containing head and body sections. The head defines metadata
and styles with the tags <meta> and <style>.

The body contains <div> tags with class='field' for each of the 4 inputs: sepal/petal lengths/widths. Each input
tag has class="input", and type="number" to accept numerical values from the end-users. All the <div> tags are
enclosed within a form with action="predict" and method="GET". The GET method is used to transport the data
from the HTML form to the Flask app.

The HTML code is saved as index.html file under the directory Iris-API/templates/index.html.
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Figure: Head and Body of the home HTML page.

25.2.3 Creating a Flask App

Next, we will use the Flask framework to deploy the Machine Learning model locally. Note that Flask is not typically
run from Jupyter Notebooks, and therefore we will save the code from this section as a Python script app.py and we
will run the script from the command line in a terminal.

Let’s first import the model module that we created in the previous section. Next, we import the flask library, as well
as the related libraries request (for accessing data sent with HTTP requests), and render_template (for generating
HTML pages by combining templates with data).

Building the Flask server begins with creating an instance of the Flask application, which we assigned to the name
app. The argument __name__ associates the instance with the name of the current module, and Flask uses it to locate
the root path of the application. The template_folder argument specifies the directory where Flask will look for
HTML templates for rendering the webpages for input parameters and model output.

[ ]: import model # Import the python file containing the ML model
from flask import Flask, request, render_template # Import flask libraries

(continues on next page)
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(continued from previous page)

# Initialize the flask class and specify the templates directory
app = Flask(__name__, template_folder="templates")

In Flask, routes define the actions that the web API should take when a specific URL is accessed by the end-user in a
web browser. Routes in Flask are defined using the @app.route decorator. This decorator is associated with a function
that specifies the actions to a particular URL. In this example, we will define two routes: route '/' that corresponds to
the home page where the end-user enters the input values for iris flowers, and route '/predict' that sends the input
values to the model for inference and displays the model’s prediction.

Therefore, in the next cell we set the default route of the Flask application using @app.route('/'). The route '/' in
Flask is the root or home route. When we access the root URL of the application (e.g., http://127.0.01:5000/),
the function index_view will be called, and it will render the HTML page 'index.html' in the web browser. The
render_template() is a Flask function that takes an HTML file as an argument and processes it for sending as the
response to the end-user’s request. This is a common way of creating a simple home page for a web API.

[ ]: # Default route set as 'index'
@app.route('/')
def index_view():

return render_template('index.html') # Render index.html

Similarly, in the next cell we create a separate Flask route for the Machine Learning model, that accepts inputs for the
model, makes a prediction, and renders the results in a webpage.

Specifically, we use the /predict route with the method 'GET'. This route will retrieve the data from the fields on
the index.html webpage through a GET request. For this purpose, we use request.args.get() to extract the data
from each of the input fields in the form, using the name attributes for the petal and sepal dimensions.

The retrieved inputs sepal_len, sepal_wid, petal_len, petal_wid are then passed to the classify() method
of the Machine Learning model to make a prediction about the variety of the iris flower. The result from the model’s
prediction is assigned to the variable variety.

The variable variety is next passed to the HTML file output.html to render the predicted variety of flowers and
display it in a new webpage. For this, we used the function render_template(filename, arguments) where we
specified the HTML file along with the predicted variable variety.

Finally, if an exception occurs during the execution of the try block (e.g., an error in model prediction or input param-
eters), the message 'Error' will be returned.

[ ]: # Route 'predict' accepts GET request
@app.route('/predict', methods=['GET'])
def predict_class():

try:
sepal_len = request.args.get('slen') # Get parameters for sepal length
sepal_wid = request.args.get('swid') # Get parameters for sepal width
petal_len = request.args.get('plen') # Get parameters for petal length
petal_wid = request.args.get('pwid') # Get parameters for petal width

# Get the output from the classification model
variety = model.classify(sepal_len, sepal_wid, petal_len, petal_wid)

# Render the output in new HTML page
return render_template('output.html', variety=variety)

except:
return 'Error'
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To run the Flask webserver, we use the app.run() method as shown below. The debug=True argument enables the
debug mode, which provides additional information in case of errors.

[ ]: # Run the Flask server
if(__name__=='__main__'):

app.run(debug=True)

The code for Flask is saved as app.py under the directory IRIS-API/app.py. We will use it later to run the web
application.

25.2.4 Output Webpage

We need to also create another even simpler HTML page to display the output of the classification.

Figure: Output webpage to present the model’s prediction to end-users.

The body of the code is shown below, and it is saved as output.html in the directory ./templates/output.html.
In the code {{ variety }} specifies the argument that was passed to get rendered in the new HTML file.

Figure: Body of HTML file for the output webpage.
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25.2.5 Run the Web Application

To deploy the application, we will execute the command python app.py from the terminal. Don’t forget to first change
the directory to Iris-API where the file app.py is saved.

The output is shown in the figure below. We can see that there are warning messages with recommendations for
changes in the code, but these warnings do not affect the functionality of the app. There is also a warning that this is
a development server, which is primarily intended fro testing and debugging purposes. If we would like to deploy the
web application in production, we will need to use WSGI (Web Server Gateway Interface) server that is designed to
handle a large number of requests and is optimized fro performance and scalability.

We can also see that the server is running in debug mode on http://127.0.01:5000/ (given with the IP Ad-
dress:Port).

To start the application on the local machine, we can either click on the URL http://127.0.01:5000/, or we can
copy and paste the URL into a web browser.

Figure: Run the application.

The following are screenshots of the application for one example and the predicted iris class is Setosa.
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Figure: Entered inputs and predicted class.

The folder structure is as follows:

Iris-API
iris.csv
model.py
app.py
templates

index.html
output.html

7.25.3 25.3 Deploying a Model for MNIST Digits Classification

In this section we will create another web API for classification of MNIST digits. Differently from the previous section,
we will use a Convolutional Neural Network model, as well as we will save the trained model and use it for prediction.
The code in mostly based on this section from the following blog: Deploying Deep Learning Models Part 1: Preparing
the Model.

25.3.1 Model Training and Saving

We will first load the MNIST dataset, and we will create a simple Convolutional Neural Network for classification of
the digit images in the dataset.

[1]: import tensorflow
from tensorflow import keras
from keras.datasets import mnist
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Flatten, Conv2D, MaxPooling2D

[2]: # Load the data
(x_train, y_train), (x_test, y_test) = mnist.load_data()

[3]: # Scale the images to the range [0,1]
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

# Print the shape and number of samples
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
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x_train shape: (60000, 28, 28)
60000 train samples
10000 test samples

[5]: # Define the layers in the model
inputs = Input(shape=(28, 28, 1))
conv1a = Conv2D(filters=32, kernel_size=3, padding='same')(inputs)
conv1b = Conv2D(filters=64, kernel_size=3, padding='same')(conv1a)
pool1 = MaxPooling2D()(conv1b)
flat = Flatten()(pool1)
dense1 = Dense(128, activation='relu')(flat)
dropout1 = Dropout(0.5)(dense1)
outputs = Dense(10, activation='softmax')(dropout1)

# Define the model with inputs and outputs
model = Model(inputs, outputs)

[6]: # Compile and train the model
model.compile(loss='sparse_categorical_crossentropy',

optimizer='adam',
metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=128, epochs=5, verbose=0)

[6]: <keras.src.callbacks.History at 0x1bcccb76090>

[7]: # Evaluate on test dataset
score = model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', score[1])

Test accuracy: 0.9840999841690063

Next, we will save the model using the Keras-TensorFlow SaveModel format. We will use the saved model to make
predictions in the web application without retraining the model, since training the model takes time and there is no
need to train a new model every time the end-users need to make predictions.

[8]: # save the model to a file
model.save("mnist_model.keras")

To make predictions, we can load the model and compile it, as in the following cell.

[9]: from tensorflow.keras.models import load_model

# load the weights into new model
loaded_model = load_model("mnist_model.keras")

# Compile and evaluate loaded model
loaded_model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=[
→˓'accuracy'])

# Evaluate on test dataset
score = loaded_model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', score[1])
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Test accuracy: 0.9840999841690063

25.3.2 Creating a Flask App

To deploy the model we will create the app.py file, similarly to the Flask file in the previous section.

We will define again two routes in the Flask app:

• An index (home) page route '/', for the users to draw a digit image.

• A predict route '/predict', to predict the class of the digit with the saved model.

In the next cell, we first import the required libraries, and an app object is created that is an instance of the Flask class.

[ ]: from flask import Flask, render_template, request
from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np
import re
import base64

# Initialize the flask class and specify the templates directory
app = Flask(__name__, template_folder="templates")

Similar to the previous example, we define the home page route using the @app.route decorator, and pass the URL
of the main page of the web application index.html.

[ ]: # Default route set as 'index'
@app.route('/')
def index_view():

return render_template('index.html')

The '/predict' route is shown next, which gets the image of a digit drawn by the user, and it first applies image
resizing and reshaping, and afterward the saved model is used to predict the digit class. Output is the response
variable that returns a string of the predicted class.

[ ]: # Route 'predict'
@app.route('/predict', methods=['GET', 'POST'])
def predict_class():

# Get the drawn image
imgData = request.get_data()

# Convert the image into a png file
convertImage(imgData)

# Open the png file
x = Image.open('output.png')

# Resize the image to 28x28 pixels
x = x.resize((28,28))

# Invert the image into black background and white foreground
x = np.invert(x)

(continues on next page)
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# Reshape into a batch with one image
x = x[:,:,0].reshape(1, 28, 28, 1)

# Scale to the range [0,1]
x = x/255

# Make a prediction
out = model.predict(x)

# Get the predicted digit
response = np.array_str(np.argmax(out, axis=1))

return response

And finally, we run the app in debug mode.

[ ]: # Run the Flask server
if __name__ == '__main__':

app.run(debug=True)

The organization of the directory of the web application is shown below. Beside the app.py, the main directory
also contains the saved model mnist_model.keras and the image drawn by the users saved as output.png. The
templates sub-directory contains the index.html and draw.html pages. In the static folder, a JavaScript file
index.js is used to render a canvas for drawing digits by the users, and style.css is a stylesheet for the web appli-
cation.

MNIST-API
app.py
mnist_model.keras
output.png
templates

index.html
draw.html

static
index.js
style.css

25.3.3 Run the Web Application

We can run the application using python app.py, and we will click on the URL http://127.0.0.1:5000/ to
access the web API shown below. We can use the mouse pointer to draw digits, and the Predict button will display
the Predicted Output by the model. The Clear button allows to draw again and make a new prediction.
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Figure: Run the web application.

7.25.4 Appendix

The material in the Appendix is not required for quizzes and assignments.

Deploying a Model with Fast API

This section explains how to develop a RESTful API for classification of Iris flowers with the Fast API library.

Before we try to develop the API, we need to install the required libraries with pip install, fastapi,
python-multipart, uvicorn.

The code for the app.py server in Fast API is shown below.

First, we import modules from Fast API for handling HTTP requests and exceptions, and for template rendering.

Next, we instantiate the app web application from the FastAPI() class. And we define the directory with the HTML
templates. Fast API uses Jinja2 for template rendering, allowing to create dynamic HTML pages.

Similar to the Flask app, in Fast API we use the @app.get('/') decorator to associate the HTTP GET method with
the default home page of the application. In Fast API, the Request class is used to handle the incoming requests, where
request is an instance that contains the information about the HTTP request. The index_view function will render
a template of the index.html file and will pass the request object to it.

The '/predict' route will handle the GET request. The predict_class function retrieves the input values slen,
swid, plen, and pwid and calls model.classify() to predict the variety of the Iris flower. If there are no errors, the
function will render a template of the output.html file and will pass the variety to be displayed to the user.
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Finally, the web application is run using the uvicorn server. UVicorn is the default server for Fast API in Python.

The code for the Fast API app is similar to the Flask app, but there are several differences in the syntax and the
implementation.

[ ]: # Import libraries
from fastapi import FastAPI, Request, Depends, Form, HTTPException
from fastapi.templating import Jinja2Templates
from typing import Optional
import model

# Initialize the FastAPI class and specify the templates directory
app = FastAPI()
templates = Jinja2Templates(directory="templates")

# Default route set as 'index'
@app.get('/')
def index_view(request: Request):

return templates.TemplateResponse("index.html", {"request": request})

# Route 'predict' accepts GET request
@app.get('/predict')
def predict_class(request: Request,

slen: Optional[float] = None,
swid: Optional[float] = None,
plen: Optional[float] = None,
pwid: Optional[float] = None):

try:
# Get the output from the classification model
variety = model.classify(slen, swid, plen, pwid)

# Render the output in a new HTML page
return templates.TemplateResponse("output.html", {"request": request, "variety":␣

→˓variety})
except Exception as e:

raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")

# Run the FastAPI server
if __name__ == '__main__':

import uvicorn
uvicorn.run(app)

Deploying a Model with Django

The corresponding code for developing a RESTful API for classification of Iris flowers with the Django library is shown
below.

The code is similar to the apps in Flask and Fast API. The functions index_view and predict_class define the
rendering of the home page and the predicted outputs by the model.

The URL patterns define that the root path maps to the index_view function, and the 'predict' path maps to the
predict_class function.

The last part of the code defines the configuration settings and the execution of the server with app.py runserver.
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[ ]: from django.shortcuts import render
from django.http import HttpResponse
from django.urls import path
import model

# Default route set as 'index'
def index_view(request):

return render(request, 'index.html')

# Route 'predict' accepts GET request
def predict_class(request):

try:
slen = float(request.GET.get('slen'))
swid = float(request.GET.get('swid'))
plen = float(request.GET.get('plen'))
pwid = float(request.GET.get('pwid'))

# Get the output from the classification model
variety = model.classify(slen, swid, plen, pwid)

# Render the output in a new HTML page
return render(request, 'output.html', {'variety': variety})

except Exception as e:
return HttpResponse(f"An error occurred: {str(e)}", status=500)

# URL patterns define which function is called for specific URL paths
urlpatterns = [path('', index_view),

path('predict/', predict_class)]

# Django settings and execution
if __name__ == '__main__':

from django.conf import settings

# Define the templates directory and debug mode
settings.configure(

DEBUG=True,
ROOT_URLCONF=__name__,
TEMPLATES=[

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': ['templates'],
'APP_DIRS': True,

},
],

)

# Execute the server from the command line
import django
django.setup()

from django.core.management import execute_from_command_line

execute_from_command_line(['app.py', 'runserver'])
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7.26.1 26.1 Data Science using Cloud Computing

Cloud Computing, also referred to as the Cloud, delivers services hosted over a network, which can include data
analytics, storage, databases, networking, and other services. The service is often in the form of a public cloud offered
to the public over the Internet by cloud service providers, or it can be a private cloud that is owned by an organization
that maintains the services on a private network.

Public Cloud Computing services include Amazon Web Services, Google Cloud Platform, Microsoft Azure, IBM
Cloud, and others.

In general, Cloud Computing services can be categorized as:

• Infrastructure as a Service (IaaS): access to infrastructure, consisting of servers, virtual machines (VMs), storage,
networks, or databases.

• Platform as a Service (PaaS): access to a platform for developing, testing, delivering, and managing software
applications, using infrastructure managed by the provider.

• Software as a Service (SaaS): access to software applications, that are developed and managed by the provider
using the provider’s infrastructure.

The advantages of using Cloud Computing include convenient access to the latest computational resources (without
the need to purchase hardware or software), access to structured environments (preinstalled libraries) for running tasks,
pay for what you need only, ability to quickly scale projects, improved efficiency by relying on infrastructure hosted
and managed by the cloud provider, etc.

Cloud Computing is especially important for managing Data Science projects, which often require access to GPUs and
large compute resources, storing large amounts of data, access to databases, deploying solutions for access by end-users,
and similar. In addition, most Cloud providers have developed some form of AutoML tools that enable organizations
without Data Science expertise to implement data analytics workflows into their projects.

This lecture is primarily based on a course Data Science for Beginners by Microsoft. The course has several lectures
on deploying Data Science projects to the Cloud, as well as it has other lectures on Data Science in general.

7.26.2 26.2 Introduction to Azure Machine Learning

Microsoft’s Azure Machine Learning is a cloud platform that provides a large number of products and services de-
signed for handling various phases of Data Science projects. This includes capabilities for preparing and preprocessing
data, training models, deploying models, and monitoring models in production. These capabilities can help to increase
the efficiency of data scientists by automating many tasks and project pipelines. Understandably, the availability of
cloud computing resources allows to easily scale projects and handle efficiently challenges related to processing big
data and serving large a number of customers.

Important tools and services provided by Azure ML include:

• Azure Machine Learning Studio: framework for data engineering, model training, and deployment.

• Azure Machine Learning Designer: low-code ML framework that allows to drag-and-drop modules for building
data science pipelines.

• Azure Machine Learning SDK : code-based environment for data science projects.

• Data Labelling: tools for automatic data labeling.

• Machine Learning CLI (Command-Line Interface): allows managing Azure ML resources from the command
line.

• Automated Machine Learning (AutoML) User Interface: tools to automate tasks in data science projects.

• MLflow: framework for tracking the performance of deployed models, and logging metrics and relevant indica-
tors.
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Azure ML allows using Jupyter Notebooks and has built-in integration with popular ML libraries like Scikit-Learn,
TensorFlow, PyTorch, and others.

In this lecture, we will explore the different levels of functionality of Azure ML, ranging from the no-code AutoML,
to full-code SDK, and working with our own custom models.

26.2.1 Azure Free Trial

Microsoft Azure has 30 days of free trial, which also can come with a $200 Azure credit that can be used within the 30
days.

Also, Azure offers $100 yearly Azure credit to students.

In addition, the other Cloud providers typically offer some amount of credit to new users and students.

Follow the link to the Microsoft Azure webpage and select the Start free button. This will prompt you to create an
Azure account, and if you wish you can use your University of Idaho account to get access to Azure.

Once you create an account and get the subscription with $200 Azure credits, the home page should look similar to the
following.
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7.26.3 26.3 No-Code Azure ML

26.3.1 Creating a Workspace Resource

From the home page, we will need to first create a new Resource that will indicate what type of tools and services we
will be using.

• Select `+ Create a resource`.

Azure will next display many popular services and resources.

• In the search box write Azure Machine Learning and select it.

This will load the web page of Azure Machine Learning.

• Select Create.

It will open a new page for Azure ML Workspace resource. The Workspace provides a place to work with machine
learning models, and allows access to tools for training and deploying models. For instance, the Workspace will store
information about training runs, such as logs of various metrics, it will provide access to the data and scripts, etc.
And note also that when we are done with using Azure resources such as workspaces, we need to delete the resources,
otherwise some costs can be incurred (e.g., even if we don’t use the workspace to run a model, Azure may charge a fee
for storing the data).
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When we create a new Workspace, we need to fill in the information shown in the screenshot below.

• Subscription: Azure subscription, e.g., the $200 Azure credits obtained with the free trial.

• Resource group: Assign a name for the resource group, or click on Create new to create a resource group.

• Workspace name: Assign a name for the workspace (e.g., perhaps a name that is related to the project).

• Region: Select the geographical region.

• Storage account: A new storage account will be created for the workspace for storing the data.

• Key vault: A new key vault will be created for the workspace for storing sensitive information.

• Application insights: A new application insights resource will be created for the workspace to store information
about deployed models.

• Container registry: Leave it as None (it will be created automatically the first time the model is deployed).

After the information in all fields is entered, select Review & create.
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The next page will show the information that we entered and we will need to confirm that everything is correct.

• Select Create.
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It may take a few minutes for the Workspace to be created. Once it is ready, the page will show that it is completed.
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26.3.2 Using Azure ML Studio

As we mentioned in the introductory section, Azure Machine Learning Studio is a framework for data engineering,
model training, and deployment.

• Click on the following link to navigate to Azure ML Studio.

The interface of Azure ML Studio is shown below. On the top of the page, our workspace should be listed. In this case,
the workspace that we just created and named My_workspace_1 is shown.
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The various modules that are available in Azure ML Studio are listed in the left-side menu. To see the names of the
modules, click on the three horizontal lines in the upper left corner. A brief description of the modules is shown in the
next figure. The modules allow to conveniently apply tools for managing different phases of data science projects from
a single place.
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26.3.3 Loading the Dataset

For demonstration purposes, we will use the Heart Failure Dataset, which we used before in this course, and contains
13 columns with information about 300 patients who may or may not have risk of heart failure. The .csv file with the
records is available in the data folder with the other files for this lecture.

• Click on the Data module in the left-side menu in Azure ML Studio (see figure below).

The Data section provides various tools for data management, and it allows to upload files or folders with data from
a local machine, or provide links to web files (e.g., data from GitHub or Google Drive), load data from a list of open
datasets collected by Microsoft (check Azure Open Datasets), or use files from a datastore. Datastores allow organi-
zations that have many data files in different locations in Azure to link them together and organize them in a single
view.

• Select `+ Create` to load the dataset.

Azure ML Studio will guide us through several steps for creating the dataset.
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On the first page, we will need to enter a name for the dataset, a brief description, and also indicate whether the data is
in tabular or other formats. After the information is entered, select Next.

Afterward, we will indicate that the dataset is saved on our computer and we will upload the dataset from local files.
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Select Next to skip Step 3 and get to Step 4 where from the dropdown menu we select Upload - Upload files and
navigate to the directory where you have saved the csv file containing the heart failure records.

The next page will show the columns in the dataset. Select Next to go to the next page.

In the Schema page, we will change the data type to Boolean for the columns anemia, diabetes, high blood
pressure, sex, smoking, and DEATH_EVENT.

Afterward, click Next and select Create to complete the creation of the dataset.
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Now we can see that the dataset heart-failure-dataset is listed under the Data assets in our workspace.
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26.3.4 Creating a Compute Resource

We also need to use Compute Resources for our project to perform data preparation and processing, and to run the
models. To create a compute resource, we will select Compute from the left-side menu.

We can see that the compute resources are categorized into four tabs:

• Compute Instances, are workstations for data and models; they involve creating a Virtual Machine (VM) and
launching a notebook instance (e.g., compute resources to train a model are requested from the notebook).

• Compute Clusters, VMs for on-demand code processing (e.g., training a model using AutoML).

• Kubernetes Clusters, VMs that are orchestrated by Kubernetes.

• Attached Compute, links to existing Azure compute resources, such as Virtual Machines or Azure Databricks
clusters.
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For this task, we can use either a compute instance or compute cluster, so let’s select the Compute instances tab.

• Click on the `+ New` button to create a new compute resource.

• Let’s assign the name heart-failure-compute for the resource (see the figure below).

Selecting adequate compute resources for a project depends on several factors, which impose trade-offs between speed
and cost.

1. CPU versus GPU: CPUs are less expensive, but also less powerful especially for training deep learning models.
GPUs are more expensive, but they provide efficient parallel computing, and are often necessary for training deep
learning models.

2. Cluster size: larger clusters are more expensive, but faster in completing tasks. For smaller tasks that don’t take
too long, it may be better to select a small compute cluster.

3. VM size: similar to the cluster size, increasing the amount of RAM, number of cores, and processing speed of
the VMs will reduce the computational time, but it will be more expensive.

4. Dedicated versus low-priority resources: dedicated resources are non-interruptible, while low-priority instances
can be assigned by Azure to other tasks and interrupt the job.

For this project, we will select a VM with a CPU, and from the listed VMs we can select the one with optimized
memory, which costs $0.32 per hour.

There are several optional steps that we can skip and click on Review + Create to create the compute instance.

It can take a few minutes for the compute resource to be created.
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26.3.5 Training a Model with Auto ML

AutoML in Azure ML Studio allows to build and deploy ML models without writing code.

• Select Automated ML from the modules in the left-side panel.

• Select `+ New Automated ML job`.

• The first step requires to assign a name for the experiment. Let’s simply name it Heart_failure_experiment.
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• Afterward, we need to indicate the task, that is, whether the goal is to perform classification, regression, time-
series forecasting, etc. In this case, we select classification.

• For dataset, we will select the heart-failure-dataset that we uploaded.
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• Next, select a target column in the data: in this case it is DEATH_EVENT.

• We can also specify the validation type, e.g., whether we would like to use k-fold cross-validation, or whether
to split the training data into train and validation sets, etc. Also, the test data asset field allows to upload a test
dataset or specify how to evaluate the model. We can leave these fields at their defaults.
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• Finally, use the drop-down menu to assign a compute resource, e.g., select the heart-failure-compute that
we created.

• Review the AutoML job and submit it.

Now the setup is complete, the experiment will begin running. This means that Azure ML will train many different
models, and explore different hyperparameters for the models.

On the home page, under the Jobssection, we will see a summary of the entered information about the experiment,
and we will also see that the status of the experiment is Running. It took about 1 hour to complete this experiment.

7.26. Lecture 26 - Deploying Projects to the Cloud 757



Fall 2023 Python Programming for Data Science, Release 0.1

When the experiment is completed, in the Best model summarywe can see that the highest performance was obtained
by a Voting Ensemble model, which achieved 91.526% AUC.

Also, let’s select the Models tab to get more information about the training. We can see that over 50 models were trained
in total, including LightGBM, XGBoost, Random Forest, Gradient Boosting, and running most of the models took
under 1 minute. We can also see that different scaling methods were used with different algorithms (MinMaxScaler,
RobustScaler, StandardScaler).
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26.3.6 Deploying the Model

To deploy a trained model as a web service, we will select the Voting Ensemble as the best model, and from the
drop-down menu under the Deploy tab select Web service.
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In the newly opened form, we need to assign a name for the deployed model, a brief description, and compute type
for the deployed model. In this case, we selected Azure Container Instance, which is suitable for low-scale CPU-based
workloads, as is the model for this project. Deploying models that require large computational resources can require
using other compute type with GPUs, larger RAM memory, or larger number of cores.

Next, let’s click on Deploy to initialize this step. It took about 15 minutes for this project to be deployed. When it is
completed, the Deploy Status on the dashboard will change from Running to Succeeded.

26.3.7 Consuming the Model

After the model is deployed, we can find the summarized information in the Endpoints module in the left-hand menu.

• Select the Consume tab to access the script for consuming the model.

The Consume page will provide the REST endpoint for users’ consumption, the primary and secondary API keys for
authentication, and a script for consuming the model from a local machine. The script is available in Python, C#, and
R.
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The Python script is shown below. The data section represents a dictionary where the users enter information for the
input features. In this script, all values are set either to 0 or False. Then, the url in the code below is the address for the
REST endpoint from the above figure, and api_key is the primary authentication key that is listed in the above figure
as well. The last code section makes a prediction for the DEATH_EVENT, and the result is displayed.

# Note: the codes in this lecture are not required for quizzes or assignments

import urllib.request
import json
import os
import ssl

def allowSelfSignedHttps(allowed):
# bypass the server certificate verification on client side
if allowed and not os.environ.get('PYTHONHTTPSVERIFY', '') and getattr(ssl, '_create_

→˓unverified_context', None):
ssl._create_default_https_context = ssl._create_unverified_context

allowSelfSignedHttps(True) # this line is needed if you use self-signed certificate in␣
→˓your scoring service.

# Request data goes here
# The example below assumes JSON formatting which may be updated
# depending on the format your endpoint expects.
# More information can be found here:
# https://docs.microsoft.com/azure/machine-learning/how-to-deploy-advanced-entry-script
data = {
"Inputs": {

(continues on next page)
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(continued from previous page)

"data": [
{
"age": 0.0,
"anaemia": False,
"creatinine_phosphokinase": 0,
"diabetes": False,
"ejection_fraction": 0,
"high_blood_pressure": False,
"platelets": 0.0,
"serum_creatinine": 0.0,
"serum_sodium": 0,
"sex": False,
"smoking": False,
"time": 0

}
]

},
"GlobalParameters": {
"method": "predict"

}
}

body = str.encode(json.dumps(data))

url = 'http://a836b469-9573-4a63-bd31-90e8205ae13c.westus2.azurecontainer.io/score'
api_key = 'QYEGDiZFpL5OECR2aZEhhNfSfYhPvgVn' # Replace this with the API key for the web␣
→˓service

# The azureml-model-deployment header will force the request to go to a specific␣
→˓deployment.
# Remove this header to have the request observe the endpoint traffic rules
headers = {'Content-Type':'application/json', 'Authorization':('Bearer '+ api_key)}

req = urllib.request.Request(url, body, headers)

try:
response = urllib.request.urlopen(req)

result = response.read()
print(result)

except urllib.error.HTTPError as error:
print("The request failed with status code: " + str(error.code))

# Print the headers - they include the requert ID and the timestamp, which are␣
→˓useful for debugging the failure

print(error.info())
print(error.read().decode("utf8", 'ignore'))

To consume the model, we just need to save the script to our local machine and execute it. The output is shown below.
For this set of input parameters, the result for DEATH_EVENT is True.
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Let’s check the model prediction for the last record in the dataset. The input features are shown below.

"age": 50.0,
"anaemia": False,
"creatinine_phosphokinase": 196,
"diabetes": False,
"ejection_fraction": 45,
"high_blood_pressure": False,
"platelets": 395000.0,
"serum_creatinine": 1.6,
"serum_sodium": 136,
"sex": True,
"smoking": True,
"time": 285

The prediction by the model is False as expected.

7.26.4 26.4 Code-based Azure ML

In this section, we will use Azure ML Studio to manage Data Science projects in a Python environment, that can
include Jupyter Lab, Jupyter Notebooks, or VS Code. Differently from the previous section which focused on No-Code
environment with Azure ML Studio, this section focuses on Code-based environment with Azure ML Studio.

We will learn how to use Azure ML to train our own custom model. For this purpose, we will define a deep learning
model for classification of the MNIST dataset, and we will train and evaluate the model using Azure ML resources.
Afterward, we will deploy the model, and test the deployment.

If we didn’t have access to GPUs from other sources, we could use the GPUs provided by Azure ML to train our models.

26.4.1 Creating Workspace and Compute Resource

Let’s log in to the Microsoft Azure webpage and create a new workspace named Workspace_2, by following the steps
listed in Section 26.3.

Afterward, we will navigate to the Azure ML Studio webpage, and in the newly created Workspace_2, we will create a
new compute resource from the Compute module in the left-side menu. Similar to the previous section, we will select
the Compute instances tab and click on + New. For this task, we can use a CPU VM since MNIST is a relatively
small dataset. If we were to work with larger datasets and models, we would need to select a GPU VM.
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26.4.2 Using Jupyter Notebooks in Azure ML

The created compute instance will be listed on our homepage. Note that in the Applications tab, the listed applications
include Jupyter Lab, Jupyter, and VS Code. We can use these applications to work with Jupyter Notebook files in
the same way as we do outside of Azure ML Studio.

Let’s select Jupyter Lab from the Applications tab for the newly created compute instance.
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26.4.3 Loading the Data and Defining the Model

In the opened Jupyter Lab environment let’s create a new notebook for training the model using Python 3.8 -
Pytorch and Tensorflow kernel.

Let’s rename the notebook to mnist-demo.

The code in the next cells is familiar, and it simply imports libraries and loads the MNIST dataset.

# Import libraries
import urllib.request
import tensorflow as tf
from tensorflow import keras
from keras.datasets import mnist
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Flatten, Conv2D, MaxPooling2D
import numpy as np
import matplotlib.pyplot as plt

# Load the data
(X_train, y_train), (X_test, y_test) = mnist.load_data()

print('Data shape:', X_train.shape)

We will use TensorFlow-Keras library to define a simple Convolutional Neural Network for MNIST classification.

# Define the layers in the model
inputs = Input(shape=(28, 28, 1))
conv1a = Conv2D(filters=32, kernel_size=3, padding='same')(inputs)
conv1b = Conv2D(filters=64, kernel_size=3, padding='same')(conv1a)
pool1 = MaxPooling2D()(conv1b)
flat = Flatten()(pool1)
dense1 = Dense(1024, activation='relu')(flat)
dropout1 = Dropout(0.5)(dense1)
outputs = Dense(10, activation='softmax')(dropout1)

# Define the model with inputs and outputs
model = Model(inputs, outputs)

# Compile the model
model.compile(optimizer="adam", loss='sparse_categorical_crossentropy', metrics=[
→˓"accuracy"])

26.4.4 Preparing Azure ML Experiment and Training the Model

Next, we will create an Azure ML experiment, and we will associate it with the current workspace and the subscription
information. Hence, we will assign the workspace name to the current Workspace_2 using the information about our
Subscription and Resource group.

Afterward, we will instantiate a new experiment named demo-mnist-training that will utilize the created Azure
ML workspace and resources to train and deploy the model.
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from azureml.core import Workspace, Experiment

SUBSCRIPTION="...enter you 32-digit subscription number here..."
GROUP="My_resource_group_1"
WORKSPACE="Workspace_2"

# Create an instance of the Workspace class using the subscription information
ws = Workspace(

subscription_id=SUBSCRIPTION,
resource_group=GROUP,
workspace_name=WORKSPACE,

)

# Create an Azure ML experiment within the workspace "ws"
experiment = Experiment(ws, "demo-mnist-training")

Azure ML allows integration of the MLflow framework for managing and tracking ML experiments.

In the next cell, we import MLFLow and we will use it to automatically log the loss, accuracy, and other parameters of
the training progress for the TensorFlow model with the autolog() method.

import mlflow, mlflow.tensorflow

# Track the experiment and log the training progress
mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())
mlflow.start_run(experiment_id=experiment.id)
mlflow.tensorflow.autolog()

Next, we train the model for 5 epochs, and we can see that it achieved close to 99% train accuracy.

Afterward, we terminate the MLFlow run, and save the model in the current directory.

# Train the model
model.fit(X_train, y_train, epochs=5)

# End the mlflow run
mlflow.end_run()

# Save the model
model.save('mnist-tf-model.h5')
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26.4.5 Consuming the Model

To consume the model, first we will register the model with Azure ML so that it can be used for inference in the future.
This will save the model under the name mnist-tf-model and it will register it to our workspace. The registered
model can be accessed from the Models section under Assets in the left-side panel in Azure ML Studio.

# Register the model
from azureml.core.model import Model

registered_model = Model.register(
workspace=ws,
model_name='mnist-tf-model',
model_path='mnist-tf-model.h5',
model_framework=Model.Framework.TENSORFLOW,
model_framework_version=tf.__version__)

Afterward, we will load the registered model and use it to predict the classes for several images.

# load the registered model
aml_model = Model(workspace=ws, name='mnist-tf-model', version=registered_model.version)

downloaded_model_filename = aml_model.download(exist_ok=True)
print(downloaded_model_filename)

downloaded_model = tf.keras.models.load_model(downloaded_model_filename)

# Evaluate the model
downloaded_model.evaluate(X_test, y_test, verbose=0)

# Predict the labels for several images
preds = downloaded_model.predict(X_test).argmax(axis=1)
show_images(X_test[:10], preds[:10])

As we mentioned earlier, always remember to release the used compute resources after training or predicting with a
model. One alternative is to Stop the current compute resource from running if we would like to reuse it later, or
Delete the resources if they are not needed for future use.
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7.27.1 27.1 Introduction

Ensuring the reproducibility of Data Science projects is important for several reasons. One is that our customers
(internal within your organization, or external) may use different operating systems, code dependencies, hardware, and
they should be able to use our developed product and obtain the expected results. Another reason is collaborative
development, where we may need to share our code with collaborators, and ensuring reproducibility of our codes
requires information about the full environment in which the code was developed.

Predictions of Machine Learning models depend on the model architecture and parameters, code, libraries and depen-
dencies needed to run the code. Ensuring reproducibility is a challenge that can affect the performance if not addressed.
Regarding the model architecture and weights, we can simply save and load them, to ensure that the same model is
used and that the predictions are consistent. Regarding code, we can use fixed random seeds and version control to
ensure that the same data and code are used for training the model and making predictions. Dealing with code libraries
and dependencies is more challenging, because libraries are updated frequently, and the model behavior can change,
or even worse, the code can crash with some updates. To address this issue requires to apply a strategy for constraining
the environment in which the model is developed and deployed.

The main strategies to constrain the libraries and dependencies include:

1. Interoperable standards,

2. Virtual environments,

3. Docker containers.

The first strategy involves standards like Open Neural Network Exchange (ONNX). ONNX is an open-source format for
representing neural networks that allows interoperability between different frameworks (such as PyTorch and Tensor-
Flow), or between different platforms. E.g., it allows a model trained in PyTorch to be imported and used for predictions
in TensorFlow. Despite the potential, this strategy requires to frequently update the tools as the frameworks are up-
dated, it has limited support for some operations in neural networks, it often has bugs in the conversions between the
frameworks, and the performance of models can differ after the conversion to a target framework.

The second strategy is to use virtual environments in Python or Conda. Although using virtual environments can
constrain the environment (e.g., Python dependencies), they provide only partial solution, since operating system-level
dependencies or dependencies like CUDA that involve interaction with hardware may be outside the scope of virtual
environments and cannot be addressed with this strategy.

The third strategy relies on using Docker containers and it is widely adopted at present time. Docker is an open-
source library that uses containers to constrain project dependencies. Container is a standardized unit of fully packaged
software used for local development, shipping code, and deploying systems.
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7.27.2 27.2 Docker

An example of the reproducibility challenge with Data Science projects is shown in the next figure, depicting the mul-
tiple points for failure when we move our code to a cluster. These issues can include different versions of libraries,
dependencies, drivers, or operating system. The main advantages of Docker containers are that they contain all depen-
dencies, including hardware libraries, and ensure reproducible and consistent code performance.

Figure: Reproducibility challenge.

Characteristics of containers are:

• Portable, since the containers are detached from the underlying hardware and the platform that runs them. This
allows to seamlessly port our code and projects from our local machine to other machines (e.g., that may run on
different operating system or use different hardware), or to external clusters that offer GPU resources. Portability
enables teams to easily collaborate on projects and experiment with new software and frameworks, without the
need to spend time setting up the environment for running code.

• Lightweight, since the containers don’t require a full operating system, and they share the kernel of the host
operating system.

• Scalable, applications can easily be scaled by adding or removing container instances.

• Secure, the application and its dependencies run in an isolated environment, hence the containers are less exposed
to attacks.

• Facilitate deployment, where Data Science projects can be easily containerized and deployed for consumption
by the end-users, with consistent performance between development and production environments.

Note also that there are notable differences between containers and Virtual Machines (VMs). VMs run a complete
operating system with its own kernel, and each VM operates as an independent instance with its dedicated resources.
Containers do not require hypervisor or hardware virtualization, and they use the host’s operating system. This means
that containers only need to package the application, its dependencies, and the minimal required components to run,
without duplicating the entire operating system. Because of that, containers are smaller in size and faster to boot. VMs

770 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

offer stronger isolation than containers, because each VM operates independently of the host, whereas containers share
the same kernel with the host. Orchestration tools for containers such as Kubernetes and Docker Swarm can be used
to manage and scale containerized applications across clusters of machines, whereas orchestration of VMs is more
complex. Containers are well-suited for microservices architectures, continuous integration and deployment (CI/CD),
and scalable, distributed applications, while VMs are used for running legacy applications, and environments requiring
strong isolation or using multiple operating systems.

Important concepts for working with Docker include:

• Dockerfile - script that defines the steps to build a Docker image.

• Image - is a built package containing the application and its dependencies.

• Container - is an instance where the Docker image is run.

We will explain these concepts through several examples in the following sections.

27.2.1 Installing Docker

Using Docker on a Windows machine can be done by the app Docker Desktop for Windows. This requires to download
the app and install it. Depending on the Windows operating system, it may also require to install updates for Windows
Subsystem for Linux, and other libraries. It is also possible to install Docker from the command line. Please follow the
instructions on the Docker page for more detailed information.

7.27.3 27.3 Hello World in Docker

Let’s start with a simple “Hello World” example in Docker, where the goal is to create a container with a Python file to
print the Hello World! statement.

Step 1: Create a Python Script

For this purpose, we will create the Python script shown below that has just one line of code, and we will save it under
the name hello_world.py in the folder demo1.

### Step 2: Create a Dockerfile
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Dockerfiles provide instructions for defining custom environments for our projects. I.e., for each particular project
we will define the required software packages and libraries in a Dockerfile, and we will use the Dockerfile to build a
Docker image.

It is common to start the Dockerfile with a base environment, which can simply include the latest Python version.
Alternatively, as a base environment we can import pre-build environments by other developers. Docker provides
access to Docker Hub, which is a registry with a large number of Docker images that have been published by other
developers, and allows to directly import and take advantage of many pre-built environments.

Dockerfiles are plain text files, and for this simple project the Dockerfile is shown below:

• The first line uses the FROM command to instruct Docker to use Python as a base image for the environment.
The term latest instructs Docker to retrieve the image of the latest official Python version. Docker will first
check if we have the latest Python version installed on our machine, and if we don’t, Docker will automatically
download the image from Docker Hub. Alternatively, if we wanted to work with an earlier Python version, we
can just write FROM python:3.5 or FROM python:2.7, for example.

• The second line uses the COPY command to copy the created hello_world.py file from the local folder on my
computer to the filesystem of the Docker image. The notation ./ is used for the root directory of the Docker
image. The syntax is COPY source_directory destination_directory.

• The third line uses the CMD command to execute the hello_world.py script from the root directory in the image
when the container is run.

The file needs to be saved under the name Dockerfile. The organization of the Demo1 folder is:

Demo1
Dockerfile
hello_world.py

Step 3: Build the Docker Image

Docker image is a template that contains instructions for creating a container that runs on the Docker platform. It
provides a convenient way to package up code and preconfigured environments, which we can use for our own private
use or share publicly with other Docker users.

To build a Docker image from the Dockerfile, we will use the following code.

docker build -t demo1 .

Docker code begins with the keyword docker. The command build specifies to build a Docker image. -t is used to
set a tag to the image, and in this case we tag the image with the name demo1. The dot . at the end of the line specifies
to build the image by using the Dockerfile that is located in the current directory where hello_world.py script is
located.
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The Docker image that we just built represents a collection of files that are required for an operational environment.
Each of the files that make up a Docker image is referred to as a layer. The images can contain multiple application
codes and dependencies, i.e., they can have multiple layers.

In general, it is possible to build a Docker image by typing Docker commands interactively in the command line, and
creating a Dockerfile is not required. However, Dockerfiles provide convenience and a documented record of the steps
taken to assemble an image.

Step 4: Run the Docker Container

To run the image, we just use the run command, followed by the image tag demo1. This will execute the hello-world.
py script in the container, which will display Hello World! in the terminal.

docker run demo1

In summary, we created a container that is independent of our local machine and that has an implementation of Python,
and we displayed a message in that container.

Conclusion

The figure below shows the basic steps in Docker. We begin with a Dockerfile that contains the required commands
to build a custom Docker image for our application. The Docker image is a custom environment, that contains the
required code, libraries, and dependencies for the application. Docker containers are run using the Docker image.
Within a container, the image comprises all the required files to run the application. By using containers, applications
are isolated from other processes, preventing other processes from affecting the current application.

Docker containers have an analogy with cargo containers used for shipping products. Once we place our product (code
and dependencies) in the container, we can ship it by boat or train (laptop or cloud), and when it gets to its destination,
it continues to function (run) just as before the shipment was made.

And one more note is that Docker has an official Hello World image, which can be run directly from the terminal,
and it is typically used by users when they install Docker for the first time to verify that it works properly. The following
figure displays the output of the Hello World image.
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7.27.4 27.4 Scikit-learn Models in Docker

In this section, we will learn how to create a container for running a scikit-learn model.

To demonstrate the concept, we will use the California Housing Dataset that is available in scikit-learn, and that we
also used in Lecture 15 when we studied regression with ANNs. The dataset contains 20,640 records about housing
prices in California, and it includes 9 features related to the number of rooms, population, latitude, longitude, and
similar information. The target column is the median value of the house. This is a regression problem, where the goal
is for a given set of input features to predict the housing price.

For this task, we will create a new folder, containing a Dockerfile to build the Docker image, train.py script for
loading the dataset, training the model, and saving the model parameters, and inference.py script for loading the
trained model and predicting on test instances.

Demo2-sklearn
Dockerfile
train.py
inference.py

Step 1: Create Train.py script

The code in train.py script is shown below (note that if you run the cell in this Jupyter notebook, it will give errors,
because the code is intended to be executed as a script).

This script is easy to understand. We import the necessary libraries, load the data, fit a Gradient Boosting Model, and
save the model. From the imported joblib package we used the dump method to serialize the model parameters and
save them at the MODEL_PATH location. Also note that the train.py script defines the paths to the directory MODEL_DIR
and saved model MODEL_FILE. This will allow to pass the path to Docker at build time, and embed these locations into
the Docker image. The MODEL_DIR and MODEL_FILE environmental variables are defined in the Doockerfile in the
next section. Then, when the container is run, the script will read the locations of the files from the image, and use the
saved model to predict on new data during inference.

[ ]: # Import libraries
import numpy as np
from sklearn import ensemble
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

(continues on next page)
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(continued from previous page)

import os
from joblib import dump

# Load and split data
housing = fetch_california_housing(as_frame=True).frame
X = housing.drop('MedHouseVal', axis=1)
y = housing['MedHouseVal']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=13, test_size=0.
→˓2)

# Fit regression model
model = ensemble.GradientBoostingRegressor()
model.fit(X_train, y_train)

# Directory paths
MODEL_DIR = os.environ["MODEL_DIR"]
MODEL_FILE = os.environ["MODEL_FILE"]
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_FILE)

# Save the model
dump(model, MODEL_PATH)

Step 2 Create Inference.py script

The script inference.py is very similar to train.py, except that the trained model is loaded, and in the last few
lines of code, the loaded model is used to predict the price for the first 10 instances from the test dataset. The output
includes both the predicted prices and the ground-truth prices from y_test.

[ ]: # Import libraries
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
import os
from joblib import load

# Load and split data
housing = fetch_california_housing(as_frame=True).frame
X = housing.drop('MedHouseVal', axis=1)
y = housing['MedHouseVal']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=13, test_size=0.
→˓2)

# Directory paths
MODEL_DIR = os.environ["MODEL_DIR"]
MODEL_FILE = os.environ["MODEL_FILE"]
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_FILE)

# Load model
model = load(MODEL_PATH)

# Run inference
(continues on next page)
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(continued from previous page)

y_pred = model.predict(X_test[:10])
print("Predicted price by the model:", np.around(y_pred,1))
print("Ground-truth price:", np.array(y_test[:10]))

7.27.5 Step 3: Create Dockerfile

The Dockerfile for this project is provided below, and contains the following parts:

• FROM jupyter/scipy-notebook uses a pre-built image jupyter/scipy-notebook as a base image. The
image contains a python installation, scipy, and other libraries to facilitate working with Jupyter. This image
will be downloaded from Docker Hub.

• The next lines are used to first create a new directory called model where the trained model will be saved.
Afterward, 2 environment variables are defined for MODEL_DIR and MODEL_FILE that will reference the newly
created directory and the name of the saved model. The directory /home/jovyan/ was set in the imported base
image jupyter/scipy-notebook.

• The COPY commands are used to copy the train.py and inference.py scripts from our local machine to the
working directory of the image.

• RUN python train.py will execute the script to train and save the model. This will ensure that the model is
saved at a specific location , and it is ready to predict on new data when the image is run. An advantage is that if
the model training fails, it will happen when we build the image rather than at run time, which allows to debug
the issue.

• CMD [ "python", "./inference.py"] will execute the inference.py script when we run the container
from the image.

[ ]: FROM jupyter/scipy-notebook

RUN mkdir model
ENV MODEL_DIR=/home/jovyan/model
ENV MODEL_FILE=model.joblib

COPY train.py ./train.py
COPY inference.py ./inference.py

RUN python train.py

CMD [ "python", "./inference.py"]

Common commands that are used in Dockerfiles are shown in the next table.

Command Purpose
FROM To specify the base image.
WORKDIR To set the working directory.
RUN To install any libraries and packages required for the container.
COPY To copy files or directories from a specific location.
ADD To add remote URLs and unpack compressed files.
ENTRYPOINT To specify commands to be executed when the container starts.
CMD Commands the container executes.
EXPOSE To define the port to access the container application.
LABEL To add metadata to the image.
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Step 4: Build the Docker Image

Next, we will build a Docker image from the Dockerfile, similarly to the previous example. Often, tags in the form
image_name:tag_name are used, as in this case, where we assigned the image name demo2-sklearn and we assigned
the tag name 0.1. The tag name allows to apply versioning to Docker images, where, for instance, we can assign tag
name 0.2 to the next version of image, or 1.0 if significant updates have been applied. If the tag name is omitted,
Docker will pull the most recent image version, which is identified by the tag latest.

docker build -t demo2-sklearn:0.1 .

To list the Docker images that we have built, we can use, well, docker images shown in the figure. Note that the
image demo1 has the tag name latest, and the image demo2-sklearn has the tag name 0.1.

Now that we have an image that contains a saved trained model, next, we will run a container to make predictions using
the model.

Step 5: Run the Docker Image

We run the image by using docker run and the name of the image. This will load the saved model, make predictions,
and display the predicted house prices for the first 10 records in the test dataset. For comparison, the target prices for
the first 10 records are also displayed. In a real-world case, the model will make predictions on new data samples (e.g.,
the price for house information that may be inputted by a realtor).

docker run demo2-sklearn:0.1

Note as well that we can launch multiple containers from one Docker image, with the containers maintaining their own
individual state although sharing the same image. The changes to each individual container are stored in a container
layer.
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Docker Desktop

Docker Desktop for Windows also provides lists of all created images, containers, and other related information. For
instance, in the Containers section, we can see the two containers that we run demo1 and demo2-sklearn with tag
names latest and 0.1, respectively.

7.27.6 27.5 TensorFlow-Keras Models in Docker

One more similar example follows, which uses TensforFlow-Keras libraries for creating a Conv Net model for predicting
the items in the Fashion MNIST dataset.

The organization of the folder is as follows:

Demo3-mnist
Dockerfile
mnist_train.py
mnist_inference.py
requirements.py

Step 1: Create mnist_train.py script

The script contains code for creating a Convolutional Neural Network model, compiling and training the model, and
saving the model in a cnn_model.keras file.

[1]: # Import modules
import tensorflow
from tensorflow import keras
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Flatten, Conv2D, MaxPooling2D

(continues on next page)
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# Load the dataset
mnist_fashion = keras.datasets.fashion_mnist
(training_images, training_labels), (test_images,test_labels) = mnist_fashion.load_data()

# Scaling
training_images = training_images/255.0

# Define the layers in the model
inputs = Input(shape=(28, 28, 1))
conv1a = Conv2D(filters=32, kernel_size=3, padding='same')(inputs)
conv1b = Conv2D(filters=64, kernel_size=3, padding='same')(conv1a)
pool1 = MaxPooling2D()(conv1b)
flat = Flatten()(pool1)
dense1 = Dense(128, activation='relu')(flat)
dropout1 = Dropout(0.5)(dense1)
outputs = Dense(10, activation='softmax')(dropout1)
# Define the model with inputs and outputs
cnn_model = Model(inputs, outputs)

# Compile the model
cnn_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=[
→˓'accuracy'])

# Fitting the model
cnn_model.fit(training_images, training_labels, epochs=5)

# Save the weights
cnn_model.save("cnn_model.keras")

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-
→˓labels-idx1-ubyte.gz
29515/29515 [==============================] - 0s 2us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-
→˓images-idx3-ubyte.gz
26421880/26421880 [==============================] - 3s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-
→˓labels-idx1-ubyte.gz
5148/5148 [==============================] - 0s 0s/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-
→˓images-idx3-ubyte.gz
4422102/4422102 [==============================] - 1s 0us/step
Epoch 1/5
1875/1875 [==============================] - 60s 32ms/step - loss: 0.4081 - accuracy: 0.
→˓8565
Epoch 2/5
1875/1875 [==============================] - 60s 32ms/step - loss: 0.2771 - accuracy: 0.
→˓8999
Epoch 3/5
1875/1875 [==============================] - 58s 31ms/step - loss: 0.2353 - accuracy: 0.
→˓9140
Epoch 4/5
1875/1875 [==============================] - 61s 32ms/step - loss: 0.2074 - accuracy: 0.
→˓9247

(continues on next page)

7.27. Lecture 27 - Reproducible Data Science Projects 779



Fall 2023 Python Programming for Data Science, Release 0.1

(continued from previous page)

Epoch 5/5
1875/1875 [==============================] - 57s 30ms/step - loss: 0.1841 - accuracy: 0.
→˓9324

Step 2 Create mnist_inference.py script

The script mnist_inference.py is similar, where the saved model is loaded, and it is used to predict the digits in the
first 10 images in the test dataset. For comparison, the real labels for the 10 test images are displayed as well.

[ ]: # Import modules
import numpy as np
import tensorflow
import tensorflow.keras as keras
from keras.models import load_model

# Load the dataset
mnist_fashion = keras.datasets.fashion_mnist
(training_images, training_labels), (test_images,test_labels) = mnist_fashion.load_data()

# Scaling
test_images = test_images/255.0

# loading the weights
cnn_model.load_model("cnn_model.keras")

# Predict
print("Predict the digit in the first 10 images in the test dataset")
y_pred = cnn_model.predict(test_images[:10])
print("Predicted image label:", np.argmax(y_pred,1))
print("Ground-truth image label:", test_labels[:10])

Step 3: Create Dockerfile

The Dockerfile is similar to the example in the previous section. It uses a Python 3.7.5 version, where -slim
indicates to use lightweight image of Python. This will reduce the size of the image, but it may require to install
additional libraries. Also note that the required libraries are provided in a requirements.txt file, instead of typing
all required libraries individually in the Dockerfile. The rest of the lines copy the required files to the image, and then
run the requirements.txt file to install the libraries in the image, and the mnist_train.py file to train the model
and save it in the image.

numpy===1.21.5
keras===2.9.0
tensorflow===2.9.1

[ ]: FROM python:3.7.5-slim

COPY requirements.txt ./requirements.txt
COPY mnist_train.py ./mnist_train.py
COPY mnist_inference.py ./mnist_inference.py

(continues on next page)
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RUN pip install -r requirements.txt
RUN python mnist_train.py

CMD [ "python", "./mnist_inference.py" ]

Step 4: Build and Run the Docker Image

Next, we will build the image demo3-mnist with a tag name v1.0.0 and run it. The output is shown below.

docker image build -t demo3-mnist:v1.0.0 .

docker run demo3-mnist:v1.0.0

7.27.7 27.6 Docker Registries and Repositories

Container repositories are the physical locations where Docker images are stored. Each repository contains different
versions of each image, where each image is referenced by a different tag. For example, on Docker Hub, mysql is a
repository that contains different versions of the Docker image for MySQL.

Container registry is a set of repositories. The main types of container registries are:

• Docker Hub: it is the official public container registry maintained by Docker, which hosts over 100,000 container
images created by software vendors, open-source projects, and Docker’s community of users.

• Third-party registry services: are managed registries that allow users to store and share their Docker images.
Examples of third-party registries include Azure Container Registry, Google Container Registry, Amazon ECR,
Red Hat Quay, and JFrog Container Registry.

• Self-hosted registries: are managed by organizations that prefer to host container images on their own on-premises
infrastructure, typically due to security, compliance concerns, or lower latency requirements. Running self-
hosted registries requires to deploy a registry server.

Pull and Push images on Docker Hub

As we mentioned, Docker Hub allows users to host and manage their own images, where Docker images can be easily
shared between collaborators, allowing every collaborator to use reproducible environment.

To push built images to the Docker Hub registry, users will need to first log in to Docker Hub and then use the code to
push the image.

docker login --username=your_username --password=your_password
docker push username/image:tag
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Also, pulling images by other developers from Docker Hub is very easy, and allows to use other images with little or
no modification.

docker pull username/image:tag

Benefits of Docker

• Code and dependencies can be packaged together into portable containers that can be run on a variety of different
hosts, regardless of the hardware or operating system.

• Provides versioning of build environments, where image versions can be tracked and rolled back.

• Allow to replicate the working environment that is needed to train and deploy machine learning model on any
system, and removes the reproducibility challenges.

• Trained machine learning models can be easily wrapped into an API in a container, and deployed to remote
servers.

7.27.8 Appendix: Kubernetes

The material in the Appendix is not required for quizzes and assignments.

Although Docker containers provide the tools for ensuring reproducibility, when there are multiple containers that need
to be run on a system consisting of multiple machines, managing the containers can become difficult. Kubernetes is
a platform for orchestration of containers, that manages the coordination and communication between multiple con-
tainers. That is, for a set of containers and a set of available machines on a cluster, Kubernetes determines the optimal
assignment of machines for each container. This is advantageous because it allows the system to function without the
need for human intervention. E.g., if one container shuts down unexpectedly, it will run another container to replace
its function.

The combination of Docker containers and Kubernetes orchestrator is well suited for developing and deploying mi-
croservices, where software applications are designed as a set of multiple, small, and decoupled services, that can be
scaled and updated independently.

Pod

The building block of Kubernetes is a pod, consisting of one or multiple related containers, shared networking, and
shared volume. The pods are designed as temporary objects, that will persist only for some period of time. Each pod
is assigned a unique IP address to communicate with it. Volume is a storage location that is outside of a container, and
allows to store data independently from the container. If a container is deleted, the volume is not deleted, and it can be
used by other containers.
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Deployment

Deployment object consists of several pods, which include a template pod and multiple replicas pods. Having replicas
of pods allows to replace any crashing pods at any time.
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Service

Service object directs traffic to the pods, by balancing the incoming traffic between multiple pods. Also, if some pods
crash, the service will launch new pods and it will direct the traffic to the new pods. Service also allows clients to access
the pods without the need to know specific information about the pods (such as IP address or implementation).

Ingress

Ingress object controls which services that are exposed to external traffic. This allows to make certain services publicly
available (e.g., predictions by a machine learning model) and keep certain services private (e.g., pods for training and
updating the model with new data). In general, ingress refers to data entering a network, and egress is data leaving the
network.
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Control Plane

Kubernetes control plane controls how workloads are executed, monitored, and maintained on a cluster. A figure
showing the elements in a control plane is shown below.

The cluster has a master node and multiple worker nodes that run the applications. For instance, a cluster can have
several GPU-optimized worker nodes for model training and CPU-optimized worker nodes for making predictions.

The master node includes: scheduler - for assigning objects to available machines, controller manager - monitors the
state of the cluster and compares the current state to the desired state, API server - communicates with a client and
accepts requests, and etcd component - stores the current state of the cluster.

Each worked node includes a control component consisting of a kubelet and kube-proxy. The kubelet communicates
with the API server to find out which workloads have been assigned to the node, and runs the pods to complete the
assigned workloads. Kube-proxy enables containers from different pods to communicate with each other.

The Kubernetes system is designed to handle any failures in the cluster. For example, if the master node is down, the
applications will not be immediately affected, and a new master node will be launched to continue the operation of the
system.

Kubernetes are designed to orchestrate large number of workloads that may include multiple Data Science projects,
distributed across clusters of servers, and serving continuously a large number of end-users. It is not the optimal
solution for working with a single machine to run a lightweight load that does not need frequent changes and updates.

7.27.9 References

1. Full Stack Deep Learning course, Lecture 11: Deployment & Monitoring, available at https://
fullstackdeeplearning.com/spring2021/lecture-11/.

2. ML in Production, Docker for Machine Learning, by Luigi Patruno, available at: https://mlinproduction.com/
docker-for-ml-part-1/.

3. A Beginner’s Guide to Understanding and Building Docker Images, available at: https://jfrog.com/
knowledge-base/a-beginners-guide-to-understanding-and-building-docker-images/.

4. Machine Learning with Docker, Demonstrations about Using Docker for Machine Learning, available at: https:
//github.com/BINPIPE/docker-for-ml.

5. An introduction to Kubernetes, by Jeremy Jordan, available at: https://www.jeremyjordan.me/kubernetes/.
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BACK TO TOP

7.28 Tutorial 1 - Jupyter Notebooks

7.28.1 Introduction to Jupyter Notebooks

Jupyter Notebook is an open-source web-based interactive computational environment, designed for sharing documents
that contain code, text, equations, and visualizations. It is part of Project Jupyter, which also includes Jupyter Lab - an
updated version of Jupyter Notebook with enhanced capabilities.

Jupyter notebooks are documents that contain both code and text elements, such as equations, visualiza-
tions (i.e., figures and graphs), links, and similar related elements.

The name Jupyter does not really relate to the largest planet in the Solar system (spelled Jupiter), but instead, it is a
coined word from the three core programming languages supported by Jupyter notebooks: Julia, Python, and R.

Jupyter Notebook was built upon an older IDE for Python called IPython.

The recommended user interface for this course is Jupyter Lab, since it offers advanced functionalities in comparison
to Jupyter Notebook, such as access to a terminal, interactive widgets for exploring data, it allows multiple views into
the same document, quick switching between opened files, etc.

Both Jupyter Lab and Jupyter Notebook are part of the Anaconda distribution, therefore if you have installed Anaconda
on your computer, they will also be installed. And if you don’t have Anaconda installed, you can install Jupyter Lab
and Jupyter Notebook separately as any other package, e.g., pip install jupyterlab.

The Jupyter Lab environment can be started by running the command jupyter lab in the Command Prompt on
Windows systems, or in a shell or terminal window on computers with other operating systems.

Jupyter will open in your default browser, or in a new tab if the browser has other open tabs, at the following URL:
http://localhost:8889/lab. Localhost is not a website, it only indicates that the content is being served from your local
machine. Therefore, Jupyter can be run on a computer without Internet access, or it can be run on a remote server
accessed through the Internet.

Also, if you accidentally close the window, you can open it again while your server is running. For this example,
navigating to http://localhost:8889/lab on your web browser will open it again.

The Jupyter Lab environment on my computer looks like in the figure below. The environment is also called Jupyter
Dashboard, as it allows working with and managing notebooks. The start-up directory for the Jupyter Dashboard can
be changed to a preferred directory.
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It is also possible to open Jupyter Lab from the Anaconda Prompt, by typing jupyter-lab in the command line.

And probably the most convenient way is to create a shortcut to Jupyter Lab on your desktop for direct access.

Creating a New Notebook

Now, let’s create a new notebook.

One way to do that is to click on the File tab in the top menu, then select the New button, and in the drop-down menu
choose Notebook. Note that the New button also have options to open a new console or terminal (which allows to
run shell commands directly in your browser, instead of the Windows Command Prompt), or create a new text file,
markdown file, or Python file.
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In the newly opened window you will be prompted to select the kernel for the notebook. We can select the default
Python 3 kernel. The next section explains more about the kernels in notebooks.

Or, an even simpler way for creating a new notebook, is to directly click on Notebook Python 3 (ipykernel) icon
on the Jupyter Dashboard.
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The newly created notebook will look like this.

The default assigned title to new notebooks is Untitled. You can see the title at the top of the page.

To change the title into a more descriptive one, right-click on the word Untitled, in the drop-down menu select
Rename Notebook.., and enter the name Hello_world, for example.
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The new title of the Notebook should now show at the top of the page. Also, in the left-side panel you will see the new
notebook Hello_world.ipynb listed in the current working directory.

The extension for Jupyter Notebook documents is .ipynb, which is an acronym for IPython Notebook.

Cells in Jupyter Notebooks

Jupyter Notebooks organize codes in cells. Our newly created notebook has one empty cell in it.

The cells use the Python 3 kernel that we chose when we created the notebook. The used kernel for Python code
execution in Jupyter Notebooks is also called IPython kernel. The kernel allows to execute Python code in the cell.

A cell is a container for code that is to be executed by the notebook’s kernel, or text that is to be displayed
in the notebook.

A kernel is a program that executes the code in a cell. Jupyter Notebook has a kernel for Python code, but
also there are other kernels available for other programming languages.

Let’s give it a try and write print('Hello world!') in the cell. To execute the cell, we can either click on the Run
button in the toolbar on the top of the screen, or we can press the Shift and Enter keys on the keyboard.

When you run a code cell, the kernel executes the code and the output of the code is returned back to the cell to be
displayed.

Notice that each cell has a number, enclosed in square brackets [1] to the left of the cell. If we write another statement
in the next cell, the order of the cell will be automatically changed to [2]. But also, if we run the first cell multiple
times, each time the cell is executed the cell number will increase. This way, in a program with many cells, we can tell
the order in which the cells were executed.

Using multiple cells in a module allows to separate the code into logical groups for improved code readability.
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Furthermore, the variables and imported packages are shared across cells. For instance, if we define a variable X in cell
2, we can invoke the same variable in cell 3. Therefore, importing libraries or defining functions needs to be done only
once in a notebook, and they are afterward shared by all cells in the notebook.

One difference between a Python script and a Jupyter notebook is that we can run the cells in a notebook out of order.
Because of this, we should be very careful about variable reuse across cells. A good practice is to arrange the cells in
the order in which we expect others to run the cells when they use the notebook.

If there are errors in our code in a Jupyter Notebook that can be related to variable name conflicts, it is recommended
to select Restart Kernel... from the Kernel tab. This will restart the kernel and clear all variables.

Before sharing notebooks with others, or before submitting your homework assignment in a Jupyter notebook, it is a
good practice to select Restart Kernal and Run All Cells... from the Kernel tab to avoid issues with variable
reuse across cells.

7.28.2 Jupyter Lab User Interface

Drop-Down Menus

Jupyter Notebooks have the following drop-down menus on the top of the screen:

• File: allows to create a new notebook, open existing notebooks, or save, download, and close notebooks.

• Edit: have cut, copy, and paste cells buttons, and also allows to delete, split, merge, or reorder the cells in a
notebook.

• View: offers commands for toggling the visibility of the header, toolbar, and line numbers.

• Run: have various commands for running cells above or below a cell.

• Kernel: is for working with the selected kernel, allowing to restart the kernel, reconnect to the kernel, shut it
down, or change the kernel.

• Tabs: provides a tabbed interface to manage and navigate open documents and interfaces.

• Settings: has access to configuration options and preferences for customizing Jupyter Lab.

• Help: to get help about Jupyter Notebooks, learn about keyboard shortcuts, or access links to reference materials.

Beside the top menus, several functions that are the most commonly used can be invoked from the top toolbar. If you
hover the mouse over the icons, a brief description will show up. The icons include: save, insert a new cell, cut, copy,
and paste selected cells, run cells, interrupt the kernel, restart the kernel, select the cell type, and render with panel.
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Left Sidebar in Jupyter Lab

The left side-bar or the left-side panel in Jupyter Lab contains several tabs, including:

• File browser: shows the content of the current working directory.

• Running terminals and kernels: lists the terminals and notebooks that are currently running (shown below). It
allows to shut down notebooks and release computational resources.

• Table of contents: allows to navigate the structure of the notebook.

• Extension manager: for managing third party-extensions.
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Shutting Down Notebooks

Note that even if we close the tab of a notebook, the kernel will continue to run in the background, and it needs to be
shut down from the Running terminals and kernels tab shown in the above figure to be fully “closed”.

Otherwise, Jupyter Notebooks are auto-saved pretty frequently (every 120 seconds), and it is rare to lose data .When the
notebook is saved, A checkpoint file is created in a subdirectory of the working directory named.ipynb_checkpoints.
The checkpoint file enables to recoveranyr unsaved work in the event of an unexpected issue.

Cell Types

There are three cell types in Jupyter Notebooks: Code, Markdown, and Raw.

The default one is Code, which we use for running codes.

Markdown cells are used for Markdown, which is a markup language that is a superset of HTML. In fact, I created
this file using Markdown language cells. If you click within the cells of this file, you can see the original markdown
text. Markdown is a simple language, that adds formatting elements to plain text. For example, headings are created
by adding the # mark (as in # Lecture 1), for bold font use two asterisks, for italic font use a single asterisk, etc.
Still, Markdown accepts standard HTML language, which can add complexity when needed. See several examples in
the next section, and to learn more about the syntax of Markdown language please visit follow this link.

Raw cell type is only intended for special use cases, and it allows using the nbconvert command line tool to control the
formatting when converting a Notebook to another format.

Markdown Language

The following cell shows examples of Markdown language code, and the cell afterward displays the output of the cell.
Note that unlike the code cells that have line numbers on the left, the markdown cells don’t have line numbers.

### Example Heading: This is Level 3 Heading
This is some plain text that forms a paragraph.
Add emphasis via **bold** and __bold__, *italic* and _italic_, or ***bold and italic***␣
→˓and ___bold and italic___.
Paragraphs must be separated by an empty line.
- Sometimes we want to include lists.

- Which can be indented.

[It is possible to include hyperlinks](https://www.example.com).

1. Lists can also be numbered.
2. For ordered lists.

(continues on next page)
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(continued from previous page)

We can add inline equations using LaTeX code, e.g., $c = \sqrt{a^2 + b^2}$,
and equations in a new line: $$c = \sqrt{a^2 + b^2}$$

Inline code uses single backticks: `foo()`, and code blocks use triple backticks or they␣
→˓can be indented by 4 spaces:

foo()

And finally, adding images is easy: ![Image title text](images/house.png)

# This is a level 1 heading example
## This is a level 2 heading example

Example Heading: This is Level 3 Heading

This is some plain text that forms a paragraph. Add emphasis via bold and bold, italic and italic, or bold and italic
and bold and italic. Paragraphs must be separated by an empty line. - Sometimes we want to include lists. - Which
can be indented.

It is possible to include hyperlinks.

1. Lists can also be numbered.

2. For ordered lists.

We can add inline equations using LaTeX code, e.g., 𝑐 =
√
𝑎2 + 𝑏2, and equations in a new line:

𝑐 =
√︀
𝑎2 + 𝑏2

Inline code uses single backticks: foo(), and code blocks use triple backticks:

bar()

Or can be indented by 4 spaces:

foo()

And finally, adding images is easy:
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Summary

In conclusion, Jupyter Notebooks are very useful for learning Python and testing your codes, as well as for sharing
Python codes because others can directly see the outputs of the codes, which may include numerical results, graphs,
tables, and other visualizations. The notebooks also display any error messages and other important information in the
code. For instance, when training neural networks it can sometimes take hours for executing the code. Being able to
see all the results and outputs from the models without the need to run the codes is extremely helpful and simplifies
collaboration with others.

The following are tips for best practices when working with Jupyter Notebooks:

• Don’t forget to name your notebooks, and don’t have several notebooks Untitled, Untitled (1), etc. in each
folder.

• Provide comments to your code to improve the code readability, and help others understand your code.

• Arrange your code into cells, using logical grouping of the code lines.

• Keep the cells simple, and don’t put too many functions into one cell.

• Try to import all packages in the first code cell of the notebook.

• Display the graphs and plots inline, so that they are visible to others.

BACK TO TOP

7.29 Tutorial 2 - Terminal and Command Line

7.29.1 Introduction to Command Line Interface

Command Line Interface (CLI) is a text-based interface that allows users to interact with a computer system by typing
commands.

It’s a way to give instructions to the computer using textual input. The command line is used to execute various
commands, run programs, navigate the file system, and perform various tasks.

It’s commonly found in operating systems like Unix, Linux, and Windows, where users can enter commands directly
into the command-line interface.

Why use CLI?

• CLI is more efficient for certain tasks, since we can execute the task with a single command instead of multiple
clicks on different windows.

• Although Windows has features like Windows Task Scheduler, CLI is more flexible and easier to automate tasks.

• For some tasks, such as running tasks on a remote server, CLI is the only way to interact with a computer.
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Basic Definitions Related to CLI

Terminal: A terminal is a software application that offers access to a CLI. It’s the platform or environment in which
the command line is displayed and utilized. Essentially, it’s the visual medium that facilitates communication with the
computer via the command line.

Shell: A shell is a program designed to interpret and execute the commands entered by users through the command
line. Acting as a command-line interpreter, it translates human-readable commands into instructions comprehensible
by the operating system for execution. The shell also manages tasks like input and output redirection, environment
variables, scripting, and various other functionalities. Different operating systems deploy distinct shell programs. For
example, Unix-like systems typically utilize shells such as Bash, Zsh, or Fish, while Windows employs the Command
Prompt and PowerShell.

Console: The console serves as the physical device that enables you to interact with the computer.

In summary, the command line functions as a text-based instruction method, the terminal provides the visual interface
for the command line, the shell is the program responsible for interpreting and executing input commands through the
command line, and the console is the computer screen, keyboard, mouse we use to interact with our computer.

Access the Command Prompt in Windows

• To access the Command Prompt, enter “command prompt” in the Start menu’s search bar to search for it. Al-
ternatively, you can enter “cmd”, which is the abbreviated name of the executable responsible for running the
Command Prompt.

• Or, press Win + R to open the Run box, then enter “cmd” and press Enter.

796 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

• Alternatively, press Win + X, and choose Command Prompt (or Powershell, depending on Windows settings)
from the menu.

To run Command Prompt as an admin, hold Ctrl+Shift before pressing Enter, or right-click on the Command Prompt
to select “Run as administrator”.
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Other Ways to Access CLI in Windows

• Access through Jupyter Lab. After opening Jupyter Lab, in the top menu select the File tab, then click New,
and select Terminal.

• Or, enter Anaconda Prompt in the Start menu’s search bar to search for it. The difference between Anaconda
Prompt and Command Prompt is that Anaconda Prompt offers some conda-specific features, such as conda
environment management, package management, and pre-configured data science packages.
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7.29.2 Command Prompt Basics

After opening a Command Prompt window, some basic information will be displayed.

For example, the current directory C:\Users\[Username]> will be displayed as in the figure below.

Only valid commands will be accepted in the Command Prompt, otherwise a message like this will be displayed.

Help command: typing help in the Command Prompt will display a list of commands and the associated descriptions.
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For more information on a specific command, type HELP command-name, e.g. HELP DIR. As you may have noticed,
the commands in Windows Command Prompt are not case-sensitive, and both help and HELP work.
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Listing and Changing Directories

DIR is an abbreviation for the word directory, and it lists the contents of the directory (folder) that you are currently in.
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To change directory, use CD followed by the name of the folder you want to access.
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To go back to the parent directory, use CD ..
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Creating and Deleting Files/Folders in Command Prompt

Use mkdir followed by [new folder name/new file name] to create a new folder/file.

E.g., the command to create a folder named “test” is mkdir test.
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Use rmdir followed by [new folder name] to delete a folder.

Use del followed by [new file name] to delete a file.
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CLI Management

Enter cls to clear the previous content.

Press Ctrl+C to end a command that is running

Run Python Files in Command Prompt

To execute a Python file, simply type python followed by the path to the file.

To find the file directory, just right-click on the file, then click “Properties” and copy the directory of the folder.

The python file directory will be the name of the folder the file is in, followed by a backward slash \ and the file name.

7.29. Tutorial 2 - Terminal and Command Line 809



Fall 2023 Python Programming for Data Science, Release 0.1

E.g., the file directory of the test.py file is C:\Users\L\Desktop\TA, and therefore the path for the python file is
C:\Users\L\Desktop\TA\test.py.

To run this file, use the command python "C:\Users\L\Desktop\TA\test.py".

Access the Terminal in Ubuntu (Linux)

• Click on the Activities on the upper left of the screen, and type keywords like “terminal”, “command”,
“prompt”, or “shell”.

• Press Ctrl+Alt+T.

Terminal Basics

After opening a terminal window, username@linux-desktop:~$ will be displayed.
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Basic Commands in Ubuntu (Linux)

Commands in Linux are case-sensitive, but commands in Windows are NOT case-sensitive.

The command help in Linux is the same command as in Windows, and it displays the available command names.

Similarly, help followed by a command-name will show the specific information of that command.

In Linux, ls is used to list the files in a directory instead of the command dir in Windows.

To run a python file in Linux terminal, type python3 followed by the file name.

References

1. “A Beginner’s Guide to the Windows Command Prompt” by Ben Stegner, available at: https://www.makeuseof.
com/tag/a-beginners-guide-to-the-windows-command-line/.

2. “Command Line for Beginners – How to Use the Terminal Like a Pro” by German Cocca, available at: https:
//www.freecodecamp.org/news/command-line-for-beginners/.
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7.30 Tutorial 3 - Python IDEs, VS Code

This tutorial first presents several common environments and editors for Python code development, and afterward
describes VS Code in more detail.

7.30.1 Python IDEs

An IDE (or Integrated Development Environment) is a program that integrates tools to facilitate soft-
ware development, such as a code editor, tools for program execution and debugging, and source control.

In other words, an IDE is a graphical user interface for program development, that allows end-users to edit, run, browse,
and debug programs from a single interface. Using an IDE is especially convenient for beginners to start editing and
running codes.

Most IDEs support several different programming languages. There are some that are designed specifically for Python
development (like the IDLE described below).

Also, most IDEs offer a code editor, although the code editor can be an independent software application. A code
editor can be a simple text editor, or it can also allow code execution and debugging. In comparison to IDEs, code
editors are simpler, but they are also less resource-demanding.

In general, IDEs offer the following basic features:

• Save and reload code files

• Run code from within the environment

• Debugging support

• Syntax highlighting

• Automatic code formatting
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The debugging support typically allows setting breakpoints in the code that stop the execution, showing variable values,
and so on. For simpler debugging operations, most IDEs allow clicking on the text of an error message to quickly jump
to the line of code where the error occurred, and after correcting the error, to quickly run the code.

Syntax highlighting refers to displaying source code using different colors and fonts according to the category of the
written text and commands. It facilitates code writing by providing visually distinct syntax, and it can help to identify
mistakes in the code.

Automatic code formatting can include features such as automated indentation, automated spacing around operators,
auto-completion, etc.

Other helpful features often include: advanced text and file search options, help links or pop-up windows when hovering
with the mouse over an object, selection list for object attributes (e.g., after a . press the Tab key), links to definition
of objects, and similar.

IDLE

IDLE is the original IDE for Python development. It is available for Windows, Unix, and Mac OS platforms, and it
comes preinstalled with the Python installation. IDLE is free, easy to use, and portable across platforms.

The name is a variation of IDE, and it is named after one of the members of the Monty Python group - Eric Idle.

To access IDLE, type in the Windows Command Prompt: python -m idlelib.idle. The IDLE window is shown in
the figure below. Notice the >>> prompt in IDLE, which allows interactive programming, i.e., we can type commands
and run them immediately. Also note the syntax highlighting of the entered Python statements, and the menu bar on
the top of the window that is similar to the Jupyter Notebook menu and to other MS Office apps (e.g., MS Word).

IDLE is simple to use and recommended for newcomers because it simplifies some details and does not assume prior
experience with system command lines. On the other hand, it is somewhat limited compared to more advanced com-
mercial IDEs.
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Spyder

Spyder is a Python IDE (https://github.com/spyder-ide/spyder) which is available with the Anaconda installation, so
you should have it installed on your computer. It can be accessed from the Start Program menu, as shown below. Spyder
offers most of the common IDE features. An interesting feature that is not offered by many similar IDEs is the variable
explorer, which displays the user data and variables in a table-based layout inside the IDE.
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Visual Studio

Visual Studio is a general-purpose IDE (https://visualstudio.microsoft.com/vs/) developed by Microsoft. It is available
for Windows and Mac OS, both as free (Community) and paid (Professional and Enterprise) versions. Visual Studio
provides support for program development in different programming languages. Python Tools for Visual Studio (PTVS)
enables Python coding in Visual Studio. VS is a large download, but it provides excellent tools for different languages.
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Eclipse and PyDev

Eclipse and PyDev is an IDE (www.eclipse.org), originally developed as a Java IDE, but it supports Python devel-
opment by installing the PyDev plug-in. It is a popular and powerful IDE for Python development. It is available for
Windows, Linux, and Mac OS. However, it may not be the easiest IDE for beginner programmers.
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PyCharm

PyCharm is a fully dedicated IDE for Python (https://www.jetbrains.com/pycharm/). Available in both paid (Profes-
sional) and free open-source (Community) editions, PyCharm installs quickly and easily on Windows, Mac OS, and
Linux platforms. PyCharm allows writing, running, and debugging Python code, and it has support for source control
and projects.
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Other IDEs

Beside these, there are also other general-purpose IDEs and code editors, such as Komodo, Sublime Text, Atom, GNU
Emacs, and other IDEs dedicated to Python code development, such as PythonWin, NetBeans,Thonny, and many
others.

7.30.2 Introduction to VS Code

Visual Studio Code (VS Code) is a code editor (https://code.visualstudio.com/), available for Windows, Linux, and
Mac OS. Differently from Visual Studio IDE listed above, Visual Studio Code is small and lightweight, open-source,
and extensible. Installing Python support is easy, and VS Code will recognize your Python installation and libraries
automatically. VS Code is built using Electron, a framework for creating desktop applications using JavaScript, HTML,
and CSS. Visual Studio Code is recognized for its rapid launch speed and efficient resource utilization, guaranteeing a
seamless coding experience, even with less powerful hardware.
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VS Code Download and Installation

VS Code can be downloaded from: https://code.visualstudio.com/
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During the installation, choose all the default options.

After the installation is completed, open the VS Code, and all initial settings can be selected as defaults.

Then you will see the window similar to the following figure.

Python Extension Installation and Configuration

To run Python in VS Code, we need to install the Python extension and Jupyter extension first.

On the left sidebar of the VS Code Window, click the Extension button and install the Python Extension.
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Similarly, search for the Jupyter notebook extension and install the extension.
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Start Jupyter Notebook in VS Code

To start a project, it is preferred to create a new folder for the project and store all files in that specific folder.

Then, we can open the folder in VS Code and create files/scripts inside the folder.

1) Click File and Open Folder in the upper left corner of the window to open the folder that you want to start
your project in.
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2. There are two ways to create a new Jupyter Notebook file inside a folder.
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• Click File and then click New File, afterward choose the Jupyter Notebook option.

• Right-click in the blank area under your folder’s name on the left side of the window to create a New File, then
type your file name with .ipynb.
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3) The first time we run a new file, we need to manually select the kernel.

In the upper right corner of the screen, click Select Kernel to select the Python interpreter.

We can select the default Python interpreter from our previous Anaconda installation.

With that, the installation of Python in VS Code is completed. If any extensions are needed in the future when you
run some specific scripts, VS Code will automatically show a pop-up window to help you with the installation.
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VS Code features

The built-in IntelliSense feature provides key functions such as:

• Auto code completion/Assist/Hint: It predicts and auto-generates code as you type, reducing the requirement
for manual input and diminishing the chances of typos and syntax errors. It offers recommendations for code
elements that align with the current context, simplifying the process of producing accurate code. It also con-
siders the programming language in use and the libraries or modules that you’ve incorporated. This results in
suggestions that are closely aligned with your code’s context, facilitating the exploration of accessible choices.

• Parameter Information: When you call a function/method, it shows information about the function’s parameters,
the data types, and descriptions. This makes it simpler to provide the correct arguments when calling functions.

Variables/Data Viewer enables to examine and engage with the variables and data within your Jupyter notebook’s kernel.
It provides a visual interface for investigating the present condition of variables, their values, and data arrangements.
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In the Data Viewer, you can sort the columns by clicking on the column name, and you can also filter the data by
typing the keywords/syntax.
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Run Cell Operations include:

• Run by Line, which runs the code line by line.

• Execute Above Cells, which runs all the cells above the current cell.

• Execute Cell and Below Cells, which runs the current and all the below cells.
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To move cells, click and hold the blue bar in front of the cell, then move to any place you prefer.
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Copy/Save/Zoom-in Plots.

Copy function allows you to copy the plot to your clipboard.

Save function allows you the save the plot as an image file.

Zoom-in allows you to zoom in and see the details if the plot is too large and complicated.

7.30. Tutorial 3 - Python IDEs, VS Code 831



Fall 2023 Python Programming for Data Science, Release 0.1

Debug features: click the arrow next to the Run Cell button and click Debug Cell, and you can then debug like you
normally do in Python.

BACK TO TOP

7.31 Tutorial 4 - Virtual Environments

A virtual environment is a tool that helps to keep dependencies required by different projects separate by creating
isolated Python virtual environments for them. Virtual environments create containers for each project, so that the
Python interpreter, libraries, and scripts installed in one virtual environment are isolated from those installed in other
virtual environments, as well as they are isolated from the libraries and packages that are installed in the main Python
installation.

Therefore, where we create and activate a virtual environment for a specific project, the project becomes an independent
application, which is isolated from the system-installed Python and from all other Python libraries. This project-specific
virtual environment provides its own Python interpreter, and its own pip to install libraries, separated from other Python
libraries.

By creating and managing separate environments for different projects, there is no chance of breaking currently installed
packages in other environments. It also helps with reproducibility among developers and researchers working on large
projects. For instance, if you have several different projects with their own virtual environments, they can have different
versions of a library: for example, one project can use TensorFlow 1.12, and another can use TensorFlow 2.5. This
way, we won’t worry whether an update to the TensorFlow library in the main system-installed Python would impact
the code in all our projects.
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There are several tools for managing virtual environments. Python 3.3 provides a standard module venv, which is
most commonly used for managing virtual environments. It allows to manage separate package versions for different
projects. When creating a new project, we can simply create a new virtual environment.

• The full official documentation for venv can be found here

• The full official user guide for venv can be found here

• The PEP proposal for venv can be found here

If you are looking for practical examples, it is recommended to consult the user guide. However, if you are looking for
more information about specific details of venv, consulting the full documentation is recommended.

Installing venv

The module venv should be included in the standard Python library. If for some reason you must install it, this can be
done with the following command:

python3 -m pip install --user virutalenv

Note: on Debian/Ubuntu systems, you will need to install the python3-venv package using the following command:

apt install python3.10-venv.

7.31.1 Creating a Virtual Environment

To create a virtual environment, run the following command:

To create a virutal envonment, run the following command:

python3 -m venv path/to/new/virutal/environment (in Unix/MacOS)

py -m pip install --user <virtual_environment_name> (in Windows)

Alternatively, there is a script installed with the venv library to make this more slightly more convenient:

pyvenv /path/to/new/virtual/environment (in Unix/MacOS)

python -m <virtual_environment_name> ./venv (in Windows)

Activating a Virtual Environment

Before we can start installing packages in the virtual environment, we must activate it. Doing so will put the virtual
environment-specific Python and pip executables in your shell’s PATH.

To activate a virtual environment, run the following command:

source <path-to-venv>/bin/activate (in Unix/MacOS)

.\<virtual_environment_name>\Scripts\activate (in Windows)

To confirm that the virtual environment has been activated you can check the location of your Pytton interpreter:

which python (in Unix/MacOS)

where python (in Windows)

As long as the environment is active, you’ll be able to import packages installed in the environment.

To leave the environment run:

deactivate

7.31. Tutorial 4 - Virtual Environments 833

https://docs.python.org/3/library/venv.html
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
https://peps.python.org/pep-0405/


Fall 2023 Python Programming for Data Science, Release 0.1

Installing Packages

Make sure that the environment you wish to install packages into is active. Once this is done, it is as simple as installing
packages through pip as you would normally. An example command to install requests (a popular library for making
HTTP requests) is:

python3 -m pip install requests (in Unix/MacOS)

pip install requests (in Windows)

To check the list of all packages installed in the newly created virtual environment, use:

pip list

Similarly, we can generate a text file listing all installed libraries in a virtual environment with:

pip freeze > requirements.txt

This can be convenient, because if other users would like to replicate your virtual environment, instead of installing all
libraries one by one, they can just run:

pip install -r requirements.txt

A Word of Caution and Some Best Practices

When a script is installed using venv, its shebang line (starting with #!) points to the environment’s Python interpreter.
This means that these environments are inherently non-portable.

Moreover, if one is careful to include the absolute path to the desired environment interpreter in the shebang line, it
is not necessary to activate the virtual environment before running the script.

For example, if you have an environment called env that has some non-standard packages installed, and you start
writing a script that relies upon these packages but you did not want to (or can not) ensure the environment was active
before running it, simply put something like the following as the shebang line:

#!/<virutal_environment_name>/bin/python

7.31.2 Conda Environment

Conda Env is a self-contained and isolated workspace within the Conda package management system, similar to venv.
It allows to create and manage specific environments for different projects or applications, each with its own set of
packages and dependencies.

The full official documentation for Conda Env can be found here.

Conda Env is pre-installed with Anaconda.

Creating a Conda Env with Commands

1) Open the terminal or an Anaconda Prompt.

2) Type: conda create --name myenv (or you can specify the python version: conda create -n myenv
python=3.9).

3) Type y to proceed.

To activate a Conda Env, type:

conda activate myenv

To list all installed conda environments, type:
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conda env list

To activate the base conda environment from the command prompt in Windows, just type:

conda activate

To deactivate the Conda Env you are in, type:

conda deactivate

Install Packages in a Conda Env

To install scikit-learn, for example, using Conda commands, type:

conda install -c anaconda scikit-learn

Or, you can use pip install as in:

pip install -U scikit-learn

BACK TO TOP

7.32 Tutorial 5 - Web Scraping

This tutorial is adapted from the original tutorial Guide to Web Scraping in the Complete Python 3 Bootcamp by Pierian
Data.

Content Copyright by Pierian Data

Before we begin with web scraping and Python, here are some important rules to follow and understand:

1. Always be respectful and try to get permission to scrape. Do not bombard a website with scraping requests,
otherwise your IP address may be blocked.

2. Be aware that websites change often, meaning your code could go from working to totally broken from one day
to the next.

3. Pretty much every web scraping project is a unique and custom job, so try your best to generalize the skills
learned here.

7.32.1 Basic components of a WebSite

HTML

HTML stands for Hypertext Markup Language and every website on the Internet uses it to display information. Even
the Jupyter Notebook system uses it to display this information in your browser. If you right-click on a website and
select “View Page Source” you can see the raw HTML of a web page. This is the information that Python will be
looking at to grab information from. Let’s take a look at the HTML organization of a simple webpage:

<!DOCTYPE html>
<html>

<head>
<title>Title on Browser Tab</title>

</head>
<body>

(continues on next page)
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(continued from previous page)

<h1> Website Header </h1>
<p> Some Paragraph </p>

</body>
</html>

Let’s break down these components.

Every <tag> indicates a specific block type on the webpage:

1. The <!DOCTYPE html> is the tag for type declaration that HTML documents always start with this, letting the
browser know it is an HTML file.

2. The component blocks of the HTML document are placed between <html> and </html>.

3. Metadata and script connections (like a link to a CSS file or a JS file) are often placed in the <head> block.

4. The <title> tag block defines the title of the webpage (this is what shows up in the tab of a website you’re
visiting).

5. Between <body> and </body> tags are the blocks that will be visible to the site visitor.

6. Headings are defined by the <h1> through <h6> tags, where the number represents the size of the heading.

7. Paragraphs are defined by the <p> tag, and this is essentially just normal text on the website.

There are many more tags than these, such as <a> for hyperlinks, <table> for tables, <tr> for table rows, <td> for
table columns, and more.

CSS

CSS stands for Cascading Style Sheets, and it is what gives “style” to a website, including colors and fonts, and even
some animations. CSS uses tags such as <id> or <class> to connect an HTML element to a CSS feature, such as a
particular color. The id tag is a unique id for an HTML tag and must be unique within the HTML document. The class
tag defines a general style that can be linked to multiple HTML tags. Basically if you only want a single html tag to
be read, you would use an id tag, and if you wanted several HTML tags/blocks to be read, you would create a class in
your CSS doc, and then link it to the rest of these blocks.

7.32.2 Web Scraping with Python

Keep in mind again that you should always have permission for the website you are scraping. Check a website’s terms
and conditions for more info. Also keep in mind that a computer can send requests to a website very fast, so a website
may block your computer’s IP address if you send too many requests too quickly.

There are a few libraries you will need for this task, which you can install with conda install if you are using
Anaconda distribution.

conda install requests
conda install lxml
conda install bs4

If you are not using Anaconda distribution, you can use pip install.

pip install requests
pip install lxml
pip install bs4
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[1]: # Install libraries
!pip install requests
!pip install lxml
!pip install bs4

Requirement already satisfied: requests in c:\users\vakanski\anaconda3\lib\site-packages␣
→˓(2.31.0)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\vakanski\anaconda3\
→˓lib\site-packages (from requests) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in c:\users\vakanski\anaconda3\lib\site-
→˓packages (from requests) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\vakanski\anaconda3\lib\
→˓site-packages (from requests) (1.26.16)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\vakanski\anaconda3\lib\
→˓site-packages (from requests) (2023.7.22)
Requirement already satisfied: lxml in c:\users\vakanski\anaconda3\lib\site-packages (4.
→˓9.2)
Collecting bs4
Downloading bs4-0.0.1.tar.gz (1.1 kB)
Preparing metadata (setup.py): started
Preparing metadata (setup.py): finished with status 'done'

Requirement already satisfied: beautifulsoup4 in c:\users\vakanski\anaconda3\lib\site-
→˓packages (from bs4) (4.12.2)
Requirement already satisfied: soupsieve>1.2 in c:\users\vakanski\anaconda3\lib\site-
→˓packages (from beautifulsoup4->bs4) (2.4)
Building wheels for collected packages: bs4
Building wheel for bs4 (setup.py): started
Building wheel for bs4 (setup.py): finished with status 'done'
Created wheel for bs4: filename=bs4-0.0.1-py3-none-any.whl size=1264␣

→˓sha256=35474541650220b5e135d4bc9cb76cfa5caba3ae35e2c45fe611f4ecb52838ec
Stored in directory: c:\users\vakanski\appdata\local\pip\cache\wheels\d4\c8\5b\

→˓b5be9c20e5e4503d04a6eac8a3cd5c2393505c29f02bea0960
Successfully built bs4
Installing collected packages: bs4
Successfully installed bs4-0.0.1

Example Task 0 - Grabbing the Title of a Page

Let’s start very simple and grab the title of a page. Remember that this is the HTML block with the title tag. For this
task, we will use www.example.com which is a website specifically made to serve as an example domain. Let’s go
through the main steps:

[2]: import requests

[3]: # Step 1: Use the requests library to grab the page
# Note, this may fail if you have a firewall blocking Python/Jupyter
# Note that sometimes you need to run this twice if it fails the first time
res = requests.get("http://www.example.com")

The type of the object res is a requests.models.Response object, and it actually contains the information from
the website as shown in the following cell.
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[4]: type(res)

[4]: requests.models.Response

[5]: res.text

[5]: '<!doctype html>\n<html>\n<head>\n <title>Example Domain</title>\n\n <meta charset=
→˓"utf-8" />\n <meta http-equiv="Content-type" content="text/html; charset=utf-8" />\
→˓n <meta name="viewport" content="width=device-width, initial-scale=1" />\n
→˓<style type="text/css">\n body {\n background-color: #f0f0f2;\n ␣
→˓margin: 0;\n padding: 0;\n font-family: -apple-system, system-ui,␣
→˓BlinkMacSystemFont, "Segoe UI", "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-
→˓serif;\n \n }\n div {\n width: 600px;\n margin: 5em auto;\n␣
→˓ padding: 2em;\n background-color: #fdfdff;\n border-radius: 0.5em;
→˓\n box-shadow: 2px 3px 7px 2px rgba(0,0,0,0.02);\n }\n a:link, a:visited
→˓{\n color: #38488f;\n text-decoration: none;\n }\n @media (max-
→˓width: 700px) {\n div {\n margin: 0 auto;\n width: auto;\
→˓n }\n }\n </style> \n</head>\n\n<body>\n<div>\n <h1>Example Domain</
→˓h1>\n <p>This domain is for use in illustrative examples in documents. You may use␣
→˓this\n domain in literature without prior coordination or asking for permission.</p>
→˓\n <p><a href="https://www.iana.org/domains/example">More information...</a></p>\n</
→˓div>\n</body>\n</html>\n'

To analyze the infromation extracted from the webpage, we use the library BeautifulSoup. Technically, we could use
our own custom script to loook for items in the string of res.text, however the BeautifulSoup library already has
lots of built-in tools and methods to grab information from a string of an HTML file. Using BeautifulSoup we can
create a “soup” object that contains all the “ingredients” of the webpage.

[6]: import bs4

[7]: soup = bs4.BeautifulSoup(res.text)

[8]: soup

[8]: <!DOCTYPE html>
<html>
<head>
<title>Example Domain</title>
<meta charset="utf-8"/>
<meta content="text/html; charset=utf-8" http-equiv="Content-type"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<style type="text/css">

body {
background-color: #f0f0f2;
margin: 0;
padding: 0;
font-family: -apple-system, system-ui, BlinkMacSystemFont, "Segoe UI", "Open Sans

→˓", "Helvetica Neue", Helvetica, Arial, sans-serif;

}
div {

width: 600px;
margin: 5em auto;
padding: 2em;

(continues on next page)
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(continued from previous page)

background-color: #fdfdff;
border-radius: 0.5em;
box-shadow: 2px 3px 7px 2px rgba(0,0,0,0.02);

}
a:link, a:visited {

color: #38488f;
text-decoration: none;

}
@media (max-width: 700px) {

div {
margin: 0 auto;
width: auto;

}
}
</style>

</head>
<body>
<div>
<h1>Example Domain</h1>
<p>This domain is for use in illustrative examples in documents. You may use this

domain in literature without prior coordination or asking for permission.</p>
<p><a href="https://www.iana.org/domains/example">More information...</a></p>
</div>
</body>
</html>

Now let’s use the .select() method to grab elements. Since we are looking for the 'title' tag, so we will pass in
'title'.

[9]: soup.select('title')

[9]: [<title>Example Domain</title>]

Notice that the returned object is actually a list containing all the title along with the tags. Since this object it still a
specialized tag, we can use getText() to grab just the text.

[10]: title_tag = soup.select('title')

[11]: title_tag[0]

[11]: <title>Example Domain</title>

[12]: type(title_tag[0])

[12]: bs4.element.Tag

[13]: title_tag[0].getText()
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[13]: 'Example Domain'

Example Task 2 - Grabbing All Elements of a Class

Let’s try to grab all the section headings of the Wikipedia Article on Grace Hopper from this URL: https://en.wikipedia.
org/wiki/Grace_Hopper

[14]: # Get the request
res = requests.get('https://en.wikipedia.org/wiki/Grace_Hopper')

[15]: # Create a soup from request
# The second parameter "lxml" is the type of parser to use.
# lxml is a faster alternative to python's native HTML parser.
soup = bs4.BeautifulSoup(res.text,"lxml")

To figure out what we are actually looking for, let’s inspect the elements on the page.

Syntax to pass to the .select() method

Match Results

soup.select(‘div’)

All elements with the <div> tag

soup.select(‘#some_id’)

The HTML element containing the id attribute of some_id

soup.select(‘.notice’)

All the HTML elements with the CSS class named notice

soup.select(‘div span’)

Any elements named <span> that are within an element named <div>

soup.select(‘div > span’)

Any elements named <span> that are directly within an element named <div>, with no other element in between

The section headers have the class "mw-headline". Because this is a class and not a straight tag, we need to adhere
to some syntax for CSS.

[17]: # note that depending on your IP Address,
# this class may be called something different
soup.select(".mw-headline")

[17]: [<span class="mw-headline" id="Early_life_and_education">Early life and education</span>,
<span class="mw-headline" id="Career">Career</span>,
<span class="mw-headline" id="World_War_II">World War II</span>,
<span class="mw-headline" id="UNIVAC">UNIVAC</span>,
<span class="mw-headline" id="COBOL">COBOL</span>,
<span class="mw-headline" id="Standards">Standards</span>,
<span class="mw-headline" id="Retirement">Retirement</span>,
<span class="mw-headline" id="Post-retirement">Post-retirement</span>,
<span class="mw-headline" id="Anecdotes">Anecdotes</span>,
<span class="mw-headline" id="Death">Death</span>,

(continues on next page)
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(continued from previous page)

<span class="mw-headline" id="Dates_of_rank">Dates of rank</span>,
<span class="mw-headline" id="Awards_and_honors">Awards and honors</span>,
<span class="mw-headline" id="Military_awards">Military awards</span>,
<span class="mw-headline" id="Other_awards">Other awards</span>,
<span class="mw-headline" id="Legacy">Legacy</span>,
<span class="mw-headline" id="Places">Places</span>,
<span class="mw-headline" id="Programs">Programs</span>,
<span class="mw-headline" id="In_popular_culture">In popular culture</span>,
<span class="mw-headline" id="Grace_Hopper_Celebration_of_Women_in_Computing">Grace␣
→˓Hopper Celebration of Women in Computing</span>,
<span class="mw-headline" id="See_also">See also</span>,
<span class="mw-headline" id="Notes">Notes</span>,
<span class="mw-headline" id="References">References</span>,
<span class="mw-headline" id="Obituary_notices">Obituary notices</span>,
<span class="mw-headline" id="Further_reading">Further reading</span>,
<span class="mw-headline" id="External_links">External links</span>]

[18]: for item in soup.select(".mw-headline"):
print(item.text)

Early life and education
Career
World War II
UNIVAC
COBOL
Standards
Retirement
Post-retirement
Anecdotes
Death
Dates of rank
Awards and honors
Military awards
Other awards
Legacy
Places
Programs
In popular culture
Grace Hopper Celebration of Women in Computing
See also
Notes
References
Obituary notices
Further reading
External links
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Example Task 3 - Getting an Image from a Website

Let’s attempt to grab the image of the Deep Blue Computer from this Wikipedia article: https://en.wikipedia.org/wiki/
Deep_Blue_(chess_computer)

[19]: res = requests.get("https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)")

[20]: soup = bs4.BeautifulSoup(res.text,'lxml')

[23]: # Find all tags with 'img' sub-string
img_tags = soup.find_all('img')

[24]: # Find the tag with 'Deep_Blue' sub-string, which is the name of the computer.
for img in img_tags:

# print(img['src'])
if 'Deep_Blue' in img['src']:

print(img['src'])

//upload.wikimedia.org/wikipedia/commons/thumb/b/be/Deep_Blue.jpg/220px-Deep_Blue.jpg
//upload.wikimedia.org/wikipedia/commons/thumb/8/83/One_of_Deep_Blue%27s_processors_
→˓%282586060990%29.jpg/220px-One_of_Deep_Blue%27s_processors_%282586060990%29.jpg

We can actually display it with a markdown cell with the following:

<img src='https://upload.wikimedia.org/wikipedia/commons/thumb/b/be/Deep_Blue.jpg/220px-
→˓Deep_Blue.jpg'>

Now that we have the actual link, we can grab the image with requests and get, along with the .content attribute.
Note how we had to add https:// before the link, because if you don’t do this, requests will complain (but it gives
you a pretty descriptive error code).

[25]: image_link = requests.get('https://upload.wikimedia.org/wikipedia/commons/thumb/b/be/
→˓Deep_Blue.jpg/220px-Deep_Blue.jpg')
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[ ]: # The raw content (it's a binary file, meaning we will need to use binary read/write␣
→˓methods for saving it)
image_link.content

Let’s write the image to a jpg file. Note the 'wb' call to denote a binary writing of the file.

[27]: f = open('my_new_file_name.jpg','wb')

[28]: f.write(image_link.content)

[28]: 16806

[29]: f.close()

Now we can display this file right here in the notebook as markdown using:

<img src="image/my_new_file_name.jpg" width="300">

Just write the above line in a new markdown cell and it will display the image we just downloaded.
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Example Project - Working with Multiple Pages and Items

Let’s show a more realistic example of scraping a full site. The website: http://books.toscrape.com/index.html is
specifically designed for people to scrape it. Let’s try to get the title of every book that has a 2 star rating and return a
Python list with all their titles.

We will do the following:

1. Figure out the URL structure to go through every page

2. Scrape every page in the catalog

3. Figure out what tag/class represents the Star rating

4. Filter by that star rating using an if statement

5. Store the results in a list

We can see that the URL structure is the following:

http://books.toscrape.com/catalogue/page-1.html

[30]: base_url = 'http://books.toscrape.com/catalogue/page-{}.html'

We can then fill in the page number with .format().

[31]: res = requests.get(base_url.format('1'))

Now let’s grab the products (books) from the get request result.

[32]: soup = bs4.BeautifulSoup(res.text,"lxml")

[ ]: soup.select(".product_pod")

Now we can see that each book has the product_pod class. We can select any tag with this class, and then further
reduce it by its rating.

[33]: products = soup.select(".product_pod")

[34]: example = products[0]

[35]: type(example)

[35]: bs4.element.Tag

[36]: example.attrs

[36]: {'class': ['product_pod']}

By inspecting the webpage we can see that the class we want is class='star-rating Two'. If you click on this in
your browser, you’ll notice it displays the space as a dot . , so that means we want to search for ".star-rating.Two".

[37]: list(example.children)

[37]: ['\n',
<div class="image_container">
<a href="a-light-in-the-attic_1000/index.html"><img alt="A Light in the Attic" class=
→˓"thumbnail" src="../media/cache/2c/da/2cdad67c44b002e7ead0cc35693c0e8b.jpg"/></a>

(continues on next page)
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(continued from previous page)

</div>,
'\n',
<p class="star-rating Three">
<i class="icon-star"></i>
<i class="icon-star"></i>
<i class="icon-star"></i>
<i class="icon-star"></i>
<i class="icon-star"></i>
</p>,
'\n',
<h3><a href="a-light-in-the-attic_1000/index.html" title="A Light in the Attic">A Light␣
→˓in the ...</a></h3>,
'\n',
<div class="product_price">
<p class="price_color">^A£51.77</p>
<p class="instock availability">
<i class="icon-ok"></i>

In stock

</p>
<form>
<button class="btn btn-primary btn-block" data-loading-text="Adding..." type="submit">
→˓Add to basket</button>
</form>
</div>,
'\n']

[38]: example.select('.star-rating.Three')

[38]: [<p class="star-rating Three">
<i class="icon-star"></i>
<i class="icon-star"></i>
<i class="icon-star"></i>
<i class="icon-star"></i>
<i class="icon-star"></i>
</p>]

But we are looking for 2 stars, so it looks like we can just check to see if something was returned.

[39]: example.select('.star-rating.Two')

[39]: []

Alternatively, we can just quickly check the text string to see if "star-rating Two" is in it. Either approach is fine
(there are also many other alternative approaches).

Now let’s see how we can get the title if we have a 2-star match:

[40]: example.select('a')

[40]: [<a href="a-light-in-the-attic_1000/index.html"><img alt="A Light in the Attic" class=
→˓"thumbnail" src="../media/cache/2c/da/2cdad67c44b002e7ead0cc35693c0e8b.jpg"/></a>,
<a href="a-light-in-the-attic_1000/index.html" title="A Light in the Attic">A Light in␣
→˓the ...</a>] (continues on next page)
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[41]: example.select('a')[1]

[41]: <a href="a-light-in-the-attic_1000/index.html" title="A Light in the Attic">A Light in␣
→˓the ...</a>

[42]: example.select('a')[1]['title']

[42]: 'A Light in the Attic'

Be aware that a firewall may prevent this script from running. Also if you are getting a no response error, maybe try
adding a sleep step with time.sleep(1).

[43]: two_star_titles = []

for n in range(1,51):

scrape_url = base_url.format(n)
res = requests.get(scrape_url)

soup = bs4.BeautifulSoup(res.text,"lxml")
books = soup.select(".product_pod")

for book in books:
if len(book.select('.star-rating.Two')) != 0:

two_star_titles.append(book.select('a')[1]['title'])

[44]: two_star_titles

[44]: ['Starving Hearts (Triangular Trade Trilogy, #1)',
'Libertarianism for Beginners',
"It's Only the Himalayas",
'How Music Works',
'Maude (1883-1993):She Grew Up with the country',
"You can't bury them all: Poems",
'Reasons to Stay Alive',
'Without Borders (Wanderlove #1)',
'Soul Reader',
'Security',
'Saga, Volume 5 (Saga (Collected Editions) #5)',
'Reskilling America: Learning to Labor in the Twenty-First Century',
'Political Suicide: Missteps, Peccadilloes, Bad Calls, Backroom Hijinx, Sordid Pasts,␣
→˓Rotten Breaks, and Just Plain Dumb Mistakes in the Annals of American Politics',
'Obsidian (Lux #1)',
'My Paris Kitchen: Recipes and Stories',
'Masks and Shadows',
'Lumberjanes, Vol. 2: Friendship to the Max (Lumberjanes #5-8)',
'Lumberjanes Vol. 3: A Terrible Plan (Lumberjanes #9-12)',
'Judo: Seven Steps to Black Belt (an Introductory Guide for Beginners)',
'I Hate Fairyland, Vol. 1: Madly Ever After (I Hate Fairyland (Compilations) #1-5)',
'Giant Days, Vol. 2 (Giant Days #5-8)',
'Everydata: The Misinformation Hidden in the Little Data You Consume Every Day',

(continues on next page)
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"Don't Be a Jerk: And Other Practical Advice from Dogen, Japan's Greatest Zen Master",
'Bossypants',
'Bitch Planet, Vol. 1: Extraordinary Machine (Bitch Planet (Collected Editions))',
'Avatar: The Last Airbender: Smoke and Shadow, Part 3 (Smoke and Shadow #3)',
'Tuesday Nights in 1980',
'The Psychopath Test: A Journey Through the Madness Industry',
'The Power of Now: A Guide to Spiritual Enlightenment',
"The Omnivore's Dilemma: A Natural History of Four Meals",
'The Love and Lemons Cookbook: An Apple-to-Zucchini Celebration of Impromptu Cooking',
'The Girl on the Train',
'The Emerald Mystery',
'The Argonauts',
'Suddenly in Love (Lake Haven #1)',
'Soft Apocalypse',
"So You've Been Publicly Shamed",
'Shoe Dog: A Memoir by the Creator of NIKE',
'Louisa: The Extraordinary Life of Mrs. Adams',
'Large Print Heart of the Pride',
'Grumbles',
'Chasing Heaven: What Dying Taught Me About Living',
'Becoming Wise: An Inquiry into the Mystery and Art of Living',
'Beauty Restored (Riley Family Legacy Novellas #3)',
'Batman: The Long Halloween (Batman)',
"Ayumi's Violin",
'Wild Swans',
"What's It Like in Space?: Stories from Astronauts Who've Been There",
'Until Friday Night (The Field Party #1)',
'Unbroken: A World War II Story of Survival, Resilience, and Redemption',
'Twenty Yawns',
'Through the Woods',
'This Is Where It Ends',
'The Year of Magical Thinking',
'The Last Mile (Amos Decker #2)',
'The Immortal Life of Henrietta Lacks',
'The Hidden Oracle (The Trials of Apollo #1)',
'The Guilty (Will Robie #4)',
'Red Hood/Arsenal, Vol. 1: Open for Business (Red Hood/Arsenal #1)',
'Once Was a Time',
'No Dream Is Too High: Life Lessons From a Man Who Walked on the Moon',
'Naruto (3-in-1 Edition), Vol. 14: Includes Vols. 40, 41 & 42 (Naruto: Omnibus #14)',
'More Than Music (Chasing the Dream #1)',
'Lowriders to the Center of the Earth (Lowriders in Space #2)',
'Eat Fat, Get Thin',
'Doctor Sleep (The Shining #2)',
'Crazy Love: Overwhelmed by a Relentless God',
'Carrie',
'Batman: Europa',
'Angels Walking (Angels Walking #1)',
'Adulthood Is a Myth: A "Sarah\'s Scribbles" Collection',
'A Study in Scarlet (Sherlock Holmes #1)',
'A Series of Catastrophes and Miracles: A True Story of Love, Science, and Cancer',
"A People's History of the United States",

(continues on next page)
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'My Kitchen Year: 136 Recipes That Saved My Life',
'The Lonely City: Adventures in the Art of Being Alone',
'The Dinner Party',
'Stars Above (The Lunar Chronicles #4.5)',
'Love, Lies and Spies',
'Troublemaker: Surviving Hollywood and Scientology',
'The Widow',
'Setting the World on Fire: The Brief, Astonishing Life of St. Catherine of Siena',
'Mothering Sunday',
'Lilac Girls',
'10% Happier: How I Tamed the Voice in My Head, Reduced Stress Without Losing My Edge,␣
→˓and Found Self-Help That Actually Works',
'Underlying Notes',
'The Flowers Lied',
'Modern Day Fables',
"Chernobyl 01:23:40: The Incredible True Story of the World's Worst Nuclear Disaster",
'23 Degrees South: A Tropical Tale of Changing Whether...',
'When Breath Becomes Air',
'Vagabonding: An Uncommon Guide to the Art of Long-Term World Travel',
'The Martian (The Martian #1)',
"Miller's Valley",
"Love That Boy: What Two Presidents, Eight Road Trips, and My Son Taught Me About a␣
→˓Parent's Expectations",
'Left Behind (Left Behind #1)',
'Howl and Other Poems',
"Heaven is for Real: A Little Boy's Astounding Story of His Trip to Heaven and Back",
"Brazen: The Courage to Find the You That's Been Hiding",
'32 Yolks',
'Wildlife of New York: A Five-Borough Coloring Book',
'Unreasonable Hope: Finding Faith in the God Who Brings Purpose to Your Pain',
'The Art Book',
'Steal Like an Artist: 10 Things Nobody Told You About Being Creative',
'Raymie Nightingale',
'Like Never Before (Walker Family #2)',
'How to Be a Domestic Goddess: Baking and the Art of Comfort Cooking',
'Finding God in the Ruins: How God Redeems Pain',
'Chronicles, Vol. 1',
'A Summer In Europe',
'The Rise and Fall of the Third Reich: A History of Nazi Germany',
'The Makings of a Fatherless Child',
'The Fellowship of the Ring (The Lord of the Rings #1)',
"Tell the Wolves I'm Home",
'In the Woods (Dublin Murder Squad #1)',
'Give It Back',
'Why Save the Bankers?: And Other Essays on Our Economic and Political Crisis',
'The Raven King (The Raven Cycle #4)',
'The Expatriates',
'The 5th Wave (The 5th Wave #1)',
'Peak: Secrets from the New Science of Expertise',
'Logan Kade (Fallen Crest High #5.5)',
"I Know Why the Caged Bird Sings (Maya Angelou's Autobiography #1)",
'Drama',

(continues on next page)
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"America's War for the Greater Middle East: A Military History",
'A Game of Thrones (A Song of Ice and Fire #1)',
"The Pilgrim's Progress",
'The Hound of the Baskervilles (Sherlock Holmes #5)',
"The Geography of Bliss: One Grump's Search for the Happiest Places in the World",
'The Demonists (Demonist #1)',
'The Demon Prince of Momochi House, Vol. 4 (The Demon Prince of Momochi House #4)',
'Misery',
'Far From True (Promise Falls Trilogy #2)',
'Confessions of a Shopaholic (Shopaholic #1)',
'Vegan Vegetarian Omnivore: Dinner for Everyone at the Table',
'Two Boys Kissing',
'Twilight (Twilight #1)',
'Twenties Girl',
'The Tipping Point: How Little Things Can Make a Big Difference',
'The Stand',
'The Picture of Dorian Gray',
'The Name of God is Mercy',
"The Lover's Dictionary",
'The Last Painting of Sara de Vos',
'The Guns of August',
'The Girl Who Played with Fire (Millennium Trilogy #2)',
'The Da Vinci Code (Robert Langdon #2)',
'The Cat in the Hat (Beginner Books B-1)',
'The Book Thief',
'The Autobiography of Malcolm X',
"Surely You're Joking, Mr. Feynman!: Adventures of a Curious Character",
'Soldier (Talon #3)',
'Shopaholic & Baby (Shopaholic #5)',
'Seven Days in the Art World',
'Rework',
'Packing for Mars: The Curious Science of Life in the Void',
'Orange Is the New Black',
'One for the Money (Stephanie Plum #1)',
'Midnight Riot (Peter Grant/ Rivers of London - books #1)',
'Me Talk Pretty One Day',
'Manuscript Found in Accra',
'Lust & Wonder',
"Life, the Universe and Everything (Hitchhiker's Guide to the Galaxy #3)",
'Life After Life',
'I Am Malala: The Girl Who Stood Up for Education and Was Shot by the Taliban',
'House of Lost Worlds: Dinosaurs, Dynasties, and the Story of Life on Earth',
'Horrible Bear!',
'Holidays on Ice',
'Girl in the Blue Coat',
'Fruits Basket, Vol. 3 (Fruits Basket #3)',
'Cosmos',
'Civilization and Its Discontents',
"Catastrophic Happiness: Finding Joy in Childhood's Messy Years",
'Career of Evil (Cormoran Strike #3)',
'Born to Run: A Hidden Tribe, Superathletes, and the Greatest Race the World Has Never␣
→˓Seen',

(continues on next page)
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"Best of My Love (Fool's Gold #20)",
'Beowulf',
'Awkward',
'And Then There Were None',
'A Storm of Swords (A Song of Ice and Fire #3)',
'The Suffragettes (Little Black Classics, #96)',
'Vampire Girl (Vampire Girl #1)',
'Three Wishes (River of Time: California #1)',
'The Wicked + The Divine, Vol. 1: The Faust Act (The Wicked + The Divine)',
'The Little Prince',
'The Last Girl (The Dominion Trilogy #1)',
'Taking Shots (Assassins #1)',
'Settling the Score (The Summer Games #1)',
'Rhythm, Chord & Malykhin',
'One Second (Seven #7)',
"Old Records Never Die: One Man's Quest for His Vinyl and His Past",
'Of Mice and Men',
'My Perfect Mistake (Over the Top #1)',
'Meditations',
'Frankenstein',
'Emma']

Now you should have the tools necessary to scrape any websites that interest you.

Keep in mind that the more complex the website, the harder it will be to scrape.

And always ask for permission!

BACK TO TOP

7.33 Tutorial 6 - Google Colab

Google Colab (or Colaboratary) is a cloud-based platform created by Google that offers an environment for sharing,
running, and writing Python code within Google Drive. Colab runs Jupyter notebook files, and it comes with pre-
installed popular Data Science and Machine Learning libraries and frameworks, such as TensorFlow, PyTorch, NumPy,
pandas, and others.

Google Colab provides CPU, TPU, and GPU support. It enables real-time collaborative editing on a single notebook,
much like the collaborative text editing functionality provided by Google Docs.

This is the official Colab webpage.

Welcome Page of Colab

The welcome page offers basic tutorials about working with Jupyter notebooks, data science, and machine learning.

It provides:

• Overview of Colab basic features, such as Code Cells and Markdown Cells

• Loading data: Drive, Sheets, and Google Cloud Storage Link

• Data Visualization Link

• Machine Learning introduction course Link
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Top Menus

On the top menu section, Colab provides very similar features to the original Jupyter Notebook interface.

• File: create/rename/upload/move/save notebook files

• Edit: move/copy/past cells, notebook settings

• Insert: code/text/section header cells/code snippets/add a form field

• Runtime: run/interrupt/restart cells/runtime type change (GPU<->CPU)

• Tools: command palette/settings/keyboard shortcuts, etc.

7.33.1 Upload Files and Mount the Google Drive

1) Login into Google Drive with your Gmail account (Link).

2) Create a folder to store your data files.
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3) Create a new Jupyter notebook file. The file can be accessed in the “Colab Notebooks” folder in Google Drive.

4) Use the following code to mount your Google Drive in the Jupyter notebook.

[6]: from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

5) Click Connect to Google Drive to permit the notebook to access Google Drive.
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6) After you mount the Google Drive, you can load files from the drive. For example, load a csv file. Note that the
path to the file needs to start with drive/My Drive/....

[7]: import pandas as pd
df_IMDb = pd.read_csv('drive/My Drive/data_file/IMDb_movies.csv')
df_IMDb

[7]: Unnamed: 0 Movie Name Year of Release Watch Time \
0 0 The Shawshank Redemption 1994 142
1 1 The Godfather 1972 175
2 2 The Dark Knight 2008 152
3 3 Schindler's List 1993 195
4 4 12 Angry Men 1957 96
.. ... ... ... ...
995 995 Philomena 2013 98
996 996 Un long dimanche de fiançailles 2004 133
997 997 Shine 1996 105
998 998 The Invisible Man 1933 71
999 999 Celda 211 2009 113

Movie Rating Metascore of movie Gross Votes \
0 9.3 82.0 28.34 27,77,378
1 9.2 100.0 134.97 19,33,588
2 9.0 84.0 534.86 27,54,087
3 9.0 95.0 96.9 13,97,886
4 9.0 97.0 4.36 8,24,211
.. ... ... ... ...
995 7.6 77.0 37.71 1,02,336
996 7.6 76.0 6.17 75,004
997 7.6 87.0 35.81 55,589
998 7.6 87.0 NaN 37,822
999 7.6 NaN NaN 69,464

Description
0 Over the course of several years, two convicts...
1 Don Vito Corleone, head of a mafia family, dec...
2 When the menace known as the Joker wreaks havo...
3 In German-occupied Poland during World War II,...
4 The jury in a New York City murder trial is fr...
.. ...
995 A world-weary political journalist picks up th...
996 Tells the story of a young woman's relentless ...

(continues on next page)
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997 Pianist David Helfgott, driven by his father a...
998 A scientist finds a way of becoming invisible,...
999 The story of two men on different sides of a p...

[1000 rows x 9 columns]

Enable GPU

Colab has built-in features that allow users to switch between CPU and GPU for working with Data Science/Machine
Learning models.

Method1:

• Click Edit → Notebook Settings.

• Choose an available GPU from the Hardware Accelerator, and click Save.
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Method2:

• Click Runtime → Change runtime type.

• Choose an available GPU from the Hardware Accelerator, and click Save.
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Using GPU

Use the following code to load the GPU in your script. When you are connected to GPU, the code will print out “Found
GPU at: /device:GPU:0”

[4]: import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':

raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))

Monitor Your Hardware Resources

To monitor available and used resources, click the Connect button in the upper right corner of your screen, and if your
GPU is connected, it will show the hardware stats.

Colab Subscription Plans

Paid Colab plans provide better hardware, i.e. access to more powerful GPU, and more VRAM and RAM. They also
have longer timeout sessions. For instance, Colab Pro+ allows you to run the script for up to 24 hours with the web
browser closed.

The free Colab version offers 16GB of GPU RAM, while the paid versions can have up to 48GB of RAM. Larger
VRAM and RAM may be required to train some large language models (LLM).

For the free version, only T4 GPU are available, but sometimes there would be no GPU available. The free version has
at most 12 hours sessions before timeout. In practice, for the free version, your session could be timed out and your
script could be interrupted at any time. If you reconnect within the next 1-2 minutes, the session can be resumed, and
otherwise, you will have to re-run your script.
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BACK TO TOP

7.34 Tutorial 7- Image Processing with Python

A digital image is a digital or electronic representation of a visual scene or object, typically constructed from a grid of
individual picture elements, referred to as pixels. Each pixel represents a tiny square or point, that stores data related to
the color and luminance of a particular location within the image. Digital images serve diverse purposes across many
applications, encompassing photography, graphic design, video games, medical imaging, and other fields.

Digital image processing is the computational approach for the analysis, storage, and interpretation of digital content.
In modern times, the impact of image processing has expanded to include many fields ranging from medical diagnostics
to autonomous navigation.

Popular libraries for digital image processing include Pillow, OpenCV, and Scikit-image.
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7.34.1 Python Image Processing with Pillow

Pillow is a popular library for performing advanced image processing tasks that do not require extensive expertise in the
field. It is also commonly employed for initial experimentation with image-related tasks. Additionally, Pillow benefits
from its widespread adoption within the Python community and offers a more gentle learning curve compared to some
of the more complex image processing libraries.

To install Pillow in Python use:

pip install pillow

Load and Display an Image with Pillow

The methods open() and load() are used for loading images in Pillow.

The display() method stores the image as a temporary file and then displays it through the native software of the
operating system designed for handling images.

[1]: from PIL import Image

img_name = "images/UI.png"

# open and load the image object
with Image.open(img_name) as img:

img.load()

# display the image
display(img)

We can print the type of an image object as in the following cell.
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[2]: type(img)

[2]: PIL.PngImagePlugin.PngImageFile

Save an image

The save() method saves an image by specifying a string with a name for the image file, which can also include the
path for saving the image.

[3]: img.save("saved_img.png")

The following code prints the size and format of the image.

[4]: # print the format of the image
img.format

[4]: 'PNG'

[5]: # print the width and height of the image in pixels
img.size

[5]: (1019, 569)

Channels and Mode of an Image

An image is a 2D grid of pixels, with each pixel denoting a specific color. The pixels can be defined using one or more
values. In the case of an RGB image, each pixel is described by three values, representing its red, green, and blue com-
ponents. Consequently, an Image object for an RGB image comprises three channels or bands, each corresponding
to a color component.

For instance, in a 200x200-pixel RGB image, the representation is an array of 200 x 200 x 3 values.

An example of an RGB array is shown in the figure.
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[6]: # print the channels of a RGB image
img.getbands()

[6]: ('R', 'G', 'B')

The mode specifies the type of an image. Pillow offers a broad range of standard modes, such as black-and-white
(binary), grayscale, RGB, RGBA, and CMYK.

[7]: # print the mode of the image
img.mode

[7]: 'RGB'

To convert the RGB image into grayscale mode, we can use convert("L").

[8]: # Convert to grayscale image
gray_img = img.convert("L")
display(gray_img)
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Show the bands of a grayscale mode image.

[9]: gray_img.getbands()

[9]: ('L',)

Split and Merge Channels

You can separate an image into its channels using split() and we can combine the separate channels back into an
Image object using merge().

The split() method returns all the channels as separate Image objects. We can confirm this by displaying the mode
of one of the returned objects.

[10]: # Split the channels
red, green, blue = img.split()
red.mode

[10]: 'L'

The first argument in merge() determines the mode of the image that we want to create. The second argument contains
the individual channels that we want to merge into a single image.

In the next cell, the red channel is stored in the variable red, and it is a grayscale image with mode 'L'. To create an
image showing only the red channel, we merge the red channel from the original image with green and blue channels
that contain only zeros. And, to create a channel containing zeros everywhere, we use the point() method.

[11]: zeroed_band = red.point(lambda _: 0)
print('Show the red channel:')
red_merge = Image.merge("RGB", (red, zeroed_band, zeroed_band))
display(red_merge)

7.34. Tutorial 7- Image Processing with Python 861



Fall 2023 Python Programming for Data Science, Release 0.1

Show the red channel:

[12]: print('Show the green channel')
green_merge = Image.merge("RGB", (zeroed_band, green, zeroed_band))
display(green_merge)

Show the green channel
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[13]: print('Show the blue channel:')
blue_merge = Image.merge("RGB", (zeroed_band, zeroed_band, blue))
display(blue_merge)

Show the blue channel:

Basic Image Manipulation

The transpose() method in Pillow allows to rotate or flip an image.

Options in the transpose() method include:

• Image.FLIP_LEFT_RIGHT: Flips the image left to right, resulting in a mirror image.

• Image.FLIP_TOP_BOTTOM: Flips the image top to bottom.

• Image.ROTATE_90: Rotates the image by 90 degrees counterclockwise.

• Image.ROTATE_180: Rotates the image by 180 degrees.

• Image.ROTATE_270: Rotates the image by 270 degrees counterclockwise, which is the same as 90 degrees
clockwise.

• Image.TRANSPOSE: Transposes the rows and columns using the top-left pixel as the origin, with the top-left
pixel being the same in the transposed image as in the original image.

• Image.TRANSVERSE: Transposes the rows and columns using the bottom-left pixel as the origin, with the bottom-
left pixel being the one that remains fixed between the original and modified versions.

An example with FLIP_TOP_BOTTOM.

[14]: converted_img = img.transpose(Image.FLIP_TOP_BOTTOM)
display(converted_img)
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C:\Users\avaka\AppData\Local\Temp\ipykernel_16052\148912711.py:1: DeprecationWarning:␣
→˓FLIP_TOP_BOTTOM is deprecated and will be removed in Pillow 10 (2023-07-01). Use␣
→˓Transpose.FLIP_TOP_BOTTOM instead.
converted_img = img.transpose(Image.FLIP_TOP_BOTTOM)

Example of rotating the image for 60 degrees counterclockwise.

[15]: rotated_img = img.rotate(60)
display(rotated_img)

864 Chapter 7. Lectures



Fall 2023 Python Programming for Data Science, Release 0.1

The Image object returned is the same size as the original Image. Therefore, the corners of the image are missing in
the image displayed above.

We can change this behavior with the parameter expand set to True.

[16]: rotated_img = img.rotate(45, expand=True)
display(rotated_img)
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Crop and Resize Images

We can crop images using the crop() method. The arguments in crop() must comprise a 4 element tuple that defines
the left, upper, right, and bottom edges of the region that we wish to crop. The coordinate system used in Pillow assigns
the coordinates (0, 0) to the pixel in the upper-left corner.

[17]: cropped_img = img.crop((400, 300, 600, 500))
display(cropped_img)
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[18]: cropped_img.size

[18]: (200, 200)

To resize an image, we can change the resolution with the resize() method. For instance, we can set the new width
and height to half of their original values using the floor division operator (//) and the Image attributes .width and
.height.

[19]: low_res_img = cropped_img.resize((cropped_img.width // 2, cropped_img.height // 2))
display(low_res_img)

Image Blurring, Sharpening, and Smoothing

We can blur an image by using the filter() method and the ImageFilter module.

[20]: from PIL import ImageFilter
blur_img = img.filter(ImageFilter.BLUR)
display(blur_img)
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More advanced blurring methods include:

• Gaussian Blur using .GaussianBlur(factor) method

• Box blur using .BoxBlur(factor) method

The argument in the blur methods determines how much blurring to apply. The larger the factor, the more blur is added
to the image.

[21]: print('BoxBlur method with factor of 5')
display(img.filter(ImageFilter.BoxBlur(5)))

BoxBlur method with factor of 5
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[22]: print('BoxBlur method with factor of 20')
display(img.filter(ImageFilter.BoxBlur(20)))

BoxBlur method with factor of 20

[23]: print('GaussianBlur method with factor of 20')
display(img.filter(ImageFilter.GaussianBlur(20)))
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GaussianBlur method with factor of 20

To sharpen an image, we can use the predefined filter ImageFilter.SHARPEN.

[24]: # original image
display(cropped_img)

[25]: # sharpened image
sharp_img = cropped_img.filter(ImageFilter.SHARPEN)
display(sharp_img)
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Another more advanced sharpening method is with ImageEnhance.Sharpness(factor). Applying sharpening with
a factor greater than 1 applies a sharpening filter to the image, sharpening factor in the range from 0 to 1 blurs the image,
and sharpening factor = 1 returns the original image.

[26]: from PIL import ImageEnhance
sharp_image =ImageEnhance.Sharpness(cropped_img).enhance(4)
display(sharp_image)

Change Color, Brightness, Contrast

ImageEnhance.Color(img).enhance(factor) changes the color of the image, where factor > 1 means stronger
color, factor < 1 reduces the color, and 0 means grayscale image.

ImageEnhance.Color(im).Brightness(factor) changes the brightness of the image, where factor > 1 makes the
image brighter, factor < 1 makes it darker, and 0 means black image.

ImageEnhance.Contrast(im).enhance(factor) changes the contrast, where factor > 1 increases the brightness
range, making light colors k-times lighter and dark colors darker. At very high contrast values, every pixel is either
black or white, and generally only the basic shapes of the image are visible. Factor less than 1 decreases the brightness
range, pulling all the colors towards a middle grey. A factor of 0 results in a completely grey image.

Change the color of an image.

[27]: # Make the color stronger
color_img = ImageEnhance.Color(img).enhance(5)
display(color_img)
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[28]: # Make the color less strong
less_color_img = ImageEnhance.Color(img).enhance(0.5)
display(less_color_img)

Change the brightness of an image.
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[29]: # Make the image brighter
brighter_img = ImageEnhance.Brightness(img).enhance(5)
display(brighter_img)

[30]: # Make the image darker
darker_img = ImageEnhance.Brightness(img).enhance(.5)
display(darker_img)
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Change the contrast of an image.

[31]: # Apply more contrast
contra_img = ImageEnhance.Contrast(img).enhance(5)
display(contra_img)

[32]: # Apply less contrast
less_contra_img = ImageEnhance.Contrast(img).enhance(.5)
display(less_contra_img)
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References:

1. “ELEC_ENG 420: Digital Image Processing | Electrical and Computer Engineering | Northwestern Engineering”
available at www.mccormick.northwestern.edu/electrical-computer/academics/courses/descriptions/420.html.

2. “Image Processing With the Python Pillow Library,” Real Python, available at https://realpython.com/
image-processing-with-the-python-pillow-library/.

3. “Python Pillow Tutorial,” GeeksforGeeks, available at https://www.geeksforgeeks.org/python-pillow-tutorial/.
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7.35 Tutorial 8 - TensorFlow

This tutorial is adapted from a 2022 blog post on the website Made With ML, by Goku Mohandas.

We will import TensorFlow and numpy and set the seed for their random number generators for reproducibility.

[2]: import numpy as np
import tensorflow as tf

tf_version = tf.__version__

print(f'TF version: {tf_version}')

TF version: 2.8.2

[2]: SEED = 1

[3]: # Set seed for reproducability
np.random.seed(seed=SEED)
tf.random.set_seed(seed=SEED)

7.35.1 Basics

First, we will cover some basics such as creating TensorFlow tensors and converting from common data structures to
TensorFlow tensors.

[4]: x = tf.random.normal((2, 3))
print(f'Type: {x.dtype}')
print(f'shape: {x.shape}')
print(f'values:\n{x}')

Type: <dtype: 'float32'>
shape: (2, 3)
values:
[[-1.1012203 1.5457517 0.383644 ]
[-0.87965786 -1.2246722 -0.9811211 ]]

[ ]: # Zeros and ones tensors
x = tf.zeros((2, 3), dtype=tf.float64)

(continues on next page)
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(continued from previous page)

print(x)
x = tf.ones((2, 3))
print(x)

[ ]: # List => Tensor
x = tf.constant([[1, 2, 3],

[4, 5, 6]])

print(f'shape: {x.shape}')
print(f'values:\n{x}')

[8]: # Numpy array => Tensor
x = tf.constant(np.random.rand(2, 3))
print(f'shape: {x.shape}')
print(f'values:\n{x}')

shape: (2, 3)
values:
[[4.17022005e-01 7.20324493e-01 1.14374817e-04]
[3.02332573e-01 1.46755891e-01 9.23385948e-02]]

7.35.2 Operations

[9]: # Addition
x = tf.random.normal((2, 3))
y = tf.random.normal((2, 3))
z = x + y
print(f'shape: {z.shape}')
print(f'values:\n{z}')

shape: (2, 3)
values:
[[-0.05392435 -1.4948881 0.6654824 ]
[ 0.4435789 1.0243716 0.5050061 ]]

[10]: # Dot product
x = tf.random.normal((2, 3))
y = tf.random.normal((3, 2))
z = tf.matmul(x, y)
print(f'shape: {z.shape}')
print(f'values:\n{z}')

shape: (2, 2)
values:
[[ 2.04325 1.1587756 ]
[-1.8957058 -0.67201185]]

[11]: # Transpose
x = tf.random.normal((2, 3))
print(f"shape: {x.shape}")
print(f"values: \n{x}")

(continues on next page)
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(continued from previous page)

y = tf.transpose(x)
print(f"shape: {y.shape}")
print(f"values: \n{y}")

shape: (2, 3)
values:
[[-1.1771783 -0.90325946 0.8419609 ]
[-0.06870949 -0.96161884 -0.51533026]]
shape: (3, 2)
values:
[[-1.1771783 -0.06870949]
[-0.90325946 -0.96161884]
[ 0.8419609 -0.51533026]]

[3]: # Reshape
x = tf.random.normal((2, 3))
z = tf.reshape(x, (3, 2))
print(f"shape: {z.shape}")
print(f"values: \n{z}")

shape: (3, 2)
values:
[[ 0.73264295 0.99835527]
[ 1.555784 1.0374023 ]
[-0.0362004 -0.18817899]]

[14]: # Dangers of reshaping (unintended consequences)
x = tf.constant([

[[1,1,1,1], [2,2,2,2], [3,3,3,3]],
[[10,10,10,10], [20,20,20,20], [30,30,30,30]]

])
print(f"shape: {x.shape}")
print(f"x: \n{x}\n")

a = tf.reshape(x, (x.shape[1], -1))
print(f"\nshape: {a.shape}")
print(f"a: \n{a}\n")

b = tf.transpose(x, perm=[1, 0, 2])
print(f"\nshape: {b.shape}")
print(f"b: \n{b}\n")

c = tf.reshape(b, (b.shape[0], -1))
print(f"\nshape: {c.shape}")
print(f"c: \n{c}")

shape: (2, 3, 4)
x:
[[[ 1 1 1 1]
[ 2 2 2 2]
[ 3 3 3 3]]

[[10 10 10 10]
(continues on next page)
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(continued from previous page)

[20 20 20 20]
[30 30 30 30]]]

shape: (3, 8)
a:
[[ 1 1 1 1 2 2 2 2]
[ 3 3 3 3 10 10 10 10]
[20 20 20 20 30 30 30 30]]

shape: (3, 2, 4)
b:
[[[ 1 1 1 1]
[10 10 10 10]]

[[ 2 2 2 2]
[20 20 20 20]]

[[ 3 3 3 3]
[30 30 30 30]]]

shape: (3, 8)
c:
[[ 1 1 1 1 10 10 10 10]
[ 2 2 2 2 20 20 20 20]
[ 3 3 3 3 30 30 30 30]]

[15]: # Dimensional operations
x = tf.random.normal((2, 3))
print(f"values: \n{x}")
y = tf.reduce_sum(x, axis=0) # sum over columns
print(f"values: \n{y}")
z = tf.reduce_sum(x, axis=1) # sum over rows
print(f"values: \n{z}")

values:
[[ 0.9868413 0.57056284 0.17946035]
[ 0.83900064 1.0045967 -0.0642297 ]]
values:
[1.8258419 1.5751595 0.11523065]
values:
[1.7368646 1.7793677]
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Indexing

Now we will look at how to extract, separate, and join values from tensors.

[18]: x = tf.random.normal((3, 4))
print (f"x: \n{x}")
print()
print(f"x[:1]: \n{x[0]}")
print()
print(f"x[:1, 1:3]: \n{x[:1, 1:3]}")

x:
[[-0.8340743 -1.0207754 -0.6342568 0.51541275]
[-0.590669 1.6425287 0.60286343 -0.61301523]
[ 0.6574386 0.16823037 1.4946445 0.8306155 ]]

x[:1]:
[-0.8340743 -1.0207754 -0.6342568 0.51541275]

x[:1, 1:3]:
[[-1.0207754 -0.6342568]]

Slicing

[20]: # Select with dimensional indices
x = tf.random.normal((2, 3))
print(f"values: \n{x}")

col_indices = tf.constant([0, 2])
chosen = tf.gather(x, axis=1, indices=col_indices) # values from column 0 & 2
print(f"values: \n{chosen}")

row_indices = tf.constant([0, 1])
col_indices = tf.constant([0, 2])
chosen = tf.gather_nd(x, indices=[row_indices, col_indices]) # values from (0, 0) & (1,␣
→˓2)
print(f"values: \n{chosen}")

values:
[[-0.92759573 0.06353194 0.26116046]
[-1.4687079 -0.90832067 -0.87465733]]
values:
[[-0.92759573 0.26116046]
[-1.4687079 -0.87465733]]
values:
[0.06353194 0.26116046]
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Joining

[21]: # Concatenation
x = tf.random.normal((2, 3))
print(f"Values: \n{x}")
y = tf.concat([x, x], axis=0) # stack by rows (dim=1 to stack by columns)
print(f"Values: \n{y}")

Values:
[[ 2.260564 -0.6558232 -0.46591297]
[ 0.4690215 1.026158 -0.11631647]]
Values:
[[ 2.260564 -0.6558232 -0.46591297]
[ 0.4690215 1.026158 -0.11631647]
[ 2.260564 -0.6558232 -0.46591297]
[ 0.4690215 1.026158 -0.11631647]]

Gradients

• 𝑦 = 3𝑥+ 2

• 𝑧 =
∑︀

𝑦/𝑁

• 𝜕(𝑧)
𝜕(𝑥) =

𝜕(𝑧)
𝜕(𝑦)

𝜕(𝑦)
𝜕(𝑥) =

1
𝑁 * 3 = 1

12 * 3 = 0.25

[22]: # Tensors with gradient book keeping
x = tf.random.normal((3, 4))

# Tensorflow needs graph context to track gradients
with tf.GradientTape() as g:

g.watch(x)
y = 3*x + 2
z = tf.reduce_mean(y)

dz_dx = g.gradient(z, x)

print(dz_dx)

tf.Tensor(
[[0.25 0.25 0.25 0.25]
[0.25 0.25 0.25 0.25]
[0.25 0.25 0.25 0.25]], shape=(3, 4), dtype=float32)

CUDA

This section details how to check if we are able to use GPU to accelerate our machine learning or deep learning models.

The Compute Unified Device Architecture or CUDA is a parallel computing platform and API that allows software to
use certain types of GPUs for general purpose processing. It is an extension of the C and C++ programming languages.

TensorFlow makes using the GPU quite transparent. If the GPU compatible version of TF is installed along with the
proper drivers, TF will use the GPU.

Although training is usually faster on the GPU, depending on model size and hardware specs, it can take quite a while
to copy the model and your data to the GPU.
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Link to metapackage for easily installing TensorFlowGPU using a conda ‘metapackage’. This is just a special package
which installs the required GPU drivers alongside TensorFlow.

[23]: # Is CUDA available?
print(tf.test.is_built_with_cuda())

False

[26]: # Set device to first gpu (if available)
device = "/gpu:0" if tf.test.is_built_with_cuda() else "cpu"
print(device)

cpu

[27]: with tf.device(device):
a = tf.constant([1, 2, 3])

[5]: # Print info about local cpu/gpu devices through tensorflow library
from tensorflow.python.client import device_lib

# The most useful information is found in the first two lines of the output.
# 1st line is name of device (cpu/gpu and number).
# If there were 2 cpus on the device, there would be another entry in the list under␣
→˓name: '/device:cpu:1'
# The second line give the memory limit in bits.
device_lib.list_local_devices()

[5]: [name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 3513264468343507029
xla_global_id: -1]

BACK TO TOP

7.36 Tutorial 9 - PyTorch

This tutorial is adapted from a 2022 blog post on the website Made With ML, by Goku Mohandas.

In this notebook, we will learn the basics of PyTorch, which is a Machine Learning library used to build dynamic neural
networks. We’ll learn about the basics, such as creating and using Tensors.

[1]: import numpy as np
import torch

[2]: SEED = 1234

[3]: # Set seed for reproducibility
np.random.seed(seed=SEED)
torch.manual_seed(SEED)
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[3]: <torch._C.Generator at 0x7e1d7c9ebe10>

7.36.1 Basics

[4]: # Creating a random tensor
x = torch.randn((2, 3)) # (rand(2,3) -> normal distribution)
print(f"Type: {x.type()}")
print(f"Size: {x.shape}")
print(f"Values: \n{x}")

Type: torch.FloatTensor
Size: torch.Size([2, 3])
Values:
tensor([[ 0.0461, 0.4024, -1.0115],

[ 0.2167, -0.6123, 0.5036]])

[5]: # Zeros and Ones tensor
x = torch.zeros(2, 3)
print (x)
x = torch.ones(2, 3)
print (x)

tensor([[0., 0., 0.],
[0., 0., 0.]])

tensor([[1., 1., 1.],
[1., 1., 1.]])

[6]: # List --> Tensor
x = torch.Tensor([[1, 2, 3],[4, 5, 6]])
print(f"Size: {x.shape}")
print(f"Values: \n{x}")

Size: torch.Size([2, 3])
Values:
tensor([[1., 2., 3.],

[4., 5., 6.]])

[7]: # NumPy array --> Tensor
x = torch.Tensor(np.random.rand(2, 3))
print(f"Size: {x.shape}")
print(f"Values: \n{x}")

Size: torch.Size([2, 3])
Values:
tensor([[0.1915, 0.6221, 0.4377],

[0.7854, 0.7800, 0.2726]])

[8]: # Changing tensor type
x = torch.Tensor(3, 4)
print(f"Type: {x.type()}")
x = x.long()
print(f"Type: {x.type()}")
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Type: torch.FloatTensor
Type: torch.LongTensor

7.36.2 Operations

[9]: # Addition
x = torch.randn(2, 3)
y = torch.randn(2, 3)
z = x + y
print(f"Size: {z.shape}")
print(f"Values: \n{z}")

Size: torch.Size([2, 3])
Values:
tensor([[ 0.0761, -0.6775, -0.3988],

[ 3.0633, -0.1589, 0.3514]])

[10]: # Dot product
x = torch.randn(2, 3)
y = torch.randn(3, 2)
z = torch.mm(x, y)
print(f"Size: {z.shape}")
print(f"Values: \n{z}")

Size: torch.Size([2, 2])
Values:
tensor([[ 1.0796, -0.0759],

[ 1.2746, -0.5134]])

[11]: # Transpose
x = torch.randn(2, 3)
print(f"Size: {x.shape}")
print(f"Values: \n{x}")
y = torch.t(x)
print(f"Size: {y.shape}")
print(f"Values: \n{y}")

Size: torch.Size([2, 3])
Values:
tensor([[ 0.8042, -0.1383, 0.3196],

[-1.0187, -1.3147, 2.5228]])
Size: torch.Size([3, 2])
Values:
tensor([[ 0.8042, -1.0187],

[-0.1383, -1.3147],
[ 0.3196, 2.5228]])

[12]: # Reshape
x = torch.randn(2, 3)
z = x.view(3, 2)
print(f"Size: {z.shape}")
print(f"Values: \n{z}")
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Size: torch.Size([3, 2])
Values:
tensor([[ 0.4501, 0.2709],

[-0.8087, -0.0217],
[-1.0413, 0.0702]])

[13]: # Dangers of reshaping (unintended consequences)
x = torch.tensor([

[[1,1,1,1], [2,2,2,2], [3,3,3,3]],
[[10,10,10,10], [20,20,20,20], [30,30,30,30]]

])
print(f"Size: {x.shape}")
print(f"x: \n{x}\n")

a = x.view(x.size(1), -1)
print(f"\nSize: {a.shape}")
print(f"a: \n{a}\n")

b = x.transpose(0,1).contiguous()
print(f"\nSize: {b.shape}")
print(f"b: \n{b}\n")

c = b.view(b.size(0), -1)
print(f"\nSize: {c.shape}")
print(f"c: \n{c}")

Size: torch.Size([2, 3, 4])
x:
tensor([[[ 1, 1, 1, 1],

[ 2, 2, 2, 2],
[ 3, 3, 3, 3]],

[[10, 10, 10, 10],
[20, 20, 20, 20],
[30, 30, 30, 30]]])

Size: torch.Size([3, 8])
a:
tensor([[ 1, 1, 1, 1, 2, 2, 2, 2],

[ 3, 3, 3, 3, 10, 10, 10, 10],
[20, 20, 20, 20, 30, 30, 30, 30]])

Size: torch.Size([3, 2, 4])
b:
tensor([[[ 1, 1, 1, 1],

[10, 10, 10, 10]],

[[ 2, 2, 2, 2],
[20, 20, 20, 20]],

[[ 3, 3, 3, 3],
(continues on next page)
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[30, 30, 30, 30]]])

Size: torch.Size([3, 8])
c:
tensor([[ 1, 1, 1, 1, 10, 10, 10, 10],

[ 2, 2, 2, 2, 20, 20, 20, 20],
[ 3, 3, 3, 3, 30, 30, 30, 30]])

[14]: # Dimensional operations
x = torch.randn(2, 3)
print(f"Values: \n{x}")
y = torch.sum(x, dim=0) # add each row's value for every column
print(f"Values: \n{y}")
z = torch.sum(x, dim=1) # add each column's value for every row
print(f"Values: \n{z}")

Values:
tensor([[ 0.5797, -0.0599, 0.1816],

[-0.6797, -0.2567, -1.8189]])
Values:
tensor([-0.1000, -0.3166, -1.6373])
Values:
tensor([ 0.7013, -2.7553])

Indexing, Slicing, and Joining

[15]: x = torch.randn(3, 4)
print (f"x: \n{x}")
print (f"x[:1]: \n{x[:1]}")
print (f"x[:1, 1:3]: \n{x[:1, 1:3]}")

x:
tensor([[ 0.2111, 0.3372, 0.6638, 1.0397],

[ 1.8434, 0.6588, -0.2349, -0.0306],
[ 1.7462, -0.0722, -1.6794, -1.7010]])

x[:1]:
tensor([[0.2111, 0.3372, 0.6638, 1.0397]])
x[:1, 1:3]:
tensor([[0.3372, 0.6638]])

[16]: # Select with dimensional indices
x = torch.randn(2, 3)
print(f"Values: \n{x}")

col_indices = torch.LongTensor([0, 2])
chosen = torch.index_select(x, dim=1, index=col_indices) # values from column 0 & 2
print(f"Values: \n{chosen}")

row_indices = torch.LongTensor([0, 1])
col_indices = torch.LongTensor([0, 2])

(continues on next page)
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chosen = x[row_indices, col_indices] # values from (0, 0) & (1, 2)
print(f"Values: \n{chosen}")

Values:
tensor([[ 0.6486, 1.7653, 1.0812],

[ 1.2436, 0.8971, -0.0784]])
Values:
tensor([[ 0.6486, 1.0812],

[ 1.2436, -0.0784]])
Values:
tensor([ 0.6486, -0.0784])

[17]: # Concatenation
x = torch.randn(2, 3)
print(f"Values: \n{x}")
y = torch.cat([x, x], dim=0) # stack by rows (dim=1 to stack by columns)
print(f"Values: \n{y}")

Values:
tensor([[ 0.5548, -0.0845, 0.5903],

[-1.0032, -1.7873, 0.0538]])
Values:
tensor([[ 0.5548, -0.0845, 0.5903],

[-1.0032, -1.7873, 0.0538],
[ 0.5548, -0.0845, 0.5903],
[-1.0032, -1.7873, 0.0538]])

Gradients

• 𝑦 = 3𝑥+ 2

• 𝑧 =
∑︀

𝑦/𝑁

• 𝜕(𝑧)
𝜕(𝑥) =

𝜕(𝑧)
𝜕(𝑦)

𝜕(𝑦)
𝜕(𝑥) =

1
𝑁 * 3 = 1

12 * 3 = 0.25

[18]: # Tensors with gradient bookkeeping
x = torch.rand(3, 4, requires_grad=True)
y = 3*x + 2
z = y.mean()
z.backward() # z has to be scalar
print(f"x: \n{x}")
print(f"x.grad: \n{x.grad}")

x:
tensor([[0.7379, 0.0846, 0.4245, 0.9778],

[0.6800, 0.3151, 0.3911, 0.8943],
[0.6889, 0.8389, 0.1780, 0.6442]], requires_grad=True)

x.grad:
tensor([[0.2500, 0.2500, 0.2500, 0.2500],

[0.2500, 0.2500, 0.2500, 0.2500],
[0.2500, 0.2500, 0.2500, 0.2500]])
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7.36.3 CUDA tensors

[19]: # Is CUDA available?
print (torch.cuda.is_available())

True

If False, CUDA is not available. In Google Colab, we can change it by Runtime > Change runtime type > Change
Hardware accelerator to GPU > Click Save

[20]: # Is CUDA available now?
print (torch.cuda.is_available())

True

[21]: # Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print (device)

cuda

[22]: x = torch.rand(2,3)
print (x.is_cuda)
x = torch.rand(2,3).to(device) # Tensor is stored on the GPU
print (x.is_cuda)

False
True

BACK TO TOP

7.37 Tutorial 10 - Tensorflow Datasets

Public datasets are an important resource for accelerating machine learning research. However, writing custom scripts
to fetch and prepare each dataset individually can be tedious.

TensorFlow DataSets (TFDS) handles the tasks of sourcing the data and standardizing it into a consistent format. Fur-
thermore, TFDS utilizes the tensorflow.data API to construct high-performance input pipelines that are seamlessly
usable with tensorflow.keras models.

7.37.1 Overview

TFDS is a set of ready-to-use datasets for various machine learning tasks, including Computer Vision datasets, Natural
Language Processing datasets, and miscellaneous other datasets for performing Unsupervised Learning, Reinforcement
learning, and more.

The entire list of available datasets can be found here.

All of these datasets are contained under the tensorflow.data.Datasets module.

To install TFDS:
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pip install tfds-nightly

TFDS is pre-installed in Google Colab, and it can be directly imported as in the next cell.

[1]: import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np

The following line also displays the list all the available datasets in TFDS.

[ ]: tfds.list_builders()

7.37.2 Load Dataset with TFDS

The easiest way of loading a dataset with TFDS is with tfds.load.

It will:

1. Download the data and save it as tfrecord files.

2. Load the tfrecord and create the tf.data.Dataset.

[3]: (training_data, test_data), info = tfds.load('mnist', with_info=True, shuffle_files=True,
→˓ as_supervised=True, split=['train', 'test'])

Arguments in tfds.load include:

• First argument is the name of dataset.

• param 'split' controls which split we wish to load (e.g., train, test, or validation).

• param 'shuffle_files' controls whether or not data is shuffled between each epoch.

• param 'data_dir' controls where the dataset is saved (defaults to ~/tensorflow_datasets/).

• param 'with_info' controls whether or not the metadata for the dataset is included.

• param 'as_supervised' controls whether or not a tuple (features, label) is returned (as opposed to just
features).

• param 'download' controls whether or not the library will attempt to download the dataset.

We can access the dataset metadata with info as in the next cell.

[4]: print(info)

tfds.core.DatasetInfo(
name='mnist',
full_name='mnist/3.0.1',
description="""
The MNIST database of handwritten digits.
""",
homepage='http://yann.lecun.com/exdb/mnist/',
data_dir='C:\\Users\\vakanski\\tensorflow_datasets\\mnist\\3.0.1',
file_format=tfrecord,
download_size=11.06 MiB,
dataset_size=21.00 MiB,
features=FeaturesDict({

(continues on next page)
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'image': Image(shape=(28, 28, 1), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=10),

}),
supervised_keys=('image', 'label'),
disable_shuffling=False,
splits={

'test': <SplitInfo num_examples=10000, num_shards=1>,
'train': <SplitInfo num_examples=60000, num_shards=1>,

},
citation="""@article{lecun2010mnist,
title={MNIST handwritten digit database},
author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
volume={2},
year={2010}

}""",
)

Features metadata can inlcude features shape, label shape, etc.

[5]: info.features

[5]: FeaturesDict({
'image': Image(shape=(28, 28, 1), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=10),

})

We can also inspect the number of classes and label names.

[6]: print(info.features["label"].num_classes)
print(info.features["label"].names)

10
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

The following code prints shapes and dtypes of the data.

[7]: print(info.features.shape)
print(info.features.np_dtype)
print(info.features['image'].shape)
print(info.features['image'].np_dtype)

{'image': (28, 28, 1), 'label': ()}
{'image': <class 'numpy.uint8'>, 'label': <class 'numpy.int64'>}
(28, 28, 1)
<class 'numpy.uint8'>
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Slicing API for Customized Dataset Split

[8]: # Fashion MNIST dataset, get 25% to 75% of train dataset
ds = tfds.load('mnist', split='train[25%:75%]')

[9]: # Get first 4,000 of the data for training
ds = tfds.load('fashion_mnist', split='train[:4000]')

[10]: # Get 25% of training and all of the test data
ds = tfds.load('fashion_mnist', split='train[:25%]+test')

Cross-Validation

[11]: vals_ds = tfds.load('fashion_mnist', split=[
f'train[{k}%:{k+10}%]' for k in range(0, 100, 10)])

trains_ds = tfds.load('fashion_mnist', split=[
f'train[:{k}%]+train[{k+10}%:]' for k in range(0, 100, 10)])

[12]: # First fold of validation DS
vals_ds_fold1 =vals_ds[0]

Iterate over the Dataset in Batches

[13]: batch_size = 32

for epoch in range(1):
print(f'epoch {epoch}')
n = 0
for img, label in training_data.batch(batch_size):

# print the first 10 batches
while n < 10:

# notice that img.shape = [batch size, pixels width, pixels heights,␣
→˓channels number)

# notice that label.shape = 32, therefore 32 labels are shown
print(f'img: {img.shape}, labels: {label}')
# we can train a model here
n = n+1

epoch 0
img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]
img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]
img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]
img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]
img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]

(continues on next page)
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img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]
img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]
img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]
img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]
img: (32, 28, 28, 1), labels: [4 1 0 7 8 1 2 7 1 6 6 4 7 7 3 3 7 9 9 1 0 6 6 9 9 4 8 9 4␣
→˓7 3 3]

Visualization

Method1: features and label samples from TFDS objects can be visualized in a Jupyter Notebook by using tfds.
as_dataframe to convert into pandas DataFrame.

[14]: # list 5 images and labels from mnist dataset
ds, info = tfds.load('mnist', split='train', with_info=True)

tfds.as_dataframe(ds.take(5), info)

[14]: image label
0 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 4
1 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 1
2 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 0
3 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 7
4 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 8

[15]: # list 5 images and labels from mnist dataset
tfds.as_dataframe(ds.take(5), info)

[15]: image label
0 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 4
1 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 1
2 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 0
3 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 7
4 [[[0], [0], [0], [0], [0], [0], [0], [0], [0],... 8

Method 2: tfds.show_examples returns a matplotlib figure with data samples and labels (only image datasets are
supported with this method).

[16]: import matplotlib.pyplot as plt

fig = tfds.show_examples(ds, info)
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Create Your Own TFDS with tf.data.Dataset.from_tensor_slices

[17]: np.random.seed(1)

features = np.random.uniform(0,1, size=(32, 100, 100))
labels = np.random.randint(0, 2, size=(32, 1))

dataset = tf.data.Dataset.from_tensor_slices((features, labels))
dataset = dataset.shuffle(buffer_size=1024).batch(5)

(continues on next page)
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for epoch in range(2):
for step, (x_batch, y_batch) in enumerate(dataset):

print(f'step: {step}, x_batch shape: {x_batch.shape}, y_batch shape: {y_batch.
→˓shape}')

print()

step: 0, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 1, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 2, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 3, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 4, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 5, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 6, x_batch shape: (2, 100, 100), y_batch shape: (2, 1)

step: 0, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 1, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 2, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 3, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 4, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 5, x_batch shape: (5, 100, 100), y_batch shape: (5, 1)
step: 6, x_batch shape: (2, 100, 100), y_batch shape: (2, 1)

Simple Example of a Pipeline with TFDS in a CNN Model

[18]: import tensorflow as tf
import tensorflow_datasets as tfds

# MODEL DEFINITION
model = tf.keras.models.Sequential([

tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(300, 300, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(12, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')

])
model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy'])

# EXTRACT PHASE
data = tfds.load('horses_or_humans', split='train', as_supervised=True)
val_data = tfds.load('horses_or_humans', split='test', as_supervised=True)

# TRANSFORM PHASE
def augmentimages(image, label):
image = tf.cast(image, tf.float32)
image = (image/255)
image = tf.image.random_flip_left_right(image)
return image, label

train = data.map(augmentimages)
train_batches = train.shuffle(100).batch(32)

(continues on next page)
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validation_batches = val_data.batch(32)

# MODEL TRAINING PHASE
history = model.fit(train_batches, epochs=3,

validation_data=validation_batches, validation_steps=1)

Epoch 1/3
33/33 [==============================] - 18s 509ms/step - loss: 3.5113 - accuracy: 0.
→˓5083 - val_loss: 0.6937 - val_accuracy: 0.4375
Epoch 2/3
33/33 [==============================] - 15s 435ms/step - loss: 0.6930 - accuracy: 0.
→˓5131 - val_loss: 0.6940 - val_accuracy: 0.4375
Epoch 3/3
33/33 [==============================] - 13s 401ms/step - loss: 0.6930 - accuracy: 0.
→˓5131 - val_loss: 0.6940 - val_accuracy: 0.4375

References:

1. Moroney, L. (n.d.). AI and Machine Learning for Coders. O’Reilly Online Learning. https://www.oreilly.com/
library/view/ai-and-machine/9781492078180/ch04.html

2. Tensorflow datasets. TensorFlow. (n.d.). https://www.tensorflow.org/datasets/overview#iterate_over_a_dataset
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7.38 Tutorial 11 - CometML

This tutorial is adapted from a blog post titled “Getting Started with Comet ML” by Angelica Lo Duca.

7.38.1 Overview

CometML is an online experimentation platform for testing Machine Learning projects (similar to Neptune.ai, Guild.ai,
etc.). Its main advantage is that it makes it very easy to build reporting dashboards and monitor Machine Learning
projects.

CometML can be easily integrated with most popular ML libraries like scikit-learn, Keras, and others. The experiments
can be written in Python, Javascript, Java, R, and REST APIs. In this tutorial we will only be discussing how to use
the Python SDK, but the SDKs for other languages should be similar enough.

Features of CometML

• Users can easily build and compare the results of different experiments for the same project.

• The model can be monitored from the early stages up to debugging.

• Makes collaborating with other project devs easy (note that this feature is not included with the free account).

• Easily build reports and panels.

• Share projects publicly through their platform.
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7.38.2 Working with CometML

Step 1: Create a free account, log in, and create a new project.

Step 2: After login with your account, click “To the Quickstart Guide”.

Step 3: The webpage will then generate a snippet of code that is to be placed in the project you are working on (shown
in the figure below).

Step 4: Install the Comet ML library using pip install comet_ml

Step 5: Copy and paste the second block of codes shown below in your Python project.

The default “Project name” is “Uncategorized Experiments” as shown in the following figure from the CometML
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webpage. You can create a New project and assign it another name on the CometML webpage, and then all you need
to do is change the “project_name” variable to the new project name.

Experiment is the core class of CometML. An Experiment represents a unit of measurable research that defines a single
execution of code with some associated data; for example, training a model using a single set of hyperparameters. Use
Experiment to log new data to the CometML UI.

An Experiment automatically logs scripts output (stdout/stderr), code, and command-line arguments on any script and
for the supported libraries, also logs hyperparameters, metrics, and model configuration.

[ ]: from comet_ml import Experiment
from comet_ml.integration.pytorch import log_model

experiment = Experiment(
api_key="kPkWeGyLidS2HUoO5Zt0PdxzB",
project_name="general",
workspace="llz"

)

Example usage

To show how to use the library, let’s consider an example project using the heart attack dataset from Kaggle. The task
for this dataset is to predict whether or not a patient has a high chance of heart attack, given several features including
age, sex, resting blood pressure, etc.

[10]: import pandas as pd

# Load data:
df = pd.read_csv('data/heart.csv')
df.head()

[10]: age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp \
0 63 1 3 145 233 1 0 150 0 2.3 0
1 37 1 2 130 250 0 1 187 0 3.5 0
2 41 0 1 130 204 0 0 172 0 1.4 2
3 56 1 1 120 236 0 1 178 0 0.8 2
4 57 0 0 120 354 0 1 163 1 0.6 2

(continues on next page)
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caa thall output
0 0 1 1
1 0 2 1
2 0 2 1
3 0 2 1
4 0 2 1

[11]: # separate data into features and targets
x = df.drop(columns=['output'])
y = df['output']

[ ]: x.head()

age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp \
0 63 1 3 145 233 1 0 150 0 2.3 0
1 37 1 2 130 250 0 1 187 0 3.5 0
2 41 0 1 130 204 0 0 172 0 1.4 2
3 56 1 1 120 236 0 1 178 0 0.8 2
4 57 0 0 120 354 0 1 163 1 0.6 2

caa thall
0 0 1
1 0 2
2 0 2
3 0 2
4 0 2

[12]: y.head()

[12]: 0 1
1 1
2 1
3 1
4 1
Name: output, dtype: int64

[13]: from sklearn.model_selection import train_test_split

# create train/test split
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=42)

[14]: from sklearn.preprocessing import MinMaxScaler

# scale inputs
scaler = MinMaxScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)

We will show an example of logging confusion matrix information with CometML. There are numerous logging ap-
plications in Experiment Reference.

7.38. Tutorial 11 - CometML 897

https://www.comet.com/docs/v2/api-and-sdk/python-sdk/reference/Experiment/


Fall 2023 Python Programming for Data Science, Release 0.1

[15]: from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report
import numpy as np

# create model:
model = DecisionTreeClassifier(random_state=42, max_depth=2)
min_samples = 5

target_names = ['class 0', 'class 1']

# examine how the number of training samples affects model performance:
for step in range(min_samples, len(x_train)):

model.fit(x_train[:step], y_train[:step])

y_pred = model.predict(x_test)
report = classification_report(y_test, y_pred, target_names=target_names, output_

→˓dict=True)

for label, metric in report.items():
try:

experiment.log_metrics(metric, prefix=label, step=step)

except:
experiment.log_metric(label, metric, step=step)

experiment.log_confusion_matrix(y_test.tolist(), y_pred.tolist())

experiment.display(tab='confusion-matrices')
experiment.end()
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<IPython.lib.display.IFrame at 0x7ef96b721ba0>

COMET INFO: -----------------------------------------------------------------------------
→˓----------
COMET INFO: Comet.ml Experiment Summary
COMET INFO: -----------------------------------------------------------------------------
→˓----------
COMET INFO: Data:
COMET INFO: display_summary_level : 1
COMET INFO: url : https://www.comet.com/llz/general/
→˓3076c8951afd4185a68717788a151ffb
COMET INFO: Metrics [count] (min, max):
COMET INFO: accuracy [222] : (0.39473684210526316, 0.7631578947368421)
COMET INFO: class 0_f1-score [222] : (0.37837837837837845, 0.7272727272727272)
COMET INFO: class 0_precision [222] : (0.358974358974359, 0.8421052631578947)
COMET INFO: class 0_recall [222] : (0.34285714285714286, 0.9714285714285714)
COMET INFO: class 0_support : 35
COMET INFO: class 1_f1-score [222] : (0.046511627906976744, 0.7906976744186047)
COMET INFO: class 1_precision [222] : (0.43243243243243246, 0.8064516129032258)
COMET INFO: class 1_recall [222] : (0.024390243902439025, 0.926829268292683)
COMET INFO: class 1_support : 41
COMET INFO: macro avg_f1-score [222] : (0.33518241945807553, 0.7589852008456659)
COMET INFO: macro avg_precision [222] : (0.39570339570339574, 0.7648745519713261)
COMET INFO: macro avg_recall [222] : (0.3951219512195122, 0.7574912891986063)
COMET INFO: macro avg_support : 76
COMET INFO: weighted avg_f1-score [222] : (0.31239262012509406, 0.7614888171803716)
COMET INFO: weighted avg_precision [222] : (0.3986030564977934, 0.7641388417279759)
COMET INFO: weighted avg_recall [222] : (0.39473684210526316, 0.7631578947368421)
COMET INFO: weighted avg_support : 76
COMET INFO: Parameters:
COMET INFO: ccp_alpha : 0.0
COMET INFO: class_weight : 1
COMET INFO: clip : False
COMET INFO: copy : True
COMET INFO: criterion : gini
COMET INFO: feature_range : (0, 1)
COMET INFO: max_depth : 2
COMET INFO: max_features : 1
COMET INFO: max_leaf_nodes : 1
COMET INFO: min_impurity_decrease : 0.0
COMET INFO: min_samples_leaf : 1
COMET INFO: min_samples_split : 2
COMET INFO: min_weight_fraction_leaf : 0.0
COMET INFO: random_state : 42
COMET INFO: splitter : best
COMET INFO: Uploads:
COMET INFO: confusion-matrix : 222
COMET INFO: environment details : 1
COMET INFO: filename : 1
COMET INFO: installed packages : 1
COMET INFO: notebook : 2
COMET INFO: os packages : 1
COMET INFO: source_code : 1

(continues on next page)
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(continued from previous page)

COMET INFO:
COMET INFO: Please wait for metadata to finish uploading (timeout is 3600 seconds)
COMET INFO: Uploading 3154 metrics, params and output messages
COMET INFO: Uploading 2036 metrics, params and output messages

Reference

1. Blank, D. (2023, November 9). Overview - Comet Docs. https://www.comet.com/docs/v2/api-and-sdk/
python-sdk/reference/Experiment/
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7.39 Tutorial 12 - GitHub

7.39.1 Overview

Git is a distributed version control system (DVCS) that allows developers to track changes in their code over time.
It was created by Linus Torvalds in 2005 and is widely used for managing source code for software projects. Git
enables multiple developers to work on a project simultaneously and independently, and it tracks changes made by
each contributor. It provides features such as branching, merging, and history tracking.

With Git, each developer has a local copy of the entire project history. Developers can work offline, commit changes
locally, and then synchronize with a central repository later.

Key features of Git include:

• Manage projects with repositories

• Clone a project to work on a local copy

• Control and track changes with staging and committing

• Branch and merge for working on different parts and versions of a project

• Pull the latest version of the project to a local copy

• Push local updates to the main project

A repository is typically used to organize a single project. Repositories can contain folders and files, images, videos,
spreadsheets, and data sets. I.e., they can contain anything your project needs. Repositories typically include a
README file that provides information about the project. README files are written in plain text Markdown lan-
guage.

GitHub is a web-based platform that provides hosting for Git repositories. It offers a graphical interface for man-
aging Git repositories, collaboration features, and additional tools for project management. GitHub allows multiple
developers to collaborate on a project, track issues, and manage pull requests.

Key features of GitHub are:

• Repository hosting: GitHub provides a place to store and manage Git repositories.

• Collaboration: Developers can collaborate on projects by forking repositories, making changes, and submitting
pull requests.

• Issue Tracking: GitHub includes an issue-tracking system for managing bugs, feature requests, and other tasks.
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• Pull Requests: Developers can propose changes to a project by submitting pull requests, which can be reviewed
and merged by project maintainers.

• Web-based interface: GitHub provides a user-friendly web interface for interacting with Git repositories.

To summarize, Git serves as the version control system enabling developers to monitor code changes, whereas GitHub
functions as a web-based platform offering hosting for Git repositories along with extra collaboration tools.

7.39.2 Working with GitHub

Step 1: Sign up for a GitHub account: link

Step 2: Create a Repository on GitHub by clicking on the “New repository” button shown below in the upper right
corner. Then, fill in the relevant details. You can set the repository as “Public” or “Private”. You also have options to
add a README file, or choose a license for your repository. Click the “Create Repository” button to finish the creation
process.
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Step 3: Create a branch. By default, a repository comes with a primary branch called "main", which serves as the
authoritative branch. We have the option to establish additional branches stemming from the main branch within the
repository. The creation of branches allows for the simultaneous existence of various versions of a project. This proves
beneficial when incorporating new features into a project without altering the primary source code. Changes made
in different branches remain isolated from the main branch until a later stage when merging is addressed. Branches
provide a space for experimentation and editing before finalizing changes and committing them to the main branch.

When branching off the main branch, we essentially create a duplicate or snapshot of the main branch as it existed at
that specific moment. If someone else modifies the main branch while you are developing your branch, you have the
option to incorporate those updates.

To create a new Branch, type in a descriptive name in the field below, and click Create Branch. In the following figure,
the name of the new branch name is test2.
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An example of a flow diagram for making changes to a branch is depicted next, showing the 'main' branch, a new
branch called 'feature', and the path of the 'feature' branch before it is merged into the 'main' branch.

Making and Committing Changes

We can make and save changes to the files in a repository. On GitHub, the saved changes are called commits. Each
commit has an associated commit message, which is a description explaining why a particular change was made.
Commit messages capture the history of the changes, so that other contributors can understand what you have done and
why.

For instance, to edit the README.md file, we can follow these steps:

1) Under the branch we created, click the README.md file.

2) To edit the file, click on the Edit (pencil) button.

3) In the editor, write some text about the repository.

4) Click “Commit Changes. . . .”

5) In the “Commit Changes” box, write a commit message that describes the changes.

6) Click “Commit Changes”.
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Opening a pull request

Pull requests are the main form of collaboration on GitHub. When you open a pull request, you are proposing your
changes and requesting that someone review and pull in your contribution and merge them into their branch. Pull
requests show the differences of the content from both branches. The changes, additions, and subtractions are shown
in different colors.

As soon as you make a commit, you can open a pull request and start a discussion, even before the code is finished. By
using GitHub’s @mention feature in the pull request message, you can ask for feedback from specific people or teams,
whether they are down the hall or 10 time zones away.

You can even open pull requests in your own repository and merge them yourself. It’s a great way to learn the GitHub
flow before working on larger projects.

To create a pull request:

1) Click the Pull Requests tab of the repository.

2) Click New pull request.

3) In the Example Comparisons box, select the branch you made to compare with the main (the original).

4) Look over your changes in the diffs on the Compare page, make sure they are what you want to submit.

5) Click Create Pull Request.

6) Give your pull request a title and write a brief description of your changes. You can include emojis and drag and
drop images and gifs.

7) Optionally, to the right of your title and description, click the button next to Reviewers, Assignees, Labels,
Projects, or Milestone to add any of these options to your pull request. You do not need to add any, but these
options offer different ways to collaborate using pull requests.

8) Click Create Pull Request.

Merging a Pull Request

In this final step, you will merge your branch into the main branch. After you merge your pull request, the changes on
your branch will be incorporated into main.

Sometimes, a pull request may introduce changes to code that conflict with the existing code on main. If there are any
conflicts, GitHub will alert you about the conflicting code and prevent merging until the conflicts are resolved. You can
make a commit that resolves the conflicts or use comments in the pull request to discuss the conflicts with your team
members.

To merge your branch into the main branch:

1) At the bottom of the pull request, click Merge Pull Request to merge the changes into main.

2) Click Confirm Merge. You will receive a message that the request was successfully merged and the request was
closed.

3) Click Delete Branch. Now that your pull request is merged and your changes are on main, you can safely delete
the readme-edits branch. If you want to make more changes to your project, you can always create a new branch
and repeat this process.
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Working with a Local Git Repository

1) Download and install Git from link

2) Specify your Git information:

git config --global user.name "username"
git config --global user.email "youremailaddress

3) Create a local Git folder:

mkdir myproject

4) Initialize Git:

git init

Pull Request

5) Pull from Github with “Fetch” and “Merge”:

git fetch origin
git merge origin/master

6) Simple Pull request (combination of Fetch and Merge):

git pull origin

Push your code from a Local folder to Github:

git push origin

References

1) Hello world. GitHub Docs. (n.d.). https://docs.github.com/en/get-started/quickstart/hello-world

2) H. F., Campion. An intro to Git and GitHub for beginners (tutorial). HubSpot Careers. https://product.
hubspot.com/blog/git-and-github-tutorial-for-beginners

3) Ajibola.Segunemmanuel. (2022, September 27). How to use Git and GitHub – Introduction for Beginners.
freeCodeCamp.org. https://www.freecodecamp.org/news/introduction-to-git-and-github/

4) Git tutorial. (n.d.). https://www.w3schools.com/git/
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